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 Kernel Functions for non-linear SVMs; Mercer and positive definite Kernels 

Hello and welcome to the next lecture on this course on pattern recognition. We have 

been discussing the support vector method, we have looked at the basic support vector 

machine algorithm. So, this class we will we will just briefly review the support vector 

machine method. Then move on to study the kernel methods, the kernel functions which 

we only briefly touched upon we did not look at any kernels. So, this this class we will 

look at kernels in more detail, so to recap we have been discussing the support vector 

machine. 
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Basically, it amounts to formulation of a optimal separating hyperplane problem. So, we 

seen how to define optimal separating hyperplane and generate an optimization problem 

whose solution is the optimal separating hyperplane. And we have seen that this problem 

is solved more easily in the dual form. By using a kernel function we can implicitly map 

the feature vectors to higher dimensional space and then find an optimal hyperplane 

there. This has been the overview of support optimization so far, so I will quickly recap 

this before going forward. 



(Refer Slide Time: 01:29) 

 

So, the optimal hyperplane is a solution of the following constrained optimization 

problem, the optimization variables are W on b recall that our notation is that our feature 

vectors are in m dimensional space. So, W is also an R m b in r, so you want to minimize 

half of W transpose W subject to y i into W transpose X i plus b greater than or equal to 

1. The X i y i are the examples they are n examples and for a given W b if W transpose X 

i plus b into y i is greater than 1, which means if y i is plus 1 W transpose X i plus b is 

greater than 1 y is minus one W transpose X i plus b less than minus 1. 

So, these are the separability constraints, separability, so that if I want to take W 

transpose X plus b is equal to 0 as my optimal hyperplane then on the the margin is given 

by the space between W transpose X plus b is equal to 1 and W transpose X plus b is 

equal to minus 1. So, if for all I is equal to 1 to n if these constraints are satisfied then 

this particular W b represent such a separating hyperplane and for that hyperplane this is 

the inverse of the margin. So, by minimizing this we maximize the margin and we 

minimize this over only that W b, which represent a separating hyperplanes.  

So, that is how optimal separating optimal hyperplane is a solution of this problem where 

you are saying find the find the separating hyperplane. Those are my constraints such 

that it has the maximum margin because margin is inverse of this to maximize margin we 

are minimizing this. This is a very nice optimization problem we have got a quadratic 



cost function, linear constraints it is almost a delight for any optimization theory 

algorithms you are going to solve such a problem.  

Kuhn Tucker conditions are necessary and sufficient every local minimum is a global 

minimum. So, it is a very nice and simple optimization problem to solve. We showed 

that we can find the dual of this problem if you this is the primal problem, so you can 

find the dual of this problem dual will be on the Lagrangian multipliers. There are n 

inequality constraint there will be n Lagrangian multipliers called the mu 1 mu 2 mu n. 
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Then the dual maximizes this function of mu. We derived the dual last class subject to 

these constraints I would not go into the derivation, but this we derived in last class. So, 

and the primal dual relationship tells me that if this has a solution, so has the dual and the 

optimal values are equal and more importantly for us from the Kuhn Tucker conditions 

for example, W star is given in terms of the optimal Lagrangian multipliers. So, if I know 

all the Lagrangian multipliers I I know immediately the W on b. That is the final solution 

final solution, W star is mu i star y i X i and b star is y j minus X j transpose W star for 

some j’s such that mu j mu j star.  

This should have been... I am sorry mu j star is greater than 0 this comes from your 

equating the gradient of your Lagrangian to 0 and this comes from the complimentary 

surplus condition as we derived last time. So, if I solve this dual I can obtain the mu I 

stars and once I get the mu i stars I got the my final solution W star and b star note that 



the dual is also a quadratic cost function linear constraints. The the dimensional to the 

dual is n, which is equal to number of examples irrespective of the dimension of X i and 

the input vectors X i themselves come only as inner products here. 

Now, unfortunately this problem has no solution if training data are not linearly 

separable this is the primal we started with if there is not even one w b that satisfy these 

constraints and there is no physical solution and hence no optimal solution. So, the 

problem has no solution if training data are not linearly separable then like in any 

standard optimization problem we use slack variables. 
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So, the problem becomes y i into W transpose X i plus b greater than equal to 1 is what 

we wanted if we cannot get it get it greater than or equal to 1 minus X i i. Now, given 

any W on b for every X i y i in my examples. So, that I can find a X i is either this is 

satisfied, so every W b is is feasible now. There is no problem about any feasible 

solution, but now I cannot just minimise W transpose W because if I am not satisfying 

this constraint fully right x i i is my slack variable. So, this much slack is there in 

satisfying this constraint. So, I want to satisfy it with at least violation as possible, so also 

are some of X i i we are assuming xi i greater than or equal to 0 i am not assuming 

constraint X i, i greater than equal to 0.  

So, each constraint if I cannot if I can correctly satisfy it if there is a separating 

hyperplane, then possibly X i i could be 0 if X i i are 0 then it it will be like old old 



solution. But even if I do not have a separating hyperplane then I can I would like to 

satisfy these constraints as much as possible. So, I use slack variable X i i and add the 

summation X i i to the cost function. So, I minimize half W transpose W also plus some 

constant times summation I is equal to n X i i this tells me the total violation of my 

constraints C is as used as used as specified constant as we discussed last time essentially 

this will this this optimization problem will always have a solution. 

If I take C larger and larger it essentially means that I am preferring only separable 

hyperplanes, we will not tolerate even little bit of violation of constraint if C is small I 

am allowing violation of constraint to improve margin. Unfortunately there is no simple 

way to say how C affects this. We will we will discuss this a little while later, but right 

now we will simply say that remember that C is as used as different constant. Using the 

slack variables allows us to ensure that even if the data is not linearly separable this this 

optimization problem will always have a solution. So, this is the optimization problem I 

want to solve.  
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Very nicely the way we formulated it the niceness about the formulation is that its dual is 

very similar to the old dual. The cost function does not change this constraint does not 

change only change is that earlier I had only 0 less than or equal to mu i I have 0 less 

than or equal to mu i less than or equal to C. Essentially my primal has C here if a C 

tends to infinity this becomes same as the old problem. So, in the dual that is the only 



thing that comes, which is very convenient for me. If I want to solve the primal, now I 

have increased the number of optimization variables all my data come in the constraints. 

But if I am solving the dual putting C or not putting C is simply a matter of while solving 

this problem whether or not I have an upper bound on mu i.  

That is the only only difference, so when I am solving the dual I can just throw in a C 

solve it. If I want I can increase the C constraint and de solve it to C how my mu i 

change that tells me as I am finding a good separating hyperplane or not and so on. So, 

when I am solving in the dual domain whether I put that extra constraint or not it is 

simply a matter of putting one extra upper bound on all my Lagrange multipliers the 

solution is still the same. Once, I solve this W star is mu i star y i X i b star is y j minus X 

j transpose W star for some j. Now, the computed slackness means that this is for some j 

such that mu j is strictly between both 0 and C. 
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Earlier it is, we were only saying mu j is strictly greater than 0. Now, given this then we 

moved on to ask how I can use this method to solve non-linear classifiers to obtain non-

linear classifiers. The idea is that is the basic SVM idea is that we have mapped the 

feature vectors into higher dimensional space and then find a linear classifier there what 

does that mean I originally I am in the m dimensional space. So, I may use a 

transformation phi that maps R m to R m prime phi even though is non bold here, it is a 

vector valued function remember that. So, in in the R m prime space the new space what 



will be the training set the training set will be Z i y i where Z i is equal to phi of X i 

earlier the training set is X i y i.  

Now, it is in the m dimensional space, now in the m prime dimensional space the 

training set will be Z i y i where Z i is phi of X i. Now, with respect to Z i, I want to find 

a linear classifier that is same as we can find an optimal hyperplane by solving the dual. 

What does that mean? My dual is this the only way X’s come is here. So, I am the these 

are the feature vectors, so if I am finding a linear classifier in the Z domain this simply X 

i transpose X j becomes Z i transpose Z j. So, we can solve the dual by replacing X i 

transpose X i with Z i transpose Z j that means that this is the dual I will solve, so it is 

very simple. 
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Basically if I calculate all the Z Z i’s Z Z, I say is equal to phi X i’s from my given 

training set I just have to replace X i transpose X i by Z i transpose Z j. Once I solve this 

I can find my optimal W in R m prime W star is mu i star y i Z i b star is this, the nice 

thing is that my original feature vector is m dimensional space may be 100 m 

dimensional space. My transformer feature vector may be in terms of the n dimensional 

space, but the dimensionality of the dual does not change.  

The dual is an optimization of R R n, where n is the number of examples it does not 

depend on what is the dimension of X is or what is the dimension of Z is. So, that is a 

very nice thing, another advantage of solving in the dual domain and we can solve this 



and find this the only problem. Of course, is to do this I have the examples for each X i i 

have to calculate Z i that may be a costly calculation. Then, of course I do not have to do 

it in, I can only once compute Z i transpose Z j even that is costly computation and then I 

solve this dual then I have to calculate W star, which is a in the high dimensional space. 

From, now on every time you give me a new vector X, I have to find Z is equal to phi X 

and then I have to do Z transpose W star. 
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So, there is lot of computation to be done even though I can automatically find a optimal 

hyperplane in the high dimensional space by solving the dual, but even this can be 

avoided. This is what we said last time suppose there is a function K that takes 2 m 

dimensional vectors and gives my real number. So, that K X i X j is phi Xx i transpose 

phi X j there is z i transpose z j we call say a function kernel function. What do you mean 

there is such a function? Of course, there is such a function if you give me phi I can 

define K X i X j to be phi X i transpose phi X j.  

What we mean is that phi might be very expensive function phi X i might be 10,000 

dimensional vector, whereas X i is only 100 dimensional vector in that sense phi X i 

transpose phi X j might be 100 times more expensive than X i transpose X j. Because X i 

transpose X j involves only 100 multiplications phi X i transpose phi X j may involve 

10,000 multiplications by saying that there exists a kernel function. We mean that this 

function is such that computation of K X i X j is roughly about as expensive as 



computation of X i transpose X j for such a function then I can replace Z i transpose Z j 

by K X i X j and can solve which means in my dual.  

I do not have to actually calculate all the Z i’s this Z i transpose Z j is replaced by K X i 

comma X j X K X i comma X j’s is what as costly to compute as X i transpose X j. So, it 

is like I am just finding a linear classifier individual space because I replace X i 

transpose X j what was there in the original linear classifier by K X i X j, which is about 

roughly same computation. So, at least for solving the dual the kernel function is useful, 

now what happens after I solve the dual? After I solve the dual I have obtained W star. 

So, even though in the dual I can replace Z I transpose Z j by K X i X j ultimately W star 

lives in the m m prime dimensional space. So, does it mean that I have to always take 

every vector into the m time dimensional space and then use W star to classify it? No. 
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As it turns out the kernel also helps me to find the classification, very new patterns also 

very efficiently let us say mu i star is the solution of the dual. Then we know W star is 

mu i star y i phi X i. Because it is a linear classifier of the Z domain, so is mu i star y i z 

i, which is same as mu i star y i phi X i. Now, first let us see how I can get b star I know 

b star is y j minus Z Z j transpose W star for an appropriate j. Now, Z j is phi X j, now 

phi X j transpose W star can be written as W star transpose phi X j W star is this.  

So, it will be y j minus mu i y i phi X i transpose phi X j, now phi X i transpose phi X j is 

K X i X j. So, I do not have to actually calculate any phi X i’s or phi X j’s for calculating 



b star I can do it only in terms of K X i K j. Now, is that good enough yes what do I have 

to do given a new pattern X i effectively need to compute Z transpose W star that is phi 

X transpose W star plus b star. Given an X i have to first transform into the Z that is phi 

X, then there is use the optimal hyperplane. So, I have to calculate phi X transpose W 

star plus b star. Now, W star is given by this, so this term is W star transpose phi X. So, 

this is this transpose phi X, so that is mu i y i phi X i transpose phi X plus b star.  

Now, phi X i transpose phi X is K X i X b star is this this also can be written as K X i X 

j. So, everything can be written in terms of the kernel function. Now, so if I solve the 

dual and store all my mu i stars and the corresponding X i’s then given any new pattern I 

have to just calculate this to decide its classification. I calculate this and based on this 

sign I will say class plus 1 or class minus 1 and to calculate this I never need to calculate 

any phi X’s. Because you already agreed that K X i X is about as complicated as X i 

transpose X and more importantly I never need to calculate phi X i or phi X if you give 

me the kernel function. 
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So, this is really an interesting way of learning a non-linear classifier we have solved the 

dual whose dimension is that of n number of examples irrespective of what is the high 

dimensional space in which you are finding the classifier. All we need to store after we 

solve the dual are the non zero Lagrange multipliers and the corresponding training data 

X i, which are called the support vectors once I have that I know how to calculate 



classification of any new pattern. This is all need to calculate the classification of any 

new pattern, which means I need to enter the phi X space at all. I never to calculate phi X 

minus (( )) I do not even know where in some sense if you tell me the K the kernel 

function. I do not even need to know what phi is, I do not even need to know what the 

range space of phi X is right. 

(Refer Slide Time: 17:44) 

 

So, this is what support vector machine is what does support vector machine do I 

essentially obtain mu i star by solving the dual with Z i transpose Z j replaced by K X i X 

j. All it means is I choose a suitable kernel function, now I can use a penalty constant C 

if needed I can choose a C and as we said using a penalty constant C is simply a matter 

of putting an upper bound on mu. So, in the dual solution it is a very simple thing to 

incorporate once I got my mu i stars I store non 0 mu i and the corresponding support 

vectors.  

Now, I am ready give me any new pattern this is what I compute and classify. So, if we 

have s suitable kernel function we never need to compute phi X we never need to know 

what phi X is as a matter of fact in a in a matter of seeing the range space of phi can even 

be infinite dimensional for all I care. Because I would never need to compute a single phi 

X, as long as I have a kernel function. 
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So, now let us ask where do kernel functions come from, so let us start with a simple 

example in two dimensional feature vectors. Let us say we are working in R 2, so take a 

kernel function K X i X j is 1 plus X i transpose X j whole square. As I point out this is 

about as expensive as translating X i transpose suppose X i is here, of course it is two 

dimensions. But in addition to X i transpose X i, once I calculate X i transpose X j all I 

have is one addition and 1 multiplication to get this square.  

So, it is just one multiplication more than X i transpose X j we will use the same kernel 

function in any dimensions. Later on as we see, so if X i is a 100 dimensional space X i 

transpose X j involves hundred multiplications. Whereas, K X i X j involves 101 

multiplication, so K X i X j is about as expensive as X i transpose X j. So, if I represent 

the two components of X i, I am looking at two dimensional vectors here by X i b 1 and 

X i 2.  

Similarly, X j as X j 1 and X j 2 then K X i X j is 1 plus X i 1 X j 1 X i 2 X j 2 whole 

square this is nothing but X i transpose X j because they are two dimensional (( )). This 

is what my kernel function is we are, now going to show that there exists a map phi. So, 

that K X i X j is phi X i transpose phi X j and we are also going to show that this map is 

such that a linear classifier in the phi X domain is actually a quadratic classifier in the X 

domain. 
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So, as earlier let us choose phi R 2 to R 6 given by 1 root 2 into X 1 root 2 into X 2 X 1 

square X 2 square root 2 into X 1 X 2 this R 2 to R 6 is very easy to see that a linear 

discriminant function in terms of Z. So a linear function in terms of Z will have terms 

constant terms of X 1 terms of X 2 terms of X 1 square X 2 square and X 1 X 2. So, a 

linear classifier need a discriminant function in terms of Z would be a quadratic 

discriminant function in terms of X.  

Now, that is the whole idea of a SVM, now we are going to show that with this 

transformation K X i X j. That is 1 plus X i transpose X j whole square is actually phi X i 

transpose phi X j, which means if I use this kernel function I am effectively finding a 

quadratic discriminant function all right using just a linear technique. Because if I 

wanted a linear thing it would have been X i transpose X j i want a quadratic thing it is 

simply one plus X i transpose X j whole square.  

I am still solving the same dual, so let us show this first. So, what will be phi X i 

transpose phi X j? Now, phi X i will be or Z i will be it will be X i 1 X i 2 X i 1 square X 

i 2 square X i 1 X i 2 similarly, for j. So, when I take phi X i transpose phi X j I will get 

one here root two root will give me 2 X i 1 X j 1 2 X i 2 X j 2 right. 2 X i 1 X j 1 2 X i 2 

X j two, similarly I get X i 1 square X j 1 square X i 2 square X j 2 square. 
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And once again this root two will give me X i 1 X i 2 into X j 1 X j 2 with a 2 in front, 

this is it what Z i transpose Z j is. Now, I can easily see that this is same as X i 1 X j 1 X 

i X i 2 X j 2 whole square I will get 1 X i 1 square X j 1 square X i 2 square X j 2 square 

and then 2 X i 1 X j 1 2 X i 2 X j 2 2 X i 1 X i 2 X j 1 X j 2. So, K X i X j Z i transpose Z 

j phi X i transpose phi X j, so easy to see it works for n in general. The only reason we 

took 2 as you can see, now is because it becomes cumbersome to write this expression.  

If I have X 1 X 2 X n X 2 square X 2 square X n square and all pairs then accordingly 

get all of that. Accordingly I get the square right, so this works in general for R n, which 

means if I use this this results in a learning a quadratic discriminant function. So, in the 

dual in if I wanted to learn a linear discriminant function I have to use X i transpose X j 

instead of that I use 1 plus X i transpose X j whole square, which is a 1 time computation 

dual. Then I can use this same function in my final classification I get a quadratic 

discriminant function. 
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The other thing that we want to mention is that for a given kernel function neither the 

mapping phi nor its range space is unique. So, we chosen this particular phi, but you 

know for the same kernel function many other phi’s work. What other phi’s work? Very 

very easy to see what other phi’s work, for the same kernel function instead of taking the 

last component as root 2 into X 1 X 2.  

Suppose, I taken it to be naught R 2 to R 6, but R 2 to R 7 and the last two components 

of Z are X 1 X 2 X 1 2 as you can see if I do Z transpose Z i transpose Z j I get X i 1 X i 

2 into X j 1 X j 2 plus X i 1 X i 2 into X j 1 X j 2. You add them I get 2 X i 1 X i 2 X j 1 

X j 2 that is what earlier a root 2 X 1 X 2 term was given here. So, basically very trivially 

I can exhibit another phi another dimension for the range space and which works with 

the same kernel function. So, for a given kernel function the mapping phi is not 

necessarily needed, there can be many mappings. 
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So, how do you in general obtain kernel functions we know the kernel function has to be 

symmetric. Because K X i comma X j is phi X i transpose phi X j the inner product by 

this transpose is symmetric. So, it has to be symmetric, so what kind of symmetric 

functions can be, will be represented as inner products in some appropriate space. We 

currently defined two characterizations for this one of them we may expand later on.  
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But right now let us define two ways of saying when a function will satisfy what we 

want first is called what is called Mercer’s Theorem kernel function that satisfy these are 



called mercer kernels. Mercer Theorem say that given a symmetric function, which maps 

R m class R m to R 3 exists a space H. I will call it an inner product space meaning in 

this space H there is an inner product defined inner product is like your dot product X 

transpose y. 

So, there exists a space H technically this is called a Hilbert space meaning is a vector 

space. A vector space in which there is a norm of vector defined inner product between 

two vectors defined and with respect to this norm this space is closed meaning every 

Cauchy sequence is convergent there. If you do not understand what I am saying it does 

not really matter, that is not at present important. So, basically given any symmetric 

function there exists a space H in which an inner product is defined.  

The mapping phi R m 2 h, so that K X 1 X 2 is phi X 1 transpose phi X 2 for all X 1 X 2 

this is what we want. Such a thing is true if the K satisfies the following for all squared 

integrable functions g K X 1 X 2 g X 1 g X 2 d X 1 d X 2 this integral should be positive 

by this integral. This is actually because X 1 X 2 are m dimensional vectors this is say 

integral over R to m or if you want it is a double integral over R m, right? R m cross R 

m.  

So, because there is a d X 1 that is 1 integral over R m d X 2 there is a another integral 

over R, m g is a squared integral function meaning g square X d X integral g square X g 

X is is less than infinity. So, given any such g K should satisfy this if K satisfies this then 

such a K will be a kernel function. Because there will be an appropriate phi satisfying K 

X 1 X 2 phi X 1. So, any kernel that satisfies this theorem is called a mercer kernel you 

do not prove the theorem, but will I will show you how to use this theorem to show that 

the previous kernel that we considered is really a kernel function. 
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A second characterization of kernels as what are called positive definite kernels see 

given a kernel function and some data X 1 to X n. Let us make matrix an n by n matrix K 

bar whose I j th element K bar i j is K of X i X j this will be a symmetric matrix because 

this kernel function is symmetric. Then we say the kernel function is positive definite if 

the matrix K bar is positive semi definite for every n. All data sets what does a matrix 

being positive semi definite mean the quadratic form of the matrix should be greater than 

or equal to 0. So, you can actually write it what it means is given any positive integer n 

and any n feature vectors X 1 to X n from R m.  

Then given any n and any X 1 to X n then for every set of n scalars c 1 to c n n real 

numbers summation over i j c i c j K X i X j this is the quadratic form of matrix is always 

greater or equal to 0. So, a function a symmetric function K is said to be a positive 

definite kernel if for every positive integer n and any feature vector gets X 1 to X 1 in R 

m. Given these we have summation over i j’s a c j K X i X j greater than or equal to 0 for 

every set of n scalars.  

Now, as it turns out if the space you are working in compact for example, R m is 

compact any any real Euclidian space under this standard Euclidian norm is compact. So, 

if the space in which you are working is compact then a mercer kernel and positive 

definite kernel are the same one and the same these are somewhat subtle concepts, which 



are not concerned as in this particular course, but we can just remember this. So, these 

are the two ways in which I can form kernels.  
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Now, let us use the mercer’s theorem to show that the function we gave earlier is a 

kernel. And we we use that proof to motivate a few more kernels, but we do not start 

with that function we start with slightly different function. Let us say I have function K 

of U comma V, I need two vectors U V is u transpose V to the power p earlier we used 1 

plus U transpose V to some integer namely square there. 

But in general, let us say we start with U transpose V to the power p U transpose V is 

nothing but i is equal to 1 to m U i V i whole to the power p. So, a function this 

symmetric K U V U transpose V to the power of p where p is a positive integer. U and V 

are vectors in R m with these components consider this function we are first going to 

show that this is a kernel function. To show that let us first look at this expression. 
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This is U 1 V 1 plus U 2 V 2 plus U m V m to the power p. So, I can use a multinomial 

expansion if I use multinomial expansion what is the kind of terms I will get, I get a sum 

of products. Each product is U 1 V 1 to the power R 1 into U 2 V 2 to the power R 2 into 

U 3 V 3 to the power R 3 so on, where R 1 R 2 or such that we we form the that sum 

should be p. For example, the binomial case I will get 0 on p 1 on p minus 1. So, you get 

U 1 V 1 to the power 0 U 2 V 2 to the power p U 1 V 1 to the power 1 U 2 V 2 to the 

power p minus 1. 

U 1 V 1 to the power 2 U 2 V 2 to the power p minus 2 and so on. But in a multinomial 

case there will be U i V i to the power R i, where R i satisfy R 1 plus R 2 plus R m is 

equal to p. The coefficients turn out to be this kind of (( )) coefficients the summation is 

over all non negative integers R 1 to R m that satisfy this. So, any something like you 

know sum of n terms raised to the power p can be expand as sum of products like this 

using a multinomial expansion.  
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So, keeping that in mind what is that we have to show we have to show that K X Y K U 

V g U g V d U d V is greater than greater than or equal to 0. I am sorry it is not greater 

than 0 greater than equal to 0, now because this d U d V i actually written it as two 

integrals just to make it clear to you d U and d V both are in represent integrals for R m 

and this is my k U V. Now, if I use the previous expansion this thing to the power p can 

be written as sum of this, because they are finite sum the inside, integral is a finite sum.  

So, I can pull this sum outside, so by expanding it this becomes a sum of integrals. What 

will each integral be? Each integral will contain one of these terms into g U g V d U d V. 

Because this is sum of this if the sum is pulled out each integral will be this, which 

means using that it becomes a sum of integrals, where each one each integral. We have a 

term that p factor by R 1 factor R 2 R m factorial U 1 V 1 to the power R 1 U 2 V 2 to 

the power R 2 U m V m to the power R m g U g V d U d V.  

Now, you see what do I have here U 1 to the power R 1 U 2 to the power R 2 U m to the 

power R m g U can come out as the V integral. What is the left is V 1 to the power R 1 V 

2 to the power R 2 V m to the power R m here the same integral, because U and V are, of 

course dummy variables of integration. So, this is nothing but U 1 to the power R 1 U 2 

to the power R 2 U m to the power of R m g U d U whole Square. Hence it is always 

greater than or equal to 0. 
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So, this shows that this function U U transpose V to the power p is a kernel is a mercer 

kernel for every positive integer V starting from here.  
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Now, we can show that, now I suppose I have another function K U V is not just U 

transpose V to the power someone power, but some a j times u transpose V to the power 

j where j’s are integers going from j is 0 to p. So, it is a 0 plus a 1 U transpose V plus a 2 

U transpose V square a 3 U transpose V cube and so on. All the way up to a p U 



transpose V to the power p where all the coefficients are non negative, this also a kernel 

why this is what I have to show.  

This is K U V this summation j is equal to 0 to p a is a U transpose V to the power j g U 

g V d U d V this is what I have to show to be positive, now this sum can come out of the 

integral. Now, this integral I know is positive because I already shown that u transpose V 

to the power j is a kernel.  

(Refer Slide Time: 35:01) 

 

So, this is because a j’s are positive it is true, so what this means is that functions of the 

form K X 1 comma X 2, which is given as j is equal to 0 to p a j X 1 transpose X 2 to the 

power j are kernels. What is a special case 1 plus X 1 transpose X to 2 power p if I 

expand this in binomial theorem I will get 1 plus some constant into X 1 transpose X 2 

plus some other constant X 1 transpose X 2 square and so on. So, in general these kind of 

functions are kernels and hence this is a kernel.  

So, this is the kernel that we used earlier this is called a polynomial kernel it is called a 

polynomial kernel because we know as we have seen if you put p is equal to 2 this kernel 

affectively finds a quadratic discriminant function in the original space. So, in general if 

I put p it is giving me a discriminant function, which is polynomial of degree p. 
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Now, let us say instead of looking at a finite sums like this suppose I have infinite sums 

like this a j U transpose V to the power j a j’s are still positive. But no infinite sums 

where will be the problem earlier when we tried to show that this thing the sum will be 

inside the integral and I pulled out this sum out of the integral. Now, this can always be 

tend for finite sums, but if it is infinite then the question is can I pull the summation can I 

interchange the summation and the integral I can do.  

So, if the summation is uniformly convergent. So, if I have considered the infinite sums a 

proof only involved interchanging integration and summation finite sums is always 

possible for infinite sums a sufficient condition is that the above sum is uniformly 

convergent. So, if you have series like this which are uniformly convergent then they 

also form kernel functions. Now, using this we can find another interesting kernel law. 
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Let us say I consider a function e to the power K of X 1 comma X 2 is e to the power of 

X 1 minus X 2 transpose X 1 minus X 2 by some constant. We call it 2 sigma square 

because it looks like a Gaussian essentially for minus norm of X 1 minus X 2 whole 

square by 2 sigma square this is a kernel because e to the power of X 1 minus X 2 

transpose X 1 minus X 2. If I expand this I get an e power minus X 1 transpose X 1 term 

e to the power minus X 2 transpose X 2 term and I get e power 2 X 1 transpose X 2 term 

as we have already seen what we have to do in in the Mercer Theorem.  

We have got K X 1 X 2 g X 1 g X 2 d X 1 d X 2, so if K X 1 X 2 can be perfectly 

factorized into a term involving only X 1 a term involving only X 2. Then I am done 

because one goes with g X 1 other goes with g X 2, ultimately I want to show that to be a 

square of an integral. So, essentially e power minus X 1 transpose X 1 e power minus X 

2 transpose X 2, of course no problem only this cross term we have to know what to do, 

but the cross term can be written as an infinite sum like that in the T l c expansion. Now, 

because any exponential to this is T l c of an exponential function this is uniformly 

convergent. Hence, using what we have shown earlier this becomes a kernel, so let us put 

all this together to look at the kernels. 
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So, these are some of the very popular kernels 1 uses with SVM’s 1 is called the 

polynomial kernel K p K p of X 1 X 2 is defined to be 1 plus X 1 transpose X 2 to the 

power p. As we have seen this is essentially gives you a polynomial of degree up to p 

degree p a, this is called the Gaussian kernel. What you have just considered X 1 minus 

X 2 e to the power minus norm X 1 minus X 2 whole square by some constant normally 

written as sigma square or 2 sigma square. 

Essentially this can give rise to an affective phi whose range space is infinite 

dimensional because as we ultimately saw it involves this X 1 transpose X 2 to the power 

p kind of terms where p goes all the way up to infinity. That interesting kernel is what is 

called a Sigmoidal kernel K s X 1 X 2 is tan hyperbolic a X 1 transpose X 2 plus theta. 

Of course, instead of tan hyperbolic I can also use sigmoid that is I can write this as 1 by 

1 plus e power minus a X 1 transpose X 2 plus theta I just put tan hyperbolic for because 

we are considering ultimately function that goes both positive and negative. Anyway 

these are some of the popular kernels used these two are already shown to be a kernel 

this I have not, but similarly it can be shown to by a kernel function. 
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Let us just take a look at this, what sum of the kernels mean. Suppose we use the 

Gaussian kernel, if i use the Gaussian kernel what will be my final classification of a new 

pattern after learning f X is mu i star y i K X i X plus b star that is what I will calculate 

right. As we have already seen, now K X i X is nothing but e to the power minus X i 

minus X whole square by 2 sigma square this is what I calculate what does this look like 

you think of mu i star y i as some constant b star as some other constant.  

Then this looks exactly like what a Gaussian RBF network. So, if I have a standard 

Gaussian RBF network X is the input then the output of the hidden node output of the i 

th hidden node will be e to the power minus norm of X, minus this centre of the i th 

hidden node whole square. Then you multiply the output of the i th hidden node with the 

weight from the hidden node to the output node and this is the bias of the output node So, 

this is exactly a RBF network Gaussian RBF network and the centres of the hidden nodes 

are the support vectors. 

As we have seen when we did RBF network we said we actually want some relevant 

very important vectors to become the centres. So, here the the support vectors become 

the centres as we have already mentioned the support vectors are a very important by 

product of the SVM (( )) see the support vectors are the one closest to the separating 

boundary. As we have seen those are the only vectors at which the inequality constraints 

satisfied by equality constrains which means the solution of the optimization problem is 



not going to change if I leave the support vectors in and take away all the other training 

data. If I remove all the training data give only the support vectors.  

Now, I ask you to find the optimal hyperplane you would still find the same one. So, in 

that sense support vectors are essentially the most important from the point of a 

classification, because they are closest to this classification boundary. If I know how to 

separate them I would separate the rest rest of the patterns anyway. So, in some sense 

support vectors are the most important of your examples as far as the classification 

problem is concerned. 

So, in that sense support vectors are a very important by product we will see some 

examples next class. But here as you can see if I use a Gaussian kernel an SVM with a 

Gaussian kernel is equivalent to the Gaussian RBF neural network, where I do not have 

to worry about how to find the centres and so on. As a matter of fact they have been 

many people use algorithms whereby you solve an SVM you get this support vectors use 

them as centres of your RBF, but may not use these (( )) multipliers. You relearn the 

output while its using a linear regression, but any case this expression shows that SVM is 

the Gaussian kernel is equivalent to a Gaussian RBF neural network. 
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Similarly SVM with a sigmoid kernel, this is equivalent to the other neural network. 

Classification of X is determined by this, so substitute the function K. So, what is this X 

i, I can think of as the vector of weights mapping the input layer to the i th hidden node 



in the hidden layer where there is only one hidden node. So, then the net input net input 

into that hidden the i th hidden node will be a X transpose X i if a X i is the vector of all 

the weights that are coming into the i th hidden node theta could be the theta is the bias 

of the i th hidden node.  

This is the activation function of the i th hidden node, then these are the weights from the 

i th hidden node to the output node and this is the bias of the output node. So, this is 

same as the output of three layer feed forward network with one output node and tan 

hyperbolic activation function for all the hidden nodes whereas linear activation function 

for the output node. Essentially there are as many hidden nodes as there are support 

vectors and weights into the hidden node are given by the support vector. 

So, once again support vectors see in in our Sigmoidal neural network one thing that we 

did not know how to choose is the number of hidden nodes. So, once again if I use a 

support vector machine with a Sigmoidal kernel what I get is essentially like a three layer 

feed forward network to Sigmoidal activation functions and where these support vectors 

determine the hidden nodes. So, in that sense this kernel functions are very nice SVM 

with kernel functions gives rise to non-linear classifiers that we have already seen earlier.  
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Now, let us let us go back to the beginning we said that the basic idea of SVM is learn a 

linear classifier in a transformed space you know. So, the idea is from the original feature 

space you transform all the feature vectors into high dimensional space and there learn a 



linear classifier. As we also said that the naively doing this will not work right you just 

transform it and do linear classifier learning there will not work. What are the two 

problems? We said this is curse of dimensionality there are two issues if I naively 

transform if I want a quadratic classifier as I said if I have 100 dimensional feature 

vector to start with it become 10,000 dimensional feature vector.  

If I want a cubic classifier 100 dimensional feature vector becomes a million dimensional 

feature vector, so naively transforming will get us caught in this so called curse of 

dimensionality. In this curse of dimensionality there are two issues 1 is computational 

complexity 1 is as I said you know we have to first transform all of them into very high 

dimensional space do inner products in the high dimensional space to learn the classifier. 

Even after learning the classifier you give me any new pattern I have to, now once again 

transform it to high dimensional space and keep doing inner products in the high 

dimensional space. 

So, computationally very complex this is elegantly solved by the kernel trick by using 

the kernel function and solving the optimization problem in the dual by choosing a 

optimal hyperplane solving the optimization problem in the domain. Using the kernel we 

never need to actually compute the transformation we never need to compute the inner 

products in the high dimensional space. So, the computational complexity issue is 

elegantly solved by the kernel trick here is the second issue in the curse of 

dimensionality does it generalize well for all my cleverness.  

I am still learning a hyperplane classifier in terms of n dimensional space, so it should 

have a V c dimension of 10,000. Hence how can I get around? How can I learn with 

anything less than 10,000 into 10 times 10 into 10,000 examples? So, to say, so the idea 

is because you are finding a hyperplane in a very high dimensional space do we need 

correspondingly larger number of examples to get good generalization. 
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As it turns out in practice SVM's perform very well that is they learn classifiers that do 

very well on test data without needing correspondingly large number of examples. We 

need as many examples as you would have needed if you are learning a linear classifier 

in the original domain. Why does this happen? The reason essentially is that we learn a 

hyperplane with a large margin we are not searching for any hyperplane classifier, but 

hyperplane with a large margin different ways to analyze. 

For example we can ask V V c dimension of hyperplane classifiers is dimension plus 1, 

but suppose we restricted ourselves to all classifiers with a minimum margin of delta 

right. Then whether the V c dimension will change obviously right V c then it will not be 

same as this these set of classifiers are set of just hyperplane classifiers. So, we can for 

example, ask what will be V c dimension of large margin classifiers there is a way of 

looking at it. Currently we are not looking at this what I will do is we will just state one 

theoretical result in this lecture much later I may come back to this. 
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So, to say result is the following there is a P n e error be the error on test set for an SVM 

trained with n random variable meaning for a given n. I choose n random examples 

trained and SVM. Now, use this SVM to find error in a test set the probability of error on 

a test set is given by this. Obviously this is a random variable because it depends on n 

random examples. If I use different n random examples I may get a different SVM and 

hence it will have a different test error rate.  

But if I ask what is the expected error rate when I learn with n dynamic samples one can 

bound it above by a minimum of these three numbers. What three numbers s by n, where 

s is the number of support vectors. So, s by n is the fraction of support vectors out of n 

examples how many happen to be support vectors or R squared norm W square by n 

where R is the radius of the smaller sphere enclosing all the examples. 1 by norm W 

square is the margin of the maximum margin hyperplane. 

So, essentially this keeps decreasing as you increasing the margin third is the usual thing 

your dimension by the number of examples. So, far we only know this from our V c 

theory. Because for linear classifiers V c dimension is essentially proportional to the 

dimension of the feature space, so this is dimension of the feature space and n is the total 

number of examples. This is for SVM with no slack variables you learning a linear 

classifier in a m dimensional space. 
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Now, let us try and make sense of this this is what we have expected error rate is been 

more in these three. So, we can essentially say that optimal hyperplane as I said 

everything is happening because we are learning optimal hyperplane optimal hyperplane 

may generalize well. Because of many reasons one is that the data compression is large 

what does that mean s is the number of support vectors n is the total number of examples 

I have if s by n is small then I know expected error rate is small. 

So, if only 1 percent of my data turn out to be support vectors then I have a good chance 

that I have got a very good classifier. Because expected error rate is bounded above by 

0.01. So, essentially we we seen that support vectors are the most important subset of my 

training examples, if you keep the support vectors and throw away everything else I will 

still get the same optimal hyperplane. So, in some sense support vectors represent the 

rest of the examples as far as the classification problem is concerned.  

So if I got a very good n site into the classification problem that is what data 

compression means I can compress all the examples to a few support vectors that may be 

the key to my good performance. As a matter of fact this is very nice because when you 

use a support vector machine at the end I have some way of guessing how good would be 

the classifier I have learnt not using the test set simply by looking at the fraction support 

vector. 



If I got 20 percent of my data support vectors I do not know I may have got a good 

classifier may not have got a god classifier. Because, of course this is only an upper 

bound, but if I if I finally, landed up with only 1 percent of my examples being support 

vectors. Then I have a very good confidence that I have learnt a good classifier. So, one 

reason optimal hyperplane may generalize well because we are not learning any 

hyperplane.  

We are learning optimal hyperplane that is when the support vectors come into play is 

because data compression is large the 2 is, of course the margin is large that also will 

help. So, if I bend large margin that also can result in error rate being small third is the 

usual thing that we know if I have got many more examples than the dimension which I 

am learning the linear classifier then also. So, what it means is even if m is very large let 

us say m is 100 times n. I have got actually less number of examples then I have 1000 

examples in a million dimensional space m m is 1000 times n, but if one of these two 

terms is small then also I can learn a good a low error classifier.  

This is basically what learning the optimal hyperplane is buying us I want to emphasize 

again that this is for a learning a linear SVM in m dimensional space without the slack 

variables. This is when you actually learn an optimal sub training hyperplane once we 

put slack variables we cannot actually use the theorem. But you know roughly if C is 

sufficiently large if I think that I am getting a separating hyperplane the theorem would 

kind of hand waving would be useful, but for a separating hyperplane even if m is large 

meaning. If I replace m by m prime keeping n same m prime by n might be much larger 

than n. 

But s by n can still be small or the margin can still be large, so that my expected error 

would be much smaller even though I do not have sufficient number of examples. This is 

basically how learning optimal hyperplane is helping. So, both in terms of computational 

cost and in terms of generalization abilities posing the problem as one of learning 

optimal hyperplane solving it in the dual and kernelizing the inner product you know 

gives a very, very elegant solution. 
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So, let us sum up kernel trick we use a function phi, so map the original space into some 

high dimensional space kernel function allows us to compute inner products in H 

implicitly without using or even knowing the transformation phi through kernel 

functions. We learn non-linear classifiers using linear techniques we can elegantly 

construct non-linear versions of many linear techniques. Essentially between using 

between learning a linear classifier and non-linear classifier I simply solve the same dual 

problem where X i transpose X j is simply replaced by K X i transpose X j.  

So, using a kernel I can take a linear technique and convert it into a non-linear technique. 

We can use this trick in many other algorithms right, we can similarly, design fisher 

linear discriminant regression wherever the actual training data enter into a solution only 

as inner products. Only in terms of X i transpose X j by kernelizing X i transpose X j we 

can take a linear function a linear technique and turn it to non-linear technique. For 

example, I can use kernels and turn fisher linear discriminant into a non-linear fisher 

discriminant. So, let us look at the same thing in the regression context for the just to see 

how the kernel trick can be used. 
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So, what is the regression problem unlike classification problem I am given data X i Y i. 

So, X 1 Y 1 X 2 Y 2 X l Y l we want to find the best function to predict Y given X. X i’s 

are in m dimensional space I put l here sometimes we will use l as the number of 

examples sometimes use n as the number of examples. So, in general we search in a 

parameterized class of functions. So we are learning a function g X W, which is written 

as W 1 phi 1 X plus W 2 phi 2 X W m prime phi m prime X plus b, which I write as W 

transpose capital phi X plus b where each phi phi i is a R m to R function.  

So, this is what the kind of linear least squares method we have seen where phi’s are pre 

chosen functions, but then of course I have to solve this m prime dimensional problem. 

Now, basically there are two ways of looking at it. Of course, if we choose phi i X equal 

to X i then it is a linear model m prime is equal to m and phi i X is equal to X i, the i th 

component then it simply your W transpose X plus b your linear model otherwise as we 

said it is like using some fixed functions.  
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But what you are going to think of it as actually I think of Z is capital phi of X, so 

transforming m dimensional X to m prime dimensional Z. Then we are essentially 

learning a linear model in the transformed space this is the basic idea of SVM. So, the 

question is can we use the kernels see we could have done it by using linear least 

squares. But if you want to do it using linear least squares then I have to actually solve 

the m prime dimensional space m to m dimensional optimization problem. Every time 

you give me an X i have to actually calculate phi i of X, then do W transpose phi X plus 

b to do my prediction. So, the idea is that can I do it using kernel trick as it turns out we 

can do this using kernel trick i. 
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I just give you a a a basic idea of how we are going to do this like in all regression 

problem we essentially minimize a loss function. This is the strategy of empirical risk 

minimization we choose some loss function, so given a particular X i i am saying g X i 

comma W for a. If W is my model i am saying g X i comma W whereas, I should have 

said y i. So, l y i comma g X i comma W is the loss sum over all I that gives me the 

empirical loss and and that is what I minimize. So, essentially what we are going show is 

that we will have a special loss function using which by doing a empirical risk 

minimization. We can use kernel trick while learning linear regression, this is what we 

will see in the next class.  

Thank you. 

 


