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Radial Basis Function Networks; Gaussian RBF networks 

Welcome to this next lecture in this course on pattern recognition. We have been 

considering in the last few classes on neural network models specifically what we called 

the multilayer feed forward networks for models. We have looked at these multilayer 

feed forward networks both for classification and regression. 
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Basically these are a good class of parameterized non-linear functions, so these models 

are good for learning general non-linear functions for classification as well as regression 

problems. We have seen that these networks can represent any continuous function to an 

arbitrary approximation on a compact set. So, in that sense, it is a very good 

parameterized class for non-linear functions. We have seen that we can very efficiently 

learn the weights or the parameters in this network. Essentially these networks are 

trained, so that we minimize the empirical error or empirical risk corresponding to 

squared error loss function. 

So, we take the square of the output of the network and the desired output. This is what 

we want to minimize and to find the... To minimize this we use gradient descent. To find 



the partial derivatives of this error with respect to various weights in the network we use 

back propagation. So, this multilayer feed forward networks trained with back 

propagation or very nice general techniques for learning non-linear classifiers and 

regression functions.  

Now, the particular structure that we considered are not the only kind of neural network 

structures that we can have, so the multilayer feed forward networks where each unit has 

a (( )) activation function. Each unit actually takes a weighted sum of the inputs is 

receiving and passes through a sigmoid, that kind of structure. What we call the 

multilayer feed forward networks is only one of many other neural network structures 

that one can use for classification regression. 

And what it means is is only one of the many structures which are just as good for 

representing any non-linear function. So, there are other neural network structures or you 

know neural network models, which are also good at approximating any continuous 

function. The reason why we said the multilayer feed forward networks are good for 

classification regression is that they can well approximate any continuous function and 

hence they are good models for parameterizing non-linear functions similar properties 

also help the other neural network model structures. So, for this course we will just look 

at one other such neural network model, what we call the radial basis function networks. 

So, that is what we are going to study in this class and possibly next class. 
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So, to to understand what this radial basis function network is, let us start form the 

network models that we already know. Let us say you have a three layer feed forward 

network with m input nodes one output node and p hidden nodes by now we know these 

structures. So, that is why I am not putting any figures this time, so in the multi networks 

we know each node computes a weighted sum of its inputs and passes it to a sigmoid to 

calculate its output.  

So, what this means is that we can write the output as the network as we already done 

many times as this. So, the, we take the output node to have linear activation. So, 

because there’s only one output node the output is the weight connecting into the output 

node multiplied by the output of the j th hidden node. This is the output at the j th hidden 

node multiplied by the weight connecting j th hidden node to the output node. How do I 

get the output of the j th hidden node? It is a weighted sum of the inputs right x i is 

multiplied by w i j for the j th hidden node plus b j is the bias of the j th hidden node.  

So, I take a weighted sum of the inputs and pass it pass it through a sigmoidal 

nonlinearity. So, this is how we have been writing the output of the network that we 

seen, so far we can bottle up all this is what the hidden node is doing into some function, 

which is a function of some parameters and the input vector. This is if we if we want to 

generalize this we are what we are saying is the hidden node does not necessarily have to 

just find the weighted sum and pass it through a sigmoid.  



At similar activation function it actually calculates some non-linear function of the input 

some non-linear function that is represented by some parameter vector. So, I can bottle 

up this entire thing into some non-linear function if I do that I can actually the write this 

alternatively as I have this beta j into something, which is, of course for the multilayer 

feed forward networks that we considered is specifically a weighted sum of inputs 

passing through a sigmoid. 
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But in general we will write it as beta j of some phi of x comma theta j, so this is some 

non-linear function of the input as well as some parameters. The theta j at the parameters 

of phi, now we can think of this itself as some other three layer network. If I take 

different phi’s what it means is if I have a network a three layer network where when the 

input is the vector x the output of the j th hidden node is given by phi of x comma theta j. 

Then the output node is linear, so the output of the network will beta j times phi of x 

comma theta j. 

So, this represents output of a three layered network with 1 output node capital x is the 

vector of inputs they. There are p hidden nodes and the j th hidden node has output phi of 

x comma theta j when the input is x and theta j is some parameter vector that we 

associate with the j th hidden node. Now, this is the kind of structure of networks you are 

going to consider. Now, where this is an alternate structure of the network where we are 



making the output of the hidden nodes to be some non-linear function of x, which has 

some parameters inside it, those parameters are what we may have to fix or learn.  

The kind of non-linear function that we have may not be capturable as a weighted sum of 

inputs. But it does not matter as long as some non-linear function that we specify this 

will possibly represent a non-linear function and later on we shall see it also can 

represent almost any continuous function. It has a similar network structures say this 

straight forward three layer network structure. Normally in this network not normally if I 

have the particular class of network that we are considering. We take the function phi to 

be radially symmetric, this function this function phi to be radially symmetric. What do 

you mean by that? That each of these functions for each j this term is such that it will 

have the same value for all x on a sphere that is what we mean by radially symmetric. 
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So, what do we do for that that is we take the parameter vector theta j to be of the same 

dimension as x. Take the function to be phi of distance of x minus theta j, so if the jth 

term there is phi of nom x minus theta j. Then as long as norm of x minus theta j is same 

the phi value will be same and x norm of x minus theta will be same for all x in a sphere 

around theta j that is what we mean by these are radially symmetric. Now, this is how e 

can write the network output j is equal to one to b beta j phi of x minus theta j, so beta j 

has the weights connecting into the output node there is beta j is the weight that connects 

j th hidden node to the output node. 



Theta j is a weight or weight vector parameter vector associated with the j th hidden 

node. We will look at this these class of networks now. The reason for considering that 

particular class one networks comes from techniques for interpolation.  
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What what is interpolation? Suppose you have some data X i d i as usual suppose a 

regression problem. So, X i belongs to some r m it is a is an m dimensional real vector d 

i is a single real value so you want to learn a function from R m to R. So, we are given 

these examples X i d i. So, far we have been considering we want to learn the function, 

so in some statistical sense the function it well represents this relationship. So, when we 

learn a function like this let us say when we learn this function using neural network 

models there is no guarantee that for any of the training examples if you put X i at the 

input we exactly get d i.  

We are essentially minimizing the error between what we get at the output and d i. By 

having sufficiently many examples and you know minimizing this error we hope to 

capture the functional relationship. We make capture the functional relationship quite 

well, but there is no guarantee that when you put X i at the input you will get d i at the 

output. Matter of fact we may not even want such a guarantee because there may be 

noise in there here training the samples.  

However, when one is talking about interpolation there are many problems where I put 

some points and ask can you draw a curve that passes through all these points and given 



that it passes all these points I want the curve to be sufficiently smooth. Some of you 

might have used (( )) for interpolation in graphics or some such courses where especially 

in graphics or when I am creating some surfaces I may choose some convenient points 

and then ask what is a very smooth surface that passes through all these points.  

That is the interpolation problem, so in interpolation problem is to find a smooth function 

such that their function. Suppose this smooth function is g then g of X i is equal to d i for 

i is equal to one to n. So, it should pass through all these points and be smooth, so we 

want a smooth function to interpolate this data that is what interpolation means. So, if the 

context of the network structures, we we we are discussing what does the interpolation 

mean.  

Can I can if I use the network as a as the network structure as the function then can I 

have such a function to interpolate this data my network function is is given by beta j phi 

of X minus theta j beta j and theta j are the parameters of this function. So, I am ask the 

the question is do there exists some beta j and theta j by note that beta j’s are scalars, 

where theta j’s are vectors. We are asking is do there exists some beta j’s and theta j’s 

and some function phi, so that if I calculate h of X a function of X as j is equal to 1 to p 

there are p hidden nodes beta j phi of norm X minus theta j for this function I can show 

that h of X i is equal to d i for i is equal to 1 to n because I want interpolation. 

So, I want this phi to be sufficiently smooth, so that h X is nicely smooth. In addition I 

want h of X i is equal to d i for the n training data, because I want to do interpolation. So, 

I am asking do there exist, a beta j theta j and a phi such that this representation will 

satisfy my interpolation condition. This is my interpolation condition it turns out that if 

you take p is equal to n p is the number of hidden nodes you have n is the number of 

examples.  
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So, if I take p is equal to n I take as many hidden nodes at that examples. Take each of 

the theta j’s to be X j’s, so the parameter vector with the j th hidden node is simply the j 

th training vector then there are many functions phi which can achieve such a perfect 

interpolation. That is what I am saying is that take a network structure like this h of X 

take a function representation like this h of X is equal to, now I am changing beta to w 

because this is specific function representation. So, h of X is w j phi of X minus X j theta 

j is taken to be X j and there are exactly n hidden nodes, the j th hidden node has 

parameter vector x j. 

So, if I take j is equal to one to n w j phi of phi phi of norm X minus X j such a function 

for such a function. Now, the only thing that is unknown is w j. Now, the the result is 

that there are many choices for phi for which we can find this corresponding w j. What is 

finding w j mean? Given this function representation the only thing unknown is w j, so 

we want h of X i is equal to d i. So, if I put h of X 1 here it simply means summation j is 

equal to 1 to N w j phi of X X 1 minus X j nom that should be equal to d 1.  

So, in general summation j is equal to 1 to N w j phi of nom X i minus X j should be 

equal to d i. So, essentially I get N equations. What are my unknowns? Unknowns were 

w’s because X i and X j are given phi is given suppose if I choose a particular phi then it 

becomes n linear equations because these equations are linear in the unknown variables 

w j. We essentially land up with N linear equations in N unknowns w. So, whether or not 



we can find such a function which smoothly interpolates with the data is simply a matter 

of whether those linear equations have a solution or not.  

So, essentially my interpolation condition gives me N linear equations in the N 

unknowns w j. If I can solve it then I found the interpolation. Interpolation means it 

perfectly represents the data, so as I said if we take p is equal to N theta j equal to X j. 

Now, the problem simply turns out to be whether or not a set of N linear equations have 

a solution. 
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So, what are the linear equations j is equal to 1 to N w j phi of norm X i minus X j is 

equal to d i, i is equal to 1 to N these are the N linear equations. If I take capital phi to be 

N by N matrix whose i j th element is this phi of X i minus X j then i. this is the i j th 

element of a matrix this is the j th element of a vector summed over j. That will give me 

the if I if I post multiply this matrix with this vector, then this gives me the i th element 

of the the vector of the multiplication that is equal to i th element of d.  

So, if I take a w vector to be w 1 w N, all vectors are column vectors d to be the vector 

consistent d 1 to d N and capital phi to be N by N matrix. Whose i j th element is given 

by this phi of X i minus X j then this equation in matrix form simply becomes capital 

phi. W is equal to d capital phi is the N by N vector w is a N by N matrix w is an n 

vector d is an n vector. So, this set of n linear equations become phi w is equal to d and 

phi. Now, simply is this little phi a capital is simply little phi of X 1 X i minus X j that is 



the i j th element. So, now ultimately is a choice of phi such that given any N vectors in r 

m X 1 X 2 X N this matrix phi form like this phi of norm. X i minus where little phi of 

norm X i minus X j that matrix should have full rank. Then the linear equations will have 

a solution correct. 
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So, if the matrix is phi is full matrix phi is full rank which depends on the little phi 

function that we then we will get a solution, that is all (( )) right. 
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So, to be able to find the right w this set of equation should have a solution, this set of 

equation should have a solution is same as if the vector vector vector mapping. We are 

saying this, so everything boils down whether this matrix is full rank matrix full rank 

simply means if I take X 1 to X N for any N and form a matrix whose i j th element is 

little phi of X i minus X j will that matrix be full rank. So, one can ask what kind of i 

functions it will be of full rank? What kind of phi functions may not be right? 

So, ultimately the question boils down to if I have the matrix capital phi to be of full 

rank. What kind of function little phi can I take? It turns out there are many many 

choices for phi we are not proving this, but here is one simplest choice phi of z is 

exponential minus z square by two sigma square sigma is some some extra parameter for 

phi. So, phi of X minus theta j will be exponential minus norm X minus theta j whole 

squares by two sigma square and so on.  

So, this is one kind of possibility for phi these are what we consider later on another 

possibility. Once again for some parameter sigma, which is positive I have forgotten to 

write that and some parameter alpha which is positive I can take phi z to be z square plus 

sigma square to the power minus alpha or I can take phi z to be z square plus sigma 

square to the power beta where beta is between 0 to 1. There are many such choices for 

phi, for all the choices of phi it is this matrix capital phi will be full rank, which means I 

would be able to get this perfect interpolation as a matter of fact I just want to know that 

even if I take phi z is equal to z we still get a non-linear function h X.  
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Let us just go back to h X that, so that you appreciate it, my h X is this right otherwise 

my h X is this, so even if phi of z is equal to z, so this term becomes a norm X minus X j. 
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So, this h X is equal to j is equal to 1 to N w j norm X minus X j this is a non-linear 

function of X because of the norm even if I take this standard nuclear norm it is still a 

non-linear function. So, even if I take phi to be z phi z is equal to z even then I get a non-

linear function. 
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But anyway these are phi z is equal to z also works, so for the interpolation, but these are 

some of the more often used functions radial basis functions for interpolation. 
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So, if we choose any of these phi and then define my h of X is equal to j is equal to 1 to 

N w j of phi X minus X j. Then the result is that I can satisfy, I can find w j’s such that h 

of X i is equal to d i i can exactly interpolate the data. Of course, exact interpolation of 

the data is of not much concern to us. In in learning a classifier or learning a regression 

function just learning the function value on the training data is not enough. Then I can 



just simply remember the training data, but that I can find a smooth function, which 

exactly represents the training data is always an interesting thing.  

So, we will... one can think of a network structure of similar kind, of course I may not 

want to put as many hidden nodes as their examples as we already know in many of 

these networks the v c dimension is of the of the order of the number of nodes. So, if I 

put as many examples as a number of nodes then obviously I am not going to learn very 

well. So, I may have hidden nodes, which are much less than the number of examples 

hence I would not get the perfect interpolation, but still I can think of this kind of a 

structure then I do not take theta j to be X j.  

But I take theta j to be some other parameter vector, which is to be learnt, but because if I 

put N hidden nodes they have perfect interpolation capability. The hope is that this kind 

of functions if I put some p here and some theta j here can represent almost any function. 

The fact that when I put as many hidden nodes as there are examples and take the theta 

j’s to be x j’s. Then I can I can always find w j’s, so that h X i is equal to d i, this 

property is called the perfect interpolation property. So, there is a whole lot of phi 

functions, whole lot of radially symmetric functions, which they are called radially 

symmetric basis functions, which have which have this perfect interpolation property. 

The idea is that we will use similar representation to have an alternate three layer 

network structure. 
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So, we will call them RBF networks, so it is like the following we have a three layer 

network with m input nodes p hidden nodes and one output node as earlier. So, X is the 

input vector to the network X is a m vector. Now, we no longer want our hidden nodes to 

be doing some specific weighted sum, they can they compute some non-linear function 

in the following sense. So, given X as the input network the output of the j th hidden 

node is calculated as phi of X minus theta j where theta j is some parameter theta j is also 

an r m some parameter which is associated with the j th hidden node and phi is a radial 

basis function that we choose.  

So, the output of the j th hidden node is calculated as phi of X minus phi of X norm of X 

minus theta j where theta j is a parameter vector. So, the output node simply computes a 

weighted sum of the outputs of the hidden nodes. Output node is like a layer it has a a 

linear activation function it simply computes a weighted sum of the output of the hidden 

nodes. 
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So, this gives us exactly the kind of function we are calculated. So, this is so the output 

of the network can be represented as j is equal to 1 to p w j phi of X minus theta j w j and 

theta j are the parameters. W j is the weight connecting the j th hidden node to the output 

node and theta j is the parameter vector associate with the j th hidden node. Such a 

network is called a radial basis function network, so a radial basis function network is a 

three layer network. Whose output is computed like this a three layer network with p 



nodes or p hidden nodes w j is the weight this is a three layer network with only output 

node. 

So, we are learning real valued function as there is only one output node there is only 1 

subscript on w. So, w j is the weight connecting the j th hidden node to the output node. 

Phi of X minus theta j is taken to be the output of the j th hidden node, where theta j is 

the parameter vector of the j th hidden node and X is the input to the network. A network 

that is whose output is represented like this is called a radial basis function network. 

These hidden nodes whose output is phi of X minus theta j are often called the RBF 

nodes; radial basis function nodes that they implement a function that has that has radial 

symmetry. 
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We can see this like this, see the representation of that we are using in this class of 

models if j is equal to 1 to p w j of phi of X minus theta j. So, we can actually think of 

this as w j into some basis function the basis function itself has some parameters. But 

anyways w j into some basis function, so we are expressing the desired function using 

sum basis functions. It is just a linear sum sum of basis functions, so I if I think of this as 

the j th basis function. Now, it is called the j th basis function phi j tilde.  

So, our representation is that we want to express the desired function as a linear sum of 

basis functions. The J th basis function is given by phi of x minus theta j. Now, if I view 

it like this my j th basis function has radial symmetry because for all X. A hyper sphere 



centred around theta j phi j tilde X is same because phi j tilde X is phi of norm X minus 

theta j phi is a function. So, as long as norm X minus theta j is the same value phi of 

norm X minus theta will be same value norm X minus theta j will be the same value for 

all X, which are in a hyper sphere centred around theta j.  

Hence, for all X on a hyper sphere centred around theta j centred on theta j we get this 

same value of phi j tilde X. So, all my basis functions have radial symmetry and hence I 

call this network radial basis function networks. Because essentially I am representing 

the desired function in as the basis function expansion, where the basis functions 

themselves are radially symmetric. So, that is why we call them radial basis functions a 

radial basis function networks. 
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Now, if we take our radially symmetric basis function to be the Gaussian function phi z 

is exponential minus z square by 2 sigma square, then the resulting network structure is 

called a Gaussian RBF network. These are the most often used RBF networks in 

classification and regression context. So, this is the, this is the only kind of the most of 

the time this is the only kind of radial basis function one uses.  

So, such networks are called Gaussian RBF networks, so in a Gaussian RBF network 

what will be the output of the network is w j exponential X minus theta j whole square 

by 2 sigma square w j and theta j are parameters. Of course, sigma is also a parameter of 



the network, so to actually learn the network I have to somehow fix w j theta j and 

sigma. 

But for a Gaussian RBF network the output can be represented like this as a weighted 

sum of exponentials. So, if j is equal to 1 to p w j exponential minus X norm X minus 

theta j whole square by 2 sigma square, this is the structure of the Gaussian RBF 

network. Of course, in general the sigma can also be a function of j. So, when we write 

phi of norm X minus theta j phi has to be a function of that norm X minus theta j there 

can be other parameters in that function. That parameter could be sigma and because we 

are inside a j summation we can even make it make that a function of j.  

So, different hidden nodes can have different sigma’s, but often it is very difficult to 

know on what basis to learn those sigma’s. So, very often you take this same sigma we 

will come back to that later. Theta j’s are course are parameters to be learnt and w j’s are 

also parameter term. So, w and theta j are essentially parameters of the network. 
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We can choose different sigma for different hidden nodes also often we call theta j as the 

centre of the j th hidden node and sigma is the width of the j th hidden node. See the j th 

basis function is a Gaussian centred at theta j and with a variance of sigma a variance of 

sigma square. Hence we say theta j is the centre of the j th hidden node or centre of the j 

th basis function. Sigma or sigma j is the width of the j th basis function or j th hidden 

node.  



So, theta j and sigma j are normally referred to as the centre and width parameters of the 

j-th hidden node. So, essentially we have to use the training examples to fix or learn or 

whatever you call the parameter w j theta j, so ultimately that we will see may not be in 

this class we will see the learning algorithm in next class. But essentially to to represent a 

specific function we have to fix w j’s and theta j’s. 
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Now, how we will it from training data we will see later on. Now, because we said that 

we have approached the RBF networks from the point of view of perfect interpolation. 

So, let us look take the Gaussian RBF networks, which is said they are are the most often 

used RBF networks in pattern recognition regression. So, we will take the Gaussian RBF 

networks and illustrate what we mean by the perfect interpolation property these are very 

interesting thing to go through this exercise at least once.  

To do that we will use the same non-linear function we used for the feed forward 

networks, to show how feed forward networks can represent non-linear function we 

looked at XOR function because we know that XOR as a classifier or a function cannot 

be represented by a linear model. So, we need a non-linear model for it, so we use the 

same XOR function to illustrate the perfect interpolation property of the Gaussian RBF 

networks. 

Now, for XOR function, so what is the perfect interpolation property you give me 

samples X i d i and I have to create a smooth function such that 1 input is X i output will 



be d i exactly not approximately. It has to be exactly equal to d i what is the XOR 

function it has four sample points, so our training sample has four data X 1 X 2 X 3 X 4 

and these are the vectors 0 0 1 0 0 1 1 1. Because an XOR function on X 1 and X 4 it 

takes value 0 on X 2 and X 3 it takes value 1.  

So, I have d 1 and d 4 equal to 0 d 2 and d 3 equal to 1. So, I have four examples X 1 d 1 

X 2 d X x 3 d 3 X 4 d 4 where X 1 X 2 X 3 X 4 are given by this and d 1 d 2 d 3 d 4 are 

given by this. This is the sample given to me, now I have to find a Gaussian RBF 

network which exactly reproduces this function that is the perfect interpolation property. 
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So, for perfect interpolation we already know we need four hidden nodes because there 

are four samples that this capital N is equal to 4, so I need four hidden nodes. So, let us 

take all the Gaussian we will let us take a Gaussian RBF network with sigma square is 

equal to half. Why sigma square is equal to half? In the expression I get 2 sigma square 

in the denominator inside the exponent. If I take sigma square is equal to half writing my 

equation becomes simple because in the denominator becomes small, almost any sigma 

square will work.  

So, we will take sigma square is equal to half if I take sigma square is equal to half my 

output of the Gaussian RBF network simply becomes w j exponential minus X minus X j 

whole square. Normally I have X minus X j whole square by 2 sigma square I made 2 

sigma square is equal to 1 by my choice of sigma square. So, this is my output of the 



network. Now X j’s are given to me, so if I put X is equal to X i the output should be d i. 

So, I have to find w j’s, so that h of X i is equal to d i where X i and d i are given by this.  

So, we need to find w j there are 4 w j’s j is equal to 1 2 3 4 to satisfy X i is equal to d i. 

What is...? Suppose I have put X 1, what is my X 1? X 1 is both components 0 and d 1 is 

equal to 0. So, for example, what will I get? Now, if I put X is equal to X 1 I will be 

calculating norm of X 1 minus X 1 X 1 minus X 2 X 1 minus X 3 X 1 minus X 4. 

Essentially because all the vectors are 0 1 vectors this norm will simply tell me how 

many components they are same. So, if I take norm between norm square between 0 0 

and 1 1 I get 1 minus 0 whole square plus 1 minus 0 whole square I will get 2. If I take 0 

0 and 0 1 1 component is same only the other component will give me 1. 

So, essentially if I take X 1 with X 1 the norm will be 0 with X 2 and X 3 in the norm 

will be one with X 4 the nom will be two whereas, the nom square will be 1. That is how 

I will get this. So, essentially my equations will be like this I hope one can see. So, with 

w 1 I get exponential minus X 1 minus X 1 norm that is 0. So, this is to emphasize that 

instead writing 1 I wrote e power minus 0 into W 1. If I put the second term will be w 2 

exponential minus X 2 X 1. I am taking X equal to X 1 X 1 minus X 2 because j is equal 

to 2 X 2 is equal to 1 0. So, X 1 is 0 0. So, the norm square will be 1, so I get e power 

minus 1. 
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Similarly, with w 3 also I will get e power minus 1 w 4 because w 4 is 1 1 and I am 

choosing X 1, which is 0 0 I get e power to minus 2 and the output should be 0 similarly, 

for everything else. 
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For example if I have taken this h of X 2, so this 1 will become X 2 X 2 is 1 0. So, if this 

was 0 0 there norm square will be one if it is 1 0 the norm square will be 0 if it is 0 1 

norm square will be 2 1 1 norm square norm square will be 1. So, once again I get one e 

power minus 0 2 e power minus ones and 1 e power minus 2 and so on. So, I get e power 

minus 1 e power minus 0 e power minus 2 e power minus 1 and so on. 
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So, a little thought will tell you that this is these will be the four equations. Now, we 

have to solve them, yeah actually we do not have to solve if a four equations system. If 

we look at this look at the first and the last equations e 0 this is 1 this is w 1 e power 

minus 2 w 1 and it has e power minus 2 w 4 and e power minus 0 w 4. The rest of the 2 

terms are same e power minus 1 w 2 e power minus 1 w 3 e power minus 1 w 2 e power 

minus 1 w 4.  

So, if I subtract one equation from other I get w 1 minus w 4 these two are and e power 

minus 2 into w 1 minus w 4 with a minus (( )). So, this essentially shows me that W 1 is 

equal to W 4 this is the symmetry similarly, these inner two equations will show me that 

W 2 is equal to W 3. So, essentially even though there is a 4 4 unknown system we 

already know w 1 is equal to w 4 w 2 is equal to w 3. So, we can reduce it to that two 

equations in two unknowns.  
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If we do that reduction take w 1 is equal to w 4 is equal to a and w two is equal to w 3 is 

equal to b and substitute in these four equations then we get this, that is also easy enough 

to see w 1 is equal to w 4 is equal to a. So, it will be one plus e power minus 2 into a 

these 2 are same 2 be e power minus 1 is equal to 0 and so on. Now, 1 power e power 

minus 2 into a plus 2 e power minus 1 to be is equal to 0 similarly the other one. Now, it 

is very easy to see that this system has unique solution.  

Because if you take the on the system 1 plus e power minus 2 whole square minus 4 e 

power minus 1, which is 1 minus e power minus 2 whole square, which is always 

positive. Hence this will this will have a a solution as it is easy to see these equations 

have a unique solution these equations have unique solution means I can find a and b to 

satisfy this. If I can find a and b to satisfy this and then I take w 1 is equal to w 4 is equal 

to a and w 2 is equal to w 3 is equal to b. Then I can satisfy these four equations, 

satisfying these four equations means I can satisfy these four equations that is my perfect 

interpolation property. 

So, in this set of representation I can find values w 1 2 w 3 w 4, so that for the given data 

XOR data X 1 X 2 X 3 X 4 with the only (( )) 4 I can ensure that h of X i is equal to d i. 

That is my perfect interpolation property, so with these weight values this Gaussian RBF 

network perfectly represents the XOR function perfectly in the sense for those four 

points.  
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The output is exactly equal to either 0 or 1 as needed. So, the perfect interpolation 

property means that by taking n hidden nodes we get an RBF network that would have 0 

errors on the training data. If we think of this as learning with those four training patterns 

we are saying on the training patterns I get 0 errors. So, first let us understand that this is 

in general not true of multilayer feed forward networks. When we try to represent XOR, 

we are not talking about learning here just representation.  

We chose the weights here right by whatever means we want. We are not saying whether 

a particular learning algorithm will learn the right weights. If I just say can I find 

weights, so that if a network will correctly represent this function. In general this 

property is not there for multilayer feed forward networks. If you remember as we as 

when we constructed the XOR representation on the multilayer feed forward network to 

represent XOR we are only looking for a good approximation.  

In the sense we say that there are these weights, which are such that if the output should 

be 1 the output would be close to 1 in as much as the input of the sigmoid is greater than 

half or greater than 3 by 4 or whatever. Similarly, when the output should be 0, it would 

be close to 0, so we will get good approximation, but we will not get exact function 

value. As a matter of fact if I use sigmoidal activation, I will never if I use sigmoidal 

activation for the output.  



Even otherwise I cannot always manage to get the perfect interpolation value. On the 

other hand the the the radial basis function networks can always no matter what the input 

you give if I take as many hidden nodes as their training examples I can get perfect 

interpolation as I already mentioned getting 0 error on the training data does not 

necessarily mean we go to the right function. There are many we have we have seen in 

when we discussed the statistical learning theory that we can get trivial functions which 

get 0 error on the training data, but otherwise they are useless. So, but all the same this 

perfect interpolation property is interesting and the the multilayer feed forward networks 

do not have this. 

So, in that sense there are a class of networks say distinctly different from the multilayer 

feed forward networks. The perfect interpolation property is one difference between the 

between the RBF networks and the multilayer feed forward networks we discussed 

earlier because there Are many other differences. Let us look at these two networks, now 

in contrast. So, there are many other important differences between what we considered 

earlier whom we will call multilayer feed forward networks.  

Whenever we say multilayer feed forward networks, we mean the earlier networks were 

each the output of each node is obtained by taking a weighted sum of inputs. Passing 

through it an activation function such as a tan hyperbolic or sigmoid and the RBF 

networks is what we are seeing today. So, one difference between these two class of 

networks is this perfect interpolation property. 
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There are other differences we will see both the, I mean what way they are same in what 

way they are different. Now, we can write where a three layer network using linear 

output node the output of the, is given by this where f is the sigmoid which is the 

activation function of the hidden nodes. We will take a linear output node because in 

RBF also we are taking a linear output node. Now, the RBF has the representation, 

which is w j and instead of f of this, let us say we take Gaussian RBF this is this is what 

the RBF does.  

So, I can think of this as the j th basis function some phi j of X and this is the j th basis 

function once again some phi j of X. So, both of them have a very similar kind of 

representation, so we can compare in contrast the two representations on several points. 

So, keep these two representations in mind, both of them have a syntactically similar 

thing, this is also a weighted sum of some non-linear function this is also a weighted sum 

of some non-linear functions. 
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Both of them are essentially doing basis function expansions. Both type of networks 

represent a non-linear function through a set of basis functions. Both of them are 

essentially writing the output as summation j is equal to 1 to p w j phi j tilde X. Also 

compared to the earlier fixed basis function expansions, which are what we’ve used at 

the linear models these phi j tilde’s have parameters, which themselves are learnt using 

the data. So, actually the basis function themselves are fixed using the data it is not a 

fixed basis function expansion unlike the linear models both the networks. 
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If this is the phi j tilde X for this model this is the phi j tilde X for this model both of 

them have parameters inside these w’s and b’s here and the theta’s and theta’s and and 

sigma here and these parameters can, of course be fixed based on the data. So, both of 

them use a basis function expansion where unlike the linear modal that use a fixed basis 

both of them use basis functions that are themselves determined based on the data. 

However the nature of the basis functions is different, the multilayer feed forward 

networks this is the basis function.  

So, what does this mean if I take X on a hyperplane that is if I take all vectors X that 

satisfy this equation for a given constant c w i j X i plus b j is equal to c. For a for a 

particular j th node I take all its w i j, so and I I I look for all X’s that are w i j X i plus b j 

is equal to c. So, if I call this w i j’s components are some vector called w j. Then this is 

w j transpose X is equal to some constant that is nothing but a hyperplane. So, essentially 

the j th basis function have the same value for all X lying on a hyperplane.  

Whereas, the for the RBF networks the base j th basis function has the same for all X 

lying on sphere. So, the symmetry structures of the basis functions are different in one 

case. The basis functions will have this for any given constant the basis function will 

have value that constant for all X lying on a hyperplane here, right this is for all x lying 

on a sphere. So the the the the two kinds of basis functions have different types of 

symmetries. 
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Next the output of the Gaussian RBF network is written like this, now because of the 

exponential essentially of X is too far from theta j for a particular X, which is too far 

from theta j far or near is in terms of in the units of sigma right .Too far in the terms of in 

terms of sigma X minus theta j is large then this exponential we have very very small 

value. Hence that particular j th term would not contribute much to the function. That is 

which means suppose I change a particular w j we change one particular w j, then for all 

X which are far away from this particular theta j the function value will not change.  

The function value will change appreciably only for X’s, which are near to this theta j. 

So, we can really think of suppose sigma’s are very very small then each term essentially 

contributes to X’s close to its own theta j’s. So, it is as if in this expansion each particular 

weight is essentially taking care of the function value near to its own theta j. So, if we 

take theta j points in r n and draw nice circles around these theta j we can say the 

corresponding w j is essentially affecting the function value mostly only in that circle 

that is the region around the theta j.  

So, we can say different weights essentially take care of different regions of the feature 

space. The weight w j is essentially taking care of value of the function for all X, which 

are close to theta j that is where that w j plays maximum role. This particular is true if 

sigma is small this is quite different from the multilayer feed forward network given the 

multilayer feed forward networks structure. 
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Because it is this kind of structure the w i j’s are all all mixed up. Each w i j can affect 

the of the function value of many many X’s. So, I cannot say any w is contributing to 

represent the function on a particular X or a particular set of X’s. So this is in contrast to 

multilayer feed forward networks, which can be thought of using as the distributed 

representation. 
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Whereby, each weight would affect the function value for all X, whereas in the RBF 

networks, it is kind of a local representation. Because each weight is essentially affecting 

the function in in certain range around its own theta j, so that is a that is a very 

interesting thing. Because which essentially means if I have sufficiently many hidden 

nodes. So, I can actually tweak these sigma’s and the theta j’s, so I can put theta j’s at 

some representative points. So, around these theta j by by tweaking w j well I can get 

fairly good good accuracy for the function. So, in this sense ultimately by become a little 

easier to understand the function represented by an RBF network because it uses local 

representations. 

So, this is another difference right, so the reference we have seen, so far are one is this 

perfect interpolation property only RBF networks have it. The the RBF networks and 

feed forward networks well both use basis function expansions. The basis functions are 

different in the sense they have different kinds of symmetries. Third is that we can think 



of the multilayer feed forward networks as using distributed representation, whereas 

RBF networks use local representations. 
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Another difference between the earlier multilayer feed forward networks and the RBF 

networks is in terms of hidden layers. The way we have written the RBF network it 

makes no sense to have more than one hidden layer, we do not even know how to have 

more than one hidden layer. Because we are saying each hidden node has some kind of a 

phi of norm X minus theta j value as its output. Then we are just combining the output of 

the hidden layer. 

So, by its very definition RBF network can have only one hidden layer. Whereas, as we 

saw in the multilayer feed forward network the outputs of a node can be can be viewed 

as input of some other node and to any such any number of levels like that. So, in a in a 

in a multilayer feed forward network any number of hidden layers are possible. In the 

RBF network essentially we have only one hidden layer. Because we have started with 

the special kind of interpolation property of radial basis function networks, which which 

comes for your expansion, which is essentially a single hidden layer network.  

As you can, as you may remember even in the multilayer feed forward networks, we saw 

that theoretically one hidden layer is enough; given one hidden layer we can represent 

any continuous function on compact sets. In that sense even feed forward networks 

having one hidden layer are good enough, so having only one hidden layer does not 



mean that we are compromising on the representational abilities. But in these multilayer 

networks we can have multiple hidden layers and last class we have discussed some 

some reasons why we did not want to have multiple hidden layers but, the RBF networks 

do not make sense to have multiple hidden layer. We can have only one hidden layer in 

RBF networks. 
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This is the kind of comparison between the two networks. Now, another comparison we 

can say is that both networks are as good for representing function, both of them 

represent in their own way good classes of parameterized non-linear functions. So, which 

means just like what we showed for the multilayer feed forward networks RBF networks 

also approximate any continuous function on compact sets. What does that mean? We 

can write a similar theorem for RBF networks I would not write it again because it will 

exactly be the same, what it means is give me any function on a compact set. 

Then I can find theta j’s and w j’s such that a function represent as an RBF network will 

be no more than epsilon away from the true value of the function. That is all the theorem 

will state, so in intuitively given any continuous function, if we take n of hidden nodes 

then the RBF network with proper weights. That is proper w j’s and the theta j’s would 

represent a function whose value would be within epsilon of the true function value 

anywhere on a compact set.  



This is essentially the the result the result that we have proved for multilayer feed 

forward networks also. Of course, we have not proved we only stated. Here also we are 

only stating, but because RBF networks use local representation here at least we can 

intuitively in a hand waving manner see why it may happen if you take Gaussian RBF 

networks essentially this is the output. 
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Now, we can think of suppose you are in a two dimensional plane suppose your m is 2, 

then what it means is that you can plant many theta j’s. So, to say and (( )) let us say on a 

grid. So, around it theta j you are at a small exponential and you take this some of these 

exponentials for the function. Now, the function is continuous and sigma we take to be 

very small then at each point I can my tweak my w j. So, that at theta j the function value 

is w j, but that it has to be and because I take sigma small no other term will contribute 

contribute more than epsilon.  

So, to say and in a small neighbourhood around theta j it is because the continuous 

function it cannot... its value cannot differ too much from its value on theta j. So, the 

same w j can can easily work for that function. So, this is roughly how the how your 

representation becomes. If the different theta j are far apart in relation to sigma then at 

any X there is only one dominant term in the summation. Hence we are placing enough 

of theta j’s we can approximate any continuous function on any compact set this the 

basic idea of sets representations so far. 
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We were only looking at RBF networks where there is only output node, but that is 

simply a notational convenience. So, when we have only one output node the it 

represents functions from R m to R, but suppose let us say we want to represent 

functions from R m to R m prime. It is very easy to generalize what will, what will it 

mean instead of one output node I will have m prime output nodes then the weights 

connecting j th hidden node to the output node will, now have two subscripts. Earlier j th 

output node to hidden node because hidden node in 1 I call it w j otherwise. Now, j th 

hidden node to the s th output node will be w j s. 

So, now the output of the s th output node will be a summation w j s the output of the j th 

hidden node is still the same X minus theta j whole square sigma square and s runs from 

one to m prime. So, while we so far in this structure we have considered only RBF 

networks with one output node. Hence the representation is only for real valued 

functions representing vector value function is nothing vector value functions are simply 

you know a stat representation of real valued functions. So, you can just have an extra 

output node that is all, so because this does not add anything in tomorrow’s class. When 

you look at the next class when we will look at learning algorithms, we will consider 

only one output node.  
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We can use RBF networks for classification regression tasks in the same way that the 

earlier multilayer networks are used what does that mean i am given training data X i d i 

right. Now, I have to learn all the weights for regression problems. How do I choose the 

training data regression problem? No problem d i belongs to R, so we can directly we 

know what the network structure is I count for I get output as the network. The output of 

the network is a real number, so d i is a real number it is fine for classification of course, 

I can have, I can have a choice for 2 class case.  

We can take to be d i to be 0 1 like earlier like the way we saw in the XOR problem for 

multiclass problems we can use the same representation that we used with multilayer 

networks that is we use as many output nodes as the number of classes. The desired 

output is given as a vector with k th component 1 and all others 0 if it is a k th class 

pattern. 
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So, much like what we did with the earlier networks, we can represent any classifier or 

any regression function using these networks. Essentially, like earlier, we can think of 

this also as the output of the hidden layer is transformed representations, there is some 

internal representations of X. Because once given the outputs of the hidden layer the rest 

is just a linear interpolation my j and w w j into output of the j th hidden node summed 

over j is the output of the network. That is just a linear function, so if I get the right 

representation of the hidden nodes I am done. So, this representation results in a linear 

model being sufficient from then onwards just like in the feed forward networks. So you 

have to learn the internal representation. 

So, next question is how do we learn all the parameters and weights given in the training 

data. Essentially you have learn all the w j’s and also all these centres and widths of the 

hidden nodes. Also we can ask, we are saying there is some differences RBF networks 

use local representation and so on. So, we can ask is there something we can say where 

RBF networks are more suitable than as a classifier than others or in what way can we 

think of RBF network as a classifier. So, both these issues, we will address in the next 

class, and then we will close the discussion on RBF networks.  

Thank you. 


