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Feedforward networks for Classification and
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Hello and welcome to this next lecture in pattern recognition course. This lecture will
complete our discussion on multi layer feed forward networks. So, just to recall the
context; we have been discussing this so called multilayer feedforward neural networks
these are networks where each unit takes a weighted some of its inputs such that snout
inputs and passes it through an activation function a sigma either a tan hyperbolic
activation function and that is how output is calculated. We have multiple layers in
networks and layer by layer we will calculate the output that is how inputs get transforms

into output.
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+ We are looking at multilayer feedforward networks

+ These are good for approximating any continuous
function

* Given training examples, we can learn the weights
using backpropagation algorithm

* The algorithm is simply iterative gradient descent on
the empirical risk under squared error loss

+ Backpropagation enables efficient calculation of the
gradient

So, as we saw these multilayer networks or good as model for approximating any
continuous function right last time we actually saw a theorem which told you that if 1
want to approximate any continuous function it could be as non-linear as we want but,
any continuous function on a compact sets in r m. Thus continuous real valued function

compacts sets r m can be a approximated by networks of this kind. So, the idea is that



given training examples, we can learn the weights using back propagation algorithm. So,
because we know that the structure is good enough for representing approximating most
functions we choose some structured network where we could have still have to decide
how to choose but, we choose let us say one hidden layer in sufficient nodes hidden
nodes. Then, we can give the training examples we use the training examples to learn the

weights on for that we seen the back propagation algorithm.

The back propagation algorithm is nothing but, it is an iterative gradient descent the
function we optimizing actually minimizing is this some of squared error that is the
empirical risk under squared error loss function which is simply sum of squares of the
errors what that 1 mean for each input pattern I calculate the network output, the desired
output, take the difference square it at the squared the error. We submit over all the
training patterns this will be some function the weights the network and we are
minimizing this were doing gradient descent on function to find the optimal weight. So,
the trying to find weights to minimize the squared error the interesting thing is that the
back propagation algorithm as you saw last time, it enables for a very efficient

calculation of the gradients.

To actually do the gradient descent on this function, we need to calculate all the gradients
that the gradient of the function with respect to all the weights and the back propagation
algorithm by a computation that is similar to a forward computation of calculating the
outputs of the network given the inputs by computation, which has about as much
computation complexity what we called the back propagation it allows should calculate
all the partial drabeties. Partial drabeties for the either with respect to all the weights so,

that is how back propagation allows us a efficient way to implement the gradient descent.
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+ A two layer network can only learn ‘linear’ models

+ But a 3-layer network can approximate any
continuous function

+ This is the motivation for multilayer feedforward nets
* We essentially learn ‘proper internal representations’

Now, we also seen that in our undone notation the first layer is the input layer, last layer
is the output layer. So, if | have only 2 layers then the no hidden nodes. So, is like a
perceptron or an adrenaline. So, these are the linear model set of consider earlier. So, a 2
layer network can learn only a linear model where as the moment | put a 3 layer network
as we saw in theorem in the last class. | can approximate any continuous function
essentially by a putting one more layer am I allowing myself to, I am allowing myself to

a family of functions which can approximate any continuous function.

Now, as we said this is the motivation for considering multilayer feedforward network of
course, even though theoretically one hidden layer is enough in practice. We may need
more than one hidden layer but, in any case while a 2 layer network in our notation what
will be a 2 layer network is can learn only nearer models in moment | have | have a
hidden layer | can approximate any continuous function if there are sufficiently many

hidden nodes.

So, in that sense this forms a very nice parametrized class of non-linear functions.
Essentially as we saw by putting a hidden layer, the input is first getting transformed into
the hidden layer on to the output hidden layer and then these outputs of what go to the
output node. So, if we look at the output layer and the layer just before the output layer
those 2 together will be a 2 layer network. So, that is essentially a linear model but, that
linear model the impush to that linear model or not the original inputs but, the outputs of



that layer just before the output layer. So, what the network is doing is essentially
learning a proper internal representations that is while access the actual given input I
transform into some of that representation as the output of the layer just before the output
layer in that representation a linear model is good enough. So, that is essentially what we
are doing. So, let us take a little more let say one example to understand what we mean

by proper internal representation.
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+ Let us look at this using the example of XOR function

* What is XOR function?
Given two binary inputs, r,. 1, we want the output to
be one if and only if exactly one of them is one

* As you know, a linear classifier or a two layer network
can not represent this

+ Let us see this

So, we will we will look at one function to understand this let us say we take the XOR
function when we did the linear models for classification regression we said say XOR is
one example of a classification problem which is not linearly separable. And hence a
linear model not good enough what is the XOR function it has 2 inputs and 1 output. So,
given 2 binary inputs x 1 x 2 we want the output to be one if and only if exactly one of
them is one. If both of them are O or both of them are 1 | want the output to be 0 but, if
only exactly one of them is 1 then | want the output to be 1. As you already know a linear
classifier or a 2 layer network cannot really represent this right this is not linearly

separable. So, linear model kind exactly represent this function.
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* Take a 2-layer network as below

+» We can not represent XOR with this

Y,

Let us try and understand in some sense a it is a kind of proof not really proof a
possibility argument has to why a truly a network cannot represent this. Let us take this a
2-layer network as x 1 x 2 these are the input nodes so the output of this node is simply x
1 the output of the node simply x 2 the 2 weights on then there output node output node

can have a bios so the final output | can get is f of W 1 x 1 plus W 2 x 2 plus W naught.

Now, when the 2 inputs are 0 the outputs are 0 right at that time let us say y should be
low means because | am using sigmoid function if the net input is small then output will
be small. So, let say we put our weights W 1 W naught such that when this are 0 of
course, W and W naught are does not matter because that will be 0 so it only be W
naught so W naught is sufficiently negative. So, that when both the inputs are 0 my y will

be close to 0.

Now, suppose x 1 becomes one x 1 becomes one i want the output to go to one now what
| changed in that input because x 2 still O this is still 0 the old W naught is still there. So,
the only extra one is because this output in one now i am getting an extra W 1 in the net
input. So, f of W naught should be close to 0 as double numbers should be some negative
number but, f of W 1 plus W naught should be close to one so W 1 should be sufficiently
positive to overcome this minus W naught right. In the same way suppose x 1 is 0 but, x

2 is one once again y should go up so W 2 should be sufficiently positive.



So, that y if the net input is simply W 2 plus W naught of course, W 2 W naught should
also be sufficiently high. So, W 2 should also be high and positive and high enough to
overcome the negative thing of W naught | need W naught to be negative because even
both of them O | need y to be 0 so given this if both x 1 x 2 are one now i get both W 1
and W 2 W 1 till W 0 itself is enough drive my sigma it is through outs one if | add some
more positive quantity it come closer to one there is no way it can when both x 1 and x 2
are one the output can becomes suddenly O because from when 0 when both of them
when both of them are 0 the output is 0 any one of them is one the output has to go to
one. So, both W 1 and W 2 weights have to be sufficiently positive this implies that when
both of them are one | have no choice but, driving the output to one this is the reason

why such a network cannot represent XOR ok.
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+ We can think of XOR as two parts

+ One is to detect when at least one of the two inputs is
one

+ Other is to detect when both are one

* Individually each one is easy

* |t is the combination that is difficult for the network
without hidden layer

On looking at this the following we can think of XOR the function XOR having 2 parts
one is to detect when at least one of the 2 inputs is one. The other part is to detect when
both are one. Let say only want to detect when at least one of them in the 2 inputs is one
that is a r function out of the 4 possible inputs only in one case it should be 0 other 3
should be in one and hence that is linearly separable it is very easy to visualize you know
a square where one corner is in one class the other 3 corners other class so is linearly
separable similarly, detecting both are one is an un function once again if | take the 4
corners of a square one corner is one class and 3 corners in the other class this is also

linearly separable. So, detecting on at least one of the 2 inputs is one is easy in sense a



linear model will do detecting when both inputs are one that is also easy once again
linear model will do individually each one is easy where is the problem the combination

that is difficult for the network without hidden layer.

Basically, | have to detect the combination that at least one of the inputs is one but, not
both are one right that combination is what is not freezable to be done with linear model.
This combination can be done with a hidden layer because this is the adrenal
representation essentially instead of representing X one x 2 as the 2 binary inputs if | can
transform that inputs into one that flags whether are not at least one of them is one other
that flags whether are not both are one but, this I can do in one in from inputs to hidden
layer because that is like a small 2 layer network itself and it can learn any linear
function. So, | can have hidden layers that can represent either this part or this part with
that internal representation is very easy now for me to represent XOR because when this

is one and this is 0. | want to flag one other wise no whenever this is one | want to flag 0.
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+ The following 3-layer network represents XOR
function

) + The hidden nodes provide a ‘proper’ representation of
Input.

Now, let us look at this here is one possible way these are the inputs nodes. So, they give
you one and 0s here. So, look at this hidden node because both this weights a plus 1 you
will get x 1 plus x 2 if both of them 0 let us say in this network because we are using
sigma x for both the hidden nodes and the output node. So, let us say if the net input is
minus 0.5 will assume that sigma it is close to 0 and if net input is 0.5 or more then the

output is close to 1 that is all we want to get. So, both x 1 and x 2 are 0 then is only



minus 0.5 the net input so the output of this is close to 0. If at least one of them is 1 then

it will be 1 net input will be 1 minus 0.5.

So, net input will be 0.5. So, output will be sigma net 0.5 that will be close to one if both
of them are one it will be even closer to one. So, this hidden node is discovering whether
at least one of the 2 inputs is one and this side because | increase the bios if both of them
are 0 it will be sigma net input is minus 1.5 so input is very close to 0 if only one of them
is one then net input still minus 0.5. So, it is still close to 0 only both of them are one

then net input will be plus 0.5. So, it will be close to one.

So, this nodes output will be one only when both are one. So, this is essentially
indicating whether both are one this is indicating whether at least one of them is one. If
the outputs of both this nodes are 0 that means both are not one and not even one of them
is one so is all 0s. So, when everything is 0 | want y to be 0 that is easy to achieve by
having a negative bios minus 0.5 when output of this hidden node is one where output of
this hidden node is 0 that means one of them is one but, not both then | want y to go one
so | can put a positive weight on this if I put plus 1 here plus 1 minus 0.5 | will get a net
input of 0.5 or more so the output will go will be high and other then this become one
when this becomes one this will also become on obviously when this becomes one | am
get giving minus 2 into net input here that will more than form this plus 1 right and

hence the output will now, go to 0.

So, this is how the hidden layer cannot represent XOR it has written learned it has right
internal represent of course, her we are not showing any learning I mean whether these
this that be many other ways of representing this but, this is one kind of a internal
representation that I can learn in this problem and the point of the example is that by
having the right internal representation here. This is just a linear model and that linear
model is enough because as the right internal representation for the now each of the
internal representation (( )) because of one layer can be land fit a bilinear model again

that is what | am doing.

So, in all this network essentially they function because I can learn the right internal
representation of course, if we actually take the squared error and do gradient descent
whether you converse to these particular way it is a different issue that depends on the



how the gradient behaves how the gradient descent behaves of course, there other issues
also for example, in suppose | have one 2 3 4 5 six seven eight nine weights. So, it is
some nine dimensional weights pears which | will be doing the optimization. Now, if |
just switch this 2 nodes | call this node as the second node in this layer and this node the
first layer if I interchange this node in this node what it means is what was W 1 and W 2

earlier will now become W 3 and W 4 right.

So, just by doing some permutation of the nodes | will be representing the same function
but, in the gates space it will be different vector. So, obviously there will be many weight
combinations which will be good right. So, actually that this is this kind of optimization
is hard optimization because there multiple good medium are there but, we will come to
whether the algorithm launch well or not but, always showing here that this is what is
meant by internal representation and this is what we seek to learn we may learn may not
learn depending on whether the gradient descent gives us good local medium or bad
local medium but, the idea is that this is how 3 layer network multilayer network
represents functions because they can represent the right internal representations ok. So,
the hidden nodes here provide a proper representation of the input and hence the network

as a whole can represent the XOR function ok.
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+ We can use multilayer feedforward networks in both
classification and regression problems

* In either case we have to learn the network using the
training set

+ We learn the weights using backpropagation. (The
network structure has to be fixed a priori)

* Let us summarize how we can use them for
regression and classification

As move on so we can use multilayer feedforward networks both in classification

regression problems and in either case we have to learn the network using the training set



right by we been what we have been doing also the course so given some training
examples either for a classification problem or a regression problem | have to learn the
model. So here we have to learn the network and learning the network is essentially
learning the weights the network structure has to be fixed beforehand then I will learn the
weights to minimize the squared error and we can learn the weights to using the back

propagation.

So, let us quickly just see how I use it for regression how | use it for classification
because we said that the network can arbitrarily approximate any continuous function. Of
course, a classification function is not really continuous function so we have to ask how
do I used it for classification and so let us start with how | use it for regression then we

can see how to use it for classification also.
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+ Givendata {(\". ')}, X, € R, d'€ R, we can
train a feed-forward network to represent the function
+ We choose input layer with 1 nodes and output layer

with 11" nodes. No of hidden nodes (and layers) is a
‘parameter’ of the model

+ We learn appropriate weights by doing gradient
descent on the squared error loss (through
backpropagation)

» Eroor is calculated using ‘desired function values', «/

¥)

So, for a regression problem what | may given | am given data some X i d i X i belongs
to R md i belongs to R m prime. We need to train a feedforward network to represent the
function this is what a regression problem is right. In general of course, m prime can be
one or more is one that is the standard regression consist otherwise you are we are
learning a vector value function. What we do we choose an input layer with m nodes
because inputs comes from r m we choose an output layer with m prime nodes because
these there outputs are m prime dimensional and we have to put some hidden layers and

hidden nodes we know theoretically one hidden layer is good enough but, practically you



may need more than one might be very often we may have need 2 and in each layer we
need to decide how many hidden nodes we want these are arbitrary decisions and

anyway that the parameters of the algorithm.

Once we have fixed a structure we can learn the weights but, doing gradient descent on
the square error loss using back propagation this is how we learn the essentially to do the
gradient descent we need to calculate the error on each training sample and in this
particular case is absolutely no no difficulty in deciding what the error is because the
desired inputs are given desired outputs are given if | give X i as input you my training
sample does me exactly what should be the output right. So, the error is always
calculated using the desired function values namely d i so this is how we can certainly

learn functions.

(Refer Slide Time: 19:40)

+ Suppose we have a 2-class classification problem

» We cantake (' € {(). 1} and use a network with only
one output node

+ After training, given a new .\', we threshold the output
of network at (1.5 to decide on the class

» Wecanalsotake ' ¢ {1 +1}, take
hyperbolic-tangent (tanh) as the activation function
Then after training, we threshold output at zero

Now, let us consider classification case in the classification case | am just given feature
vectors and class labels suppose | have a 2 class problem my class labels can plus one
minus one can be one 0 whatever now what should | choose for 2-class problem that
does not seem to much this thing we can think of a desired output set to be 0 and 1. So, |
want to train my networks so that when | put a class one pattern the output is close to 0
and | put a class 2 pattern the output is close to one.

So, that why in the training sample whenever you give me class one pattern | said the



desired output is O whenever you give a class 2 pattern | said the desired output as one.
Now, we can train the network of course, the network cannot actually represent the
discontinues function will classifier is a discontinues function but, it will represent some
continuous approximation to it but, after hence after training we expected learns a
function which whenever you put a class one pattern the output will be close to 0 it may
not be O but, will be closer to 0 than one and similarly, when you whenever you put a
class 2 pattern your output will be closer to one rather than 0. So, after training and when
you give me new X | can threshold the output at 0.5 to decide on the class the output is
closer to one and | will say class one when output is closer to 0 | will say class 2 ok. Of
course, this 0 on one is arbitrary | can as well use plus 1 minus 1 for example, why its

plus 1 minus 1 my output should be go to both signs.

So, I will use hyperbolic tangent rather than sigmoid at the activation function where the
act sigma hyperbolic tangent activation function I can use the desired output such plus 1
and minus 1 right. So, essentially to use the network as a classifier in a 2-class of case
my input layer will have as many nodes as the feature vector dimension | am using only
one output node. So, my desired output is a scalar and | am saying either use 0 and 1 at
the desired output or minus 1 and plus 1 as desired output (()) 0 on one i use sigma little
activation if 1 use minus 1 plus 1 I will use hyperbolic tangent as activation and if | use
this obviously after training we threshold it at 0 instead of it 0.5 in this case ok. So, it is

very clear how to use it for a 2-class classification problem.
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* Suppose we have a ) -class problem
+» Now what kind of network structure should we use?

+ We can still use a single output node and take, e.g.,
d'e{l/k. 2/ |}

* Thus, in a 3-class problem, we give desired output for
all class-1 patterns as | /3, class-2 patterns as 2/
and soon
After training, we can appropriately threshold the
output to make it a classification




Suppose, we have a K- class classification problem then what do | do what should be the
desired outputs now they can be many possibilities for example, we can still use a
network whose input layer at the same dimension of the feature vector output layer is
still uses only one node and I can give my desired inputs as one-k 2-k k by k. So, if I am
basically the idea is that whenever | put class i pattern | want the output should be close
to i by k right. So, for example, if | have a 3-class problem, for all class-1 patterns I will
give the desired input as output as one-thirds for all class-2 patterns | will give as 2-

thirds for all class-3 patterns as 3-thirds.

The idea is now the network is learn a function such that when I put a new vector x if it
is of class-1 the output should be close to one-thirds the class-2 should be close to 2-
thirds and so on. So, | take the actual output I ask is it closer to one-thirds as close to 2-
thirds as closer to one and based on that | can make my decision right. So, after training
you can approximate appropriately threshold the output to make a classification decision

but, some of this does not look very nice right this one-thirds 2-thirds is very arbitrary.
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+ However, this may not be satisfactory

+ With many such levels, we may not be able to train
the network well

And if | have too many levels it is not nice to expect the network to be able to do such
fine estimation right as it is what you are teaching a discontinues function that function
represent only a continuous function approximation and then you have this fine levels

and this 1 by 3, 2 by 3 kind of business looks very arbitrary. What else can | do?
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+ Another approach is to use as many output nodes as
there are classes

* Then, if \* is on Class-}, then «* would be a unit
vector with ; component unity and all others zero

+ On a test pattern, we decide the class based on which
output node has maximum value

» Since we are minimizing risk with squared error loss,
we can think of each output node trying to
approximate the corresponding posterior probability.

Here is another approach. Now, my input layer will have as many nodes as the feature
vector dimension and the output layer will have as many nodes as there are classes if |
am considering a k class problem | look k output nodes we have k output nodes that
means my desired output when I give my training examples my desired output should be
k dimensional vectors right. So, how do I give my desired output if a particular in
example patterns X s is in Class-j that the correspondence desired output d s which

should be a k vector will be a unit vector with j th component unity and all others 0.

So, if X sisin Class-j d s will be 0 0 0 1 in the j th position and 0 0 O right d s would be a
unit vector with j th component unity and all others 0. So, this is how | specify the
desired output for the j th (()). Now, this is interesting now essentially if you consider
any one output node and say take the rest of the network connecting upto that output
node that output node is essentially has a desired output of either one or 0 depending on
whether the pattern present it is in class in that particular class or not right. So, this is like
a proper generalization of the 2 class idea 2 k-classes. So, the test pattern we can decide
the class based on which of the output node has the maximum value because we want the
if it is in Class-j d s is such that the j th component of d s is one so whenever in Class-j j

th output node should be closer to one.

Hence, when you give me a new test pattern after learning | calculate all the k outputs

whichever output is closer to one means whichever output is a largest from some using



sigmoid activation function whichever prefer to one is saying say whichever output is
highest value we will put the pattern in that class. As you shall see in the next couple of
slides since actually we are minimizing squared error loss, as we have seen earlier with
when we did linear regression we can think of each output node in this structure
approximate in the corresponding posterior probability. As we seen in linear least square
also, we are essentially train to appropriate a posterior probability. So, here when we use
this kind representation the network is a allowing us to get good approximation of

posterior probability.
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* To learn weights, we are minimizing

Y

—

* If we consider the ;"' output node, its desired output
would be one whenever the input pattern is from
Class-); otherwise it is zero

* It is essentiall trying to learn in a 2-class context

* Hence minimizing the squared error would result in
} approximating the posterior probability function

See why? Essentially whatever we doing to learn the weights we are minimizing this.
This is the output of the network the j th component of the output of the network this is
the j th component that desired output d j we take square sum over j this is what a
minimizing. So, in a for a particular vector let say in some class all other components
except this component will be one 0 ok see if we consider jth output node is desired
output would be one whenever the input pattern is from Class-j otherwise it is 0. So, this
is the reason so essentially it is still trying to learn in what can be called a 2-class context
and this is the reason why minimizing the squared error would result in approximating

the posterior probability function.
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+ Suppose we fant to find a function ¢ to minimize
Ef(g(X)=Y)

then the best function is: ¢(.X) = £')'|.\

o If )" is binary, then it is the posterior probability
function

+ Hence our representation in the multi-class case
would make the network learn the posterior probability
functions

More precisely let say given to random variables X and Y | am trying to find a function g
to minimize expect a value of g X minus Y whole square by square error loss is simply
an empirical risk of this risk this is the true risk of squared error so | can think as g as the
network X as the input so g of X is the output of the network when X is given at the
input so g is the network function Y is the desired output ok. Now, here if we are
considering only one node so this square is what I am minimizing then we know that the

best function g is expected value Y given X right this we have proved some time back.

See Y is binary the conditional expectation Y given, X is same as probability, Y is equal
to one given X which is nothing but, the posterior probability function so the best
function here is the posterior probability function. So, whenever | am minimizing this
expectation the best g is the posterior probability function because this is what i am
minimizing the network with the training inputs 1 or O for each one of the output nodes
each output node is correspondingly approximating the each output node approximating

the corresponding posterior probability right.

Hence our representation in the multi-class case that is when | put as many output nodes
at their classes and then represent each class by k dimensional vector where j th
component is one and all others 0 that representation would make the network learn the
posterior probability function that is the reason so the first output node will learn the
posterior probability function where the class one second output node will learn the



posterior probability function for class 2 and so on right and hence that the reason why if
| take the max its essentially trying to approximate the base classifiers so in that sense
this particular structure of having as many output nodes are there classes is quite good

for multi class case when we want to use neural network of this kind ok.
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+ Neural network models are seen to be quite effective
for both classification and regression

+ But to learn the appropriate weights, there are many
parameters of the network that need to be chosen

+ Also, gradient descent can get stuck in local minima
and the initialization could be crucial

+ We now look at a few practical tips to make
backpropagation work well

So, we almost done so we can say Neural network models are seen to be. We know how
to train Neural networks for learning functions for learning classifiers we can learn non-
linear regression function non-linear classifiers we can we are essentially doing empirical
risk minimization error loss function and for minimization we are using gradient descent.
The back propagation is a very elegant way of doing this so we model the algorithm
everything is clear and while the course so we cannot see too many examples. Neural
network models are seen to be quite good for classification regression that mean using

many applications most of your math lab tool kits and so on.

Always contain this now and in many application that is into be quite effective but, to
actually use them, now we are we are moving to random where models are complicated
to actually use these models are there many parameters of the network that need to be
chosen or chose the hidden layers number of hidden nodes step sizes in the learning
algorithm activation function types there are lot of things to be chosen right and you
know the gradient descent can get stuck in local minima. So, we want to get to better
local minima. So, can | tweak my initial points are there. Some other things | can do for



the gradient descent, all these are important of course, there is very little theory in this
but, we will from the next 2 slides. | will discuss a few practical tips of how to make

learning with neural network more effective ok.

(Refer Slide Time: 31:02)

Art of Backpropagation

+ To use a network for learning a function, we have to
decide on many ‘parameters
* Number of hidden layers and hidden nodes
* Activation function for nodes
+ Online or batch mode for learning
+ The initial values for weights
+ Step-sizes and other issues with the learning
algorithm

*» We will look at each of them

So, basically the issue is so that is why call this the Art of the Back propagation. The
science is over now but, you know in practice it has to work well so use a network for
learning functions, where we have to decide on many parameters right number of hidden
layers and hidden nodes activation function for nodes other we introduce online or batch
mode for learning. What the initial values for weights to use a learning algorithm as a
iterative gradient descents?

So, we have to start somewhere and because the gradient descent converges to local
minima close to the starting point initial values can make a lot of difference right how do
| chose step sizes other issues learning algorithm to the first 2 are, how to fix the network
structure last 3 are what | can do about the learning algorithm, this need to be discuss we

need some to show all of them so we will going to look at each of them.
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+ We need to fix the structure of network before we can
learn weights using backpropagation

+ The theorem we had says that one hidden layer is
enough

+ But how many hidden nodes?

* In practice how many hidden layers, nodes?

+ The VC-dimension of these models is of the order of
number of weights plus nodes,

+ Structure should not be too complicated relative to the
number of examples we have

First about the structure before we can learn the weight would fix the structure the
network right that we know back propagation only learns the weights after the structure
the network is fix because we need to do the forward and backward computation should
do back propagation so the structure the network has to be completely fix before I can do
back propagation. Now we have seen the theorem that says one hidden layer is enough, if
you have sufficient hidden nodes right. So, basically we can always chose one hidden
layer, but we do know how many hidden nodes to use there is no theoretical thing about

how many so the just do trial and error essentially.

On the other hand I do not want to use too many hidden nodes because | may over fit it.
We will, I will come a little while later to what a over fitting is some time using 2 hidden
layer is quite be better suppose I got a 50 dimensional feature vector. Let us say | used |
want the 3 layer network with one hidden layer and lets a ten hidden nodes because input
is 50 inputs layers 50 nodes I got 50 into ten 500 weights and then ten into one let say
one output node 500 and plus ten weights. But suppose | put this ten hidden nodes not as
in layer but, one layer of 5 and the next layer of 5 | use 2 hidden layer then input layer to
the first hidden layer is only 500 into 5 is to 50 first hidden layer to second hidden layer

is 5 into 525 and another 5 for second hidden layer to.

So, instead having you know 510 weights | am doing with 280 weights now whether 10
hidden nodes in one layer is equivalent to 5 each in 2 hidden layers. Nobody knows, but



very often this is one reason why | may use more than one hidden layer right so that I can
reduce the number of weights. So, in practice one never uses very many hidden layers
use you try one or 2 hidden layers not much more number of hidden nodes is always by
trial and error. We do not want to put too many, you put just and a few to see that we are
getting good enough results, if you are not getting good enough results than you like to

increase the nodes.

How do did | said how shoe is shoe a term of the VC-dimension of these models is of the
same order of the number of weights plus number of nodes. So, we know that we need
error management chose more than VC-dimension examples so depending on how many
examples we have we would like to constrain a network structure where the often this
network is not possible to have examples which are ten times the number of weights and
so on. Because the weights are very many in this but, we still do not want to be to large
at least you want a number of examples to be say of the same order as the weights we
mean at least a little more than the weights. So that also determines how many hidden
nodes will use we know how many training examples we can afford and that determines

how complicated the structure can be.

So, this is both the only guide we have we know the VC-dimension is of the order of
number of weights plus nodes and hence looking at the number of pairing samples. We
have we would like to keep over total number of weights counts and we used that as a
guide to decide how many hidden nodes we can afford so that is about all I can say about
hidden nodes. Most of the time it is trial and error and a little later in the codes we look
at what do you mean by trial and error we look a techniques called some of techniques
just cross validation which will help you to try out different number of hidden nodes and

say which is better ok.
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+ What kind of activation functions to use?

+ Theoretically we need smooth monotonically
increasing functions

+ For gradient descent to work we need differentiability
of activation function

+ Both sigmoid and tanh are suitable

+ Choice depends on whether output needs to be of
both signs or not

+ We may have to linearly scale the outputs

)

Now what about activation functions? Once again the theorem that we stored says that it
should be smooth monotonically increasing functions of course, monotonically
increasing or not we any way need smoothness because to do gradient descent we need
differentiability of the activation function. So, that much is certainly true for using back
propagation. Given this what can | use the most commonly used activation functions are
sigmoid and tan hyperbolic tangent and sigmoid between them the choice depends on
what kind of output you needs see sigmoid gives you output range only 0 to 1, where as
tan hyperbolic gives minus one to one as we said we can always scaled the output. We
can make the output node so actual output to be k times sigmoid or k time the tan
hyperbolic so but, the question is whether | need output of only one sign or | need

outputs of both signs right.

So, depending whether | need if I need outputs of both signs then | have to use a tan
hyperbolic kind of function otherwise | use sigmoid these 2 of the most often used
function then many other functions one can use. For example, it is power of minus not
input square that is also a nice function dictating the function so there are other kinds of
activation functions that can be used in practice. But, most often in a vast majority of
applications people use either sigmoid or tan hyperbolic activation functions as | said we
have to always linearly scale the output to match the actual output range right inputs we
will come to the inputs as later but, outputs if the output range is beyond 0 to one or
beyond minus one to one then we have to linearly scale the outputs.
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* Next, let us consider issues with the learning
algorithm

* Should we do online or batch mode updates?

+ Since we use constant step-size gradient descent, we
normally choose step-size small

+ Hence online would also converge to local minima

Next, let us consider all the issues that deal with the learning algorithm why the issues in
learning algorithm. First should | do online or batch just to recall for each training
example | put that input at the input at the network calculate the output.Once | have the
output | used the desired output for that input to calculate the error for that error | can

calculate all the gradient descent all the partial derivatives in back propagation.

Now | have to do this for everyone of the inputs in the batch mode update | keep the
weights all fixed apply inputs one by one at the input under the network calculate the
outputs errors and by through back propagation all the partial derivatives and then do one
gradient descent step one update of the weights in the online mode. | put one example
calculate the output immediate the error back propagation find all the partial derivatives
and immediately update the weights and then apply the next example of course, when |
do this in the online mode | can apply the examples in some order so going through all

the examples once is called an a pock normally in the online model.

Now, most often a theoretically it may not make much difference as I mentioned when
we did the linear models and when we first look at the online and batch things the I m s
algorithm. If the step size is sufficiently small then both online and batch updates have
the same asymptotic behavior. Now in this particular case when you using back
propagation we are doing gradient descent on a very high dimensional and very highly

non-linear objective function and we are using a constant step size gradient descent. So



we have to any way use a very small step size where you any way use a very small step
size you know both of them will have similar asymptotic behavior and so both of them

will converge to local minima. So the choice is not so much about the earlier converge.
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+ If we have large number of examples, online is more
convenient

+ Otherwise, we may need to do too much computation
for small changes in weights

+ Also, we can alter the order of presentation of
examples from epoch to epoch

* Often helps in finding good minima

What may be more convenient implement if we have large number of examples online is
more convenient of course, batch mode is nice because batch mode is exactly the same
as the right gradient descent of the function. So, I can actually update batch mode but, if
| have large number of examples online might be better because otherwise you know we
may have to run thorough some thousand of examples so we have to do thousand
function computation and then only my weights will get updated by small bit I have to
any way use a small step size. | cannot afford to use very large step size so even to
change my weights by small amount. | may have to do lot of computation calculating
outputs for you know 1000 input patterns. So, might be wasting to much computation.
So, this is the reason why if you have large number of examples very often online is

done.

Another is | can, when a 2 online unlike batch | can possibly use some no some kind of
randomization techniques to try to get to better local minima this is gradient descent. So,
we need all kinds of tricks to get good minima so for example, from epoch to epoch | do
not have to present all my examples in this same model. So, may be in one epoch of the

online algorithm | present examples one to n and the next epoch I go from n to one or |



do a random shuffling of the examples for each epoch very often that kind of things help
in finding good minima so it kinds of gives an extra shade to the algorithm so this tricks

generally find you good minima.
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+ We also generally normalize the input (or feature)
vectors

+ If different components of the input vectors, \*, in the
training set have widely differing range of values, we
will get into numerical problems

+ We can use a linear transform to bring each feature
valueto 1. |

+ Or we can transform each feature to be a zero-mean
unit variance random variable

Another thing that is often needed is to normalize the inputs or the feature vectors why if
different components of the input vector X have different very widely differing range of
values. So if one component goes from point one to point 2 another component goes
from one to ten thousand then ultimately you know you take the inputs multiply by
weight and add them right I get into all kinds of numerical problems right even you
know my weights have to traverse very large dynamical range and that but, be very
difficult for the gradient descent algorithms to find. So, because of that I would like to
have all the components in put to roughly as a same dynamic range when we are going it

is to use a linearly transform every range into minus 1 to 1.

So, simplifying the max and min for each of the input dimensions and then simply
linearly transform that input so that all components will be minus 1 to 1 but, what often
gives better performance than this is to transform this features. So, that each feature that
is each component of x can be thought of as a 0 mean unit variance random variable right
so that I am not really making a strictly in minus 1 to 1 but, I am transform them so each

of them can be would be a 0 mean unit variance random variable.
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olet\ =, r,.)' be the feature vector

+ The training examples,
\ e =1
can be taken to be iid

* \We can estimate mean, //, and variance, o~ of |
feature as

How do you do that let say this is the feature vector with m components. Now, | have
training samples X s that mean | have a sample for each one of this components N such
training sample these can be taken to be iid so, if | think of x 1 at the random variable
correspond with the first feature x 1 s s is equal to 1 to N on iid samples of that random
variables so | can find the mean N variance. So, the mean mu j and variance sigma
square j of the j th feature as these are the maximum likelihood estimates. In general both
of them are sample mean and sample variance these are very good estimates for most
kind of models. So, i can estimate my mean and variance of the of each of the feature

components.
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+ Now we can transform each example \" to
X¢ " )" by

/

+ This will make each component of \', tobe a
zero-mean unit variance random variable

+ This is often better than simply transforming the range
of each feature componentinto 1. |

) * We can also use some linear transform to decorrelate
the feature components

Once | do that I can transform the original example X s to a new example x s tilde so that
each component now become tilde so the tilde component x s tilde j as become x j minus
mu j by sigma j sigma j is of course, square root of sigma square j. So as you know the
because X j as mean mu on variance sigma X j tilde will 1 mean O variance one right so
this transformation will kind of make all the feature vectors to be 0-mean unit variance
random variables. And often this kind of transformation works better than simply doing a
linear transform to bring all feature components to minus 1 to 1 because here by this one
by sigma j | am kind of also normalize the variation in each of this random variables a
matter of fact here. Of course, | am only individually making them O mean unit variance

I am not worrying | am not doing anything about correlations between them.

Similarly, linear transformation is possible to do so that different feature components can
be uncorrelated or decorrelated. So, that you know learning can be much more effective
if you have independent features we will look at such transforms when we do what is
called p c a principal computer analysis. So, this is about normalizing inputs right so |

have to normalize inputs.
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+ Another factor that affects the performance of gradient
descent is the initialization of weights

+ Taking a simple-minded starting point, e.g., all weights
zero, is not good

+ Small random values for initialization is better

+ Normally one uses random initial weights drawn from
a distribution with mean zero and variance |/ where

v is the indegree of the node to which this weight
connects

Another factor that effects performance of any gradient descent is where you start right
generally it converges local number of closest to where you start. So where you start
becomes often very crucial and because the very high dimensional space a simple-
minded starting point like take all weights to be 0 is never a good starting point see you
do but, that also truly there is lot of weight space cemeteries if | permute the nodes in the
hidden layer. So, | get a different weight vector but, which effect will represent the same
function which means you know the minimizer minimizing weight vector will not be unit

there will be many weight vectors where minimum can be achieved and given so much.

So many such weights pits cemeteries and the generasy all 0 kind of initial point is
generally not a good initial point since has not much to say except that often small
random values for initialization is better. Instead of all being same some initial random
variation will allow the gradient descent search to be much more effective normally what
one does is to chose the initial weights from some distribution chose them randomly

where the distribution as 0 mean and variance one-mu th when mu is the indegree.

So depending up on how many weights are there for each node or for all the weights of
one node | use one distribution this one-mu th variance is once again it just a guidance.
For example | can decide on the range of weights I can think 1 am to be uniform from
minus a 2 a where a depends on the indegree right but, basically the idea is that for nodes

that have large m number of weights | do not want to much variation.
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+ Backpropagation is a gradient descent in a very high
dimensional space

+ Hence it has all problems associated with such
gradient descent

+ It gets stuck in local minima. Often multiple starting
points are used

* Itis also generally slow
+ There are some ways to improve this

Yeah essentially back propagation is a gradient descent in a very high dimensional space
so a gradient descent kind of optimization in high dimensional space has lot of problems.
So back propagation will have all the problems associated with any such gradient descent
algorithm right. For example, it gets stuck in local minima so very often what people do
is used multiple starting points so run it from many different starting point and try to take
the best one you can right this is how this is also done and we know it get stuck in local
minima is very slow gradient descent is very slow and so on there a couple of things that

we can do to improve the algorithm right improve the gradient descent itself.
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Backpropagation with momentum term

+ One often uses a so called momentum term and
writes the algorithm as

A

where \

+ At each iteration, we add a small term which is
proportional to the direction in which we moved in the
previous iteration




Here are a few such things this is called Back propagation with a momentum term what
you do is if I take if | write deltaw ijltaswijltplus1minuswi j |t essentially what
the algorithm we had earlier wi j | t plus 1 to w i j | t minus the gradient right minus
lambda time the gradient. So, if | take this difference to be delta w i j | t so my earlier
algorithm is deltaw i j | t is simply minus the gradient is equal to minus lambda dou j by
dou w i jijItthis t simply mean that this gradient is evaluated meeting the values of

weight set t.

So, what | am doing in this algorithm is in addition to the usual gradient step | am adding
one more step what is the second step give me this is deltaw i j i | t minus one that is w i
jltminuswijltplus 1. So, essentially in addition to the current gradient | am adding a
term which is proportional to the direction in which we moved in the previous iteration if
you think of it as vector this is the component equation look at the vector equation then
in addition to the gradient vector this one adds a component which is the direction in
which | traveled traverse in the previous 2 iteration. So, | am currently t to t plus 1
iteration this is the direction which | traveled between t minus 1 to t iteration right so at
each iteration where a small term which is proportional to the direction in which we

moved in the previous iteration in addition to the gradient.
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+ Gives a flavour of conjugate gradient search to the
algorithm

What it that do this essentially is what a conjugate gradient descent algorithm of course,
the proper conjugate gradient needs to correctly find previous direction it has to be the



weight for that is to be determine based on the proper conjugate directions but,
essentially can think of this is the poor mans conjugate directions method. So, this
essentially adds a kind of conjugate directions kind of flyover to the gradient descent and
hence peace setter.
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+ Gives a flavour of conjugate gradient search to the
algorithm

+ If \.~ are sufficiently small, this algorithm also
converges to local minima

* In practice, this considerably speeds up the algorithm

+ One normally always uses backpropagation with
momentum

So, now we have 2 steps sizes a lambda the step size for the gradient term and the
gamma as a step size for this term this term is often called the momentum term so if both
the step sizes of the gradient and the momentum term are sufficiently small then this
algorithm also be shown to converges to local minima. So, essentially it does not change
the asymptotic properties whether that term is there or not I still go to the local minima
but, in practice this term considerably speeds up the algorithm this is just like gradient
descent and conjugate direction by conjugate directions method is faster even though it
also converges to the same minima ok. So, in practice one always uses back propagation

with a momentum term no body our uses it without the momentum term.
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* Another simple strategy that one uses in the learning
algorithm is the so called weight decay.

+ From time to time we replace each weight «'|, with

. [1 = ¢) where ¢ is a small positive number.

+ We can do this every iteration, or after a fixed number
of iterations and so on

* This is essentially implementing gradient descent on a
regularized' risk

Another simple strategy that one often uses for learning is what is called weight decay
what do you mean by weight decay you say from time to time we replace each weight
with one minus epsilon times itself where epsilon is some positive number. So, | just shut
a part of the weight the idea is that this way weight do not blow up | do not let weights
become very large ok. We can do it in every iteration we can do after fixed number of
iterations and so on where is this work this essentially implementing gradient decent on a

regularized risk we seen regularized least squares last time.
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+ We are trying to minimize ./, sum of squared errors

+ Suppose we decide to minimize
I=J + 05¢|[W]}°

+ This is the regularized least squares that we
discussed earlier

+ Now gradient descent would give us the algorithm

i
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* This corresponds to the so called weight decay




So, what is that we essentially trying to minimize J the sum of squared errors suppose
instead of J we want to minimize J tilde where J tilde J plus half epsilon times norm W
square so this is exactly like the regularized least square that we discussed earlier. Instead
just using the data error we also use a model complex term and for squared error we seen

that a good complexity term is square of the weights the norm of the weights.

So, what is that mean now if | do gradient descent and J tilde now this will be the usual
gradient minus lambda J this and this will give me minus epsilon the 0.5 | have put here
so that this two will cancel this is nothing but, the square of each of the components. So
if | take a partial derivatives of any one component | get that component vector so
making each w i j one match epsilon time that w i j from time to time is simply that on
top of the gradient descent | am just implementing the regularized least squares so
essentially where decay is same as doing a regularized least square gradient descent is
that doing gradient descent are not just the sum of squares of error but, sum of errors plus
a regularization term where epsilon now plays a roll of the regularization constant ok. so

these are all the various tricks that one can use to make the gradient descent work better.
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+ To learn the weights in a feedforward network we are
minimizing empirical risk under squared error loss

+ Gradient descent and hence backpropagation is only
one method to do such optimization

+ \We can use other methods, such as Newton's method
or quasi-Newton methods

+ We need second order partial derivatives here

+ A backpropagation like procedure can be derived for
getting all second order partial derivatives

9

So, to sum up to learn weights a feedforward network we are minimizing empirical risk
under squared error loss and gradient descent and hence back propagation is only one
method to do such optimization right. Let us not forget that what we want to do is

minimize empirical risk under squared error loss and to minimize we decide to use |



iterative gradient descent and a calculate gradient were using back propagation. They can
be other methods for the same objective function | can use many other methods for
minimizing for example, | can use Newton's method I can do any of the quasi-Newton

methods such as Powell method or b f g s and so on right.

There many Newton or quasi-Newton methods all of them need second order partial
derivatives some time they need to inversation sometimes quasi-Newton methods do not
want to the inversation but, all of them need the second order partial derivatives. As it
terms out if a back propagation like method exist of first order derivatives a similar
procedure should exist for second order derivatives even though is a little more
complicated. It is possible to get the second order partial derivatives also using the back
propagation like method. So, | can use such quasi-Newton methods is not all.
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* Many such optimization techniques are used to learn
appropriate weights in these network models

+ Squared error loss is also an arbitrary choice
+ We can choose some other loss function also

+ While all such variations exist, Backpropagation (with
momentum) is the most often used algorithmn for
learning such models

So, we can use many optimization techniques to learn the appropriate weights because
squared error loss itself is an arbitrary choice. | can use other loss functions right so the
many variations are possible within this networks | many other variations to learn within
this network while all such variations exist. And people have used other optimization
techniques also rarely some other loss function in most often use algorithm is back

propagation with this models.
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+ The multilayer feedforward networks with sigmoidal
(or tanh) activation function represent only one class
of neural network models

+ They are the most popular neural network models for

classification and regression
+ But we can have other such network models also
+ Conside a 3-layer network as earlier

Now, this completes the multilayer feedforward network models with sigmoidal
activation functions where each node takes a linear synonyms passes sigmoidal but, these
are not the only kind of neural network models one can happen they can be other
network models while these are the most popular neural network models for
classification and regression. One can have other such network models it just peak a look
at what do | mean by that.
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+ This represents a function from R to R

Let us go back to the old 3-layer network essentially the 3- layer network function



depends on its a linear sum of the outputs here so given the inputs I first calculate these

outputs to any other function and then take a linear sum right.
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+ The function represented by this (with linear output
node) is

\‘,(\‘

bt

+ We can rewrite this in a form

V5

]

So, the function represented by the network can be witnessed y is equal to by sum of j
the hidden nodes beta j into sum this is the actual sigma (( )) function and each node does
linear sum. | can rewrite this function as this f of all this can witness some phi of X the
input vector comma theta j by theta j (()) all w i j b j everything. So this is some function
phi which is a function of x and some parameters and the parameters are specific to each
of the each of the hidden nodes each of the j right.
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+ There can be functions. that result in any continuos
function approximatable as above

+ Then it is another kind of 3-layer network model where
the output of the ;™ hidden node is given by o(.X.#

* This also is a representation where the ‘basis
functions are learned (if we are estimating #, from
data)

+ We consider such networks next

So, there can be functions phi that result in continuous function approximation they can
be weight of representing any continuous function like this also because this is just like
this. This is also you know because the phi x phi j x but, where i have | have show able
parameters here so it is not a fixed basis of expansion. So this also a representation where
the basis functions are learned if we are learning theta j from and I can think of the this is
another kind of a 3 layer network model where | can still think of this is a 3- layer
network where phi X comma theta j is the output of the j th node and then multiply with
beta j and sum it up right. So I can have a different 3-layer network model whose output
is like this and this is also not a fixed basis function but, basis function adopted so these
are the kind of networks these are called you know perfect interpolation networks radial
basis function networks and so on these are the network models that we will consider

next is in next class.

Thank you.



