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Lecture - 28 

Backpropagation Algorithm; Representational  

Abilities of Feedforward Networks 

Hello and welcome to this next lecture on pattern technician. As you know we have been 

discussing the multilayer feedforward networks, we looked at them in general. And in 

last class we looked specifically at multilayer feedforward networks as good models for 

representing non-linear functions. 
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So, as I said last class, our interest in multilayer feedforward neural networks is that they 

provide a good parameterized class of non-linear functions. We have seen that last time. 

And basically, the way the network represents a function is through composition of 

linear sum and sigmoids. So, essentially each node calculates the weighted sum of its 

input and passes it through a non-linear activation function to compute its output. So, we 

do it for all nodes in layer and from layer to layer. So, if we do it successively for each 

layer, we essentially transform the inputs at the layer one to the outputs at the final layer.  

So, the actual function that is computed by this is very much dependent on the 

interconnection weights. Because, given a particular structure the only thing that can 

change is the inter connection weights. So, by changing the interconnection weights we 



change the function that is being represented by the network. So, roughly an architecture 

represents a class of functions and specific weights represent a specific function. 

So, we have to essentially choose the weights to be able to represent this specific 

function of interest.  
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So, we actually discussed an algorithm for training the network. So, like all other 

classification regression models that we are considering, the training proceeds by having 

some training samples. So, we are given examples x i, y i; y i is the target, x i is feature 

vector input vector. And we need a function relationship such that, given new x’s, I can 

predict the y’s properly. 

So, given the training examples x i, y i, we have to learn the model. So, in this case we 

have to learn the weights. So, we actually discussed in last class, n algorithm that is used 

for training the network. What do we actually? We learn the weights by minimizing the 

empirical risk and squared error loss function. Once, we fix the architecture of a network 

as we seen as I said earlier, it represents a class of functions. So, we can think of that as 

the class of functions or the class of classifier h that we are currently considering in the 

discrimination frame work. Then, we have chosen the squared error loss function. 

So, the loss is square of the difference between the output of the network and the desired 

output. So, we choose the empirical risk of this that is sum this squared error over all the 



examples and minimize that over the weights. So, we want to find the weights to 

minimize the empirical risk and the squared error loss function. And, to do the risk 

minimization we have chosen the gradient descent method of minimization essentially 

given the current weights, we find the next weights by from the current weights going 

into a little bit along the direction of the negative gradient. That is the standard gradient-

descent method of optimization.  

And for this class of networks, you derived a very interesting recursive formula for 

calculating the partial derivative. Essentially, when you are deriving gradient descent, 

new value for a weight w i j is the old value of the weight minus step size into the 

gradient of the performance index with respect to that weight. Now, we showed that all 

these partial derivatives, the gradient components can be calculated interesting recursive 

manner and we derived this recursive formula last class. So, that is what we are going to 

start discussing today.  
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So, let us first summarize the method of learning weights. So, what is that we want to do, 

we want to learn the weights w i j l. Recall that w i j l is the weight that connects node i 

in layer l to node j in layer l plus 1. We are using layered feedforward networks where, 

interconnections always connect nodes in one layer to the nodes in next layer. So, nodes 

in layer l can only connect nodes in layer l plus 1. So, that is what we have the notation 

where by w i i j l is the weight that connects node i in layer l to node j in layer l plus 1. 



Now, this we want to learn; the weights for all such i, j’s and l that is the old set of 

weights, we represent by the matrix W. Now, we want to learn this W to minimize a 

performance index J. Where, J is defined as J of W is summation s equal to 1 to N J s W 

where, s is an index that goes over the training samples. The training samples have the 

form X s d s for the input X s the desired output is d s. There are N training samples. 

So, sum over each of the training samples. So, J s W is the performance measure error on 

a single training sample and that is given as capital L is the output layer. So, J is the node 

index in the output layer. So, y j L is the j-th output of the network which of course, is 

the function of the input X s and the weights W. So, this on the input X s with the current 

weights W; this is what my j-th output says. Because d s is the desired output, d s j is the 

k-th component of the desired output. 

So, I square this and sum over J that gives me the error, the square of the error between 

the output of the network and the desired output. Because, the desired output itself could 

be a vector. As a matter of fact, we assume it to be a vector of as many components as 

there nodes in the output layer. So, y j L is the j-th component of the network output; d s 

j is the j-th component of the desired output.  

So, this gives me the square of the error, sum over j that gives me the square of the error 

between the vector network output and the vector desired output for the input X s. I sum 

it over all s’s, that gives me the so to say something proportional to the empirical risk 

under the squared error loss function over the training samples X s and d s. So, 

essentially we want to find W to minimize j to minimize the squared error and the way 

we are minimizing is we are using iterative gradient descent.  
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What will be the iterative gradient descent? w i j l t plus 1, t is the iteration count now. w 

i j l t plus 1 is w i j l t minus lambda times derivative of j W, partial derivative of j W 

with respect to w i j l. Because, j W is sum of j s W’s, the derivative will also be sum of 

these derivatives. 

So, I get w i j l t plus 1 is w i j l t minus lambda is the step size for the gradient descent 

times, s is equal to 1 to N. The partial derivative of each of the J s with respect to w i j l. 

So, look at it each of the J s is actually the same structure, the only thing that different is, 

it is the square of the error between the network output of the desired output. But, in the s 

term, I put X s as the input to the network and then, find the desired output and use the s-

th desired output. So, when I find the network output, I put X s as the input and then find 

this difference with the s-th desired output. Except for this, each of the J s s are same just 

that I put different X s as the input and use the different desired outputs. 

So, essentially each of these partial derivatives would have the same structure but, this 

will be my gradient descent minimization for each i, j and l; w i j l t plus 1 is w i j l t 

minus lambda times derivative of capital J with respect to w i j l which is some s is equal 

to 1 to n partial derivative of J s with respect to w i j l. 
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So, essentially for each training sample X s, d s we will compute the partial derivative 

with of J s with respect to w i j l. Once we do this, we can calculate the sum and hence, 

implement the gradient descent. Then, we can update all the weights. Now, this is what is 

we called a batch mode operation. In batch mode operation, you first put X 1 and you get 

the output of the network.  

Then, you know the d 1, using that you find del J 1 by del w i j l. Then, you put X 2, 

using that you can find the outward network for in response to X 2. Then, you find the 

error with respect to d 2, the desired output for X 2. Then, once again find this second 

partial derivative so on, you put all the partial derivatives and sum them up and then, use 

that sum to change the weight that is the batch mode operation. 

In analogy with LMS, we also have a incremental mode operation whereby, at each 

iteration I will only use one of the training samples. Then, essentially this summation 

will not be there. Whichever is the training sample I am using in the current iteration, I 

find gradient only with respect to that training sample. There is not much difference 

between the 2 things. Because essentially, except which X s I will put in the input and 

which d s I use for finding the outputs, the J s structures are same and hence, the partial 

derivatives computational also have similar computations. 
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Now, we have shown last class that for these networks there is a very nice structure for 

the partial derivatives. The partial derivatives I want is del J s by del w i j l. I did not put 

the s here because all the J s’s have the same structure, so let us for now for now forget 

about the index, that tells me which particular training sample I am looking at. Then, I 

can roughly write it as del dou J by dou n j l plus 1, dou n j l plus 1 by dou w i j l because 

the only way a weight w i j l will affect the J is by affecting the output of the network. 

The only way it can output the affect the output of the network is by its affect on the net 

input into the J-th node layer l plus 1. w i j l is a weight that is connecting into the J-th 

node in layer l plus 1. 

So, it can affect the total input only into the J-th node in layer l plus 1. So, the only way 

to w i j l can have any effect on your final error is by its effects thorough the n j l plus 1. 

So, the partial chain, dual partial differentiation tells me that this derivative can also be 

written like this. Now, we said that we can write this as dou J l plus 1 and this one we 

know because, n j l plus 1 is a linear combination of all the inputs from layer l and if I 

take the differentiation with respect to one of the weights, I get that corresponding output 

from the layer l. And this first term which we called delta J l plus 1 is called the error at 

that node and is defined by in general delta j l is the derivative of the error with respect to 

n j l, total input to node j layer l. Because, here I want node j layer l plus 1, this becomes 

delta j l plus 1.  



This delta j l’s are called errors at a node. We will just remember that the delta j l 

actually depends on the particular training sample. Because here, just to keep noticing I 

dropped that s. But, the delta j l is derivative of the square of the error with respect to the 

net input into that node. But, this depends on which particular training sample I am 

talking about whether, X’s is, if I am talking about whether this training sample then, 

that X’s will be input to the network. And the final outputs error is calculated that d s. 

So, delta j l is off course depend on the training sample X’s, d s. But, our notation does 

not explicitly show, it only gives delta as only the node number as its subscript or super 

script.  

So, even though we do not show it, we mentally remember that, that dependence is there. 

So, coming back, if I want implement the gradient decent, this is only the partial 

derivatives I want and this partial derivative is given by this. So, if I know the error at 

each node, I can implement the partial derivative. So, now the this of course I know, this 

is the output of the node. So, I just need to know how to calculate delta j l. 
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We have seen that delta j l can be computed through an interesting recursive formula. Let 

me first put down the recursive formula. We showed that for the final layer delta j L is 

simply y j L minus d j into f prime n j L. y j L is the j-th the output of the j-th node in the 

final layer, d j is the corresponding desired output. This is the actual error into f prime n j 



l, this happens to be delta j l by explicitly calculating that partial derivate. And for all 

other layers the delta j l satisfies very intresing recursive form like this. 

Delta j l can be given in terms of delta s l plus 1. If I know delta s l plus 1 for all s then, I 

can calculate delta j l for every j. So, if I know the errors for nodes, all the nodes in the 

layer l plus 1 then, I can calculate errors for all the nodes on layer l. So, because I know 

at the output layer capital L, I can calculate capilat L minus 1. Then, I can calculate l 

minus 2 and so on. So, using this recursing we can calculate the errors at all nodes.  
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So, this how the recursive formula is derived. This particular recursive formula. Recalls 

that, delta j l by defination is dou J by dou n j l. So, how does net input into node j layer l 

effects the final oputput. Node j layer l, its net input is convert into output and its output 

is send to all the nodes in layer l plus 1.So, some or all nodes in layer l plus 1, dou J by 

dou net input of node s in layer l plus 1 into dou it n l plus 1 by j l. And this can further 

be written in terms of the outputs. So, n s l plus 1 by del y j l and del y j l by del n j l. The 

next thing is, this already has a name delta s l plus 1 and because the net input into any 

nod layer l plus 1 is a linear combination of the outputs of layer l, I get that weight here 

and an output of a node 2 is that input is conduct by the activation function. So, this 

partial derivative gives me the derivative of the activation function. So, this is how we 

actually derived the previous recursive formula that is our recursive formula.So, now we 

are almost done. So, we know that this is what we want to implement.  



This is my gradient descent that needs me to calculate these partial derivatives. And I 

know how to calculate this partial derivative; they are in terms of error at that node into 

the output. So, if I am asking how to update weight that connects node i layer l to node j 

layer l plus 1. Then, the output of node i layer l multiplied by the error at nod j l plus 1. 

So, this w i j l connects node i layer l to nod j layer l plus 1. So, I take at the input end of 

that arrow, the output at the output end of the arrow the error. So, I multiply the error at 

node j l plus 1 with input at node i l and that product gives me the required partial 

derivates. Once the partial derivates is there of course, I can implement the gradient 

descent that enhances my learning algorithm. 

And the partial derivate is themselves are obtained through an interesting recursive 

formula. This is the formula for the output layer and for all other layers this is the 

recursive formula. 
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So, now what we are going to do is to look at what this particular recursive formula 

means. So, coming back once again, this is the output, this is the error for all nodes in the 

output layer. This is exactly like the usual error for a LMS algorithm. Where, y j L is the 

actual output of the network, the j-th component; d j L is the desired output, j-th 

component. So, take that, which is the actual error. Multiply by f prime because f is the 

function that connects the net input into that node to its output. So, that is the. For 

example, if I have only one node in the output and still I use the sigma recursive function 



but, I have no hidden notes. Then, this is this is what would be the LMS algorithm. Now, 

this is very similar to LMS algorithm for a single neuron or a 2 layer network. So, this is 

understandable. Now, let us consider because we have a recursive formula. Once we 

know all the error set layer L, we can calculate errors of nodes in layer L minus 1.  
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So, let us look at that recursive formula. If I want error at node j layer L minus 1 then, it 

is some linear combination of errors of nodes in layer L. Ultimately of course, multiplied 

by f prime of this particular node so, that does not come re-submission, that will keep 

separately.  

So, if I want error at node j in layer L minus 1, we calculate it as a weighted some of 

errors of nodes in layer L and multiply by f prime. That is how we get errors for nodes in 

layer L minus 1. And in the linear combination or a weighted sum, the weights are same 

as the weights that connect the corresponding nodes in layer in L minus 1 to the nodes in 

layer L. So, essentially I am taking the errors at nodes in layer L multiplying them by 

weights. The weights are the same ways between layer L minus 1 and layer L and take a 

summation.  
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Let us look at it from the network. So, this is the layer L. Let us say I want to calculate, 

this layer L minus 1. Let us say I want to calculate error at node J layer L minus 1, that is 

delta j L minus 1, how do I calculate? For that, I have to do delta j L into w j s L minus 1. 

Delta j L, I expanded here. We know delta j L is given by this. So, I just expanded that. 

So, this entire thing is the errors for nodes in the layer L multiply by w j s L minus 1. 

What is j s L minus 1? that ca That connects node j and node layer L minus 1 to node s in 

layer L. So, we can think of it as if this is my network. Normally, when I am doing my 

output calculation, I will take the output of node J multiplied by this weight and goes to 

this node or multiply this weight and it goes to this node and so on. Instead of that, now 

we can think of this as, I think that this is the error at this node, not think this is the error 

at this node y 1 L minus d 1 into f 1 prime, at this node is y s L minus d s into f x prime. 

We think of that as the current values of these nodes, multiply the current values of these 

nodes with the corresponding weights and sum it up over all these notes, that is what I 

am doing. I am taking delta s L, multiply that is the error at this node delta s capital L. 

And multiplied it by the weight w j L minus 1. And submit to all our node to the layer L 

that is, this term; the term in this big, big parenthesis. And then, multiply by f prime of 

net input of this node that gives me the error at this node. Now, this particular style of 

competition is same at all level. 
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What do I do for remaining layers? Same thing; delta j l is written as a linear 

combination of errors of a nodes in layers l plus 1.  

(Refer Slide Time: 23:01) 

 

Once again, if little l plus 1 is this layer. So, I take error at this node that is delta 1 l plus 

1 multiplied with w j 1 l with this weight. And I take delta s l plus 1 multiplied delta j s l 

and so on. Add all of them up that gives me this term and multiply by f prime of this 

node. So, essentially if I calculate weights at each of these points then, I multiply these 

weights, the errors at the nodes with the weights. Earlier what I am doing, when I am 



doing forward competition. I calculate output here, output here, output here and take the 

output here multiply by this weight, take the output here multiply by this weight, take the 

output here multiply this weight. That gives me in the net input to this node. Instead of 

that but, actually getting errors at each of the nodes, I have to take the errors at this node 

multiply by this weight, error at this node multiply by this weight, error at this node 

multiply by this weight, add them up.  

So, it is structurally the same computation as a layer. So, we can think of the forward 

computation, computation output as forward propagation of inputs into outputs. I can 

think of these as the backward propagation of errors. So, that is why this particular way 

of calculating all the partial derivates using errors at nodes is called the back propagation 

algorithm. What it does is, it does back propagation of the errors. Once I know the errors 

at the output layer I back propagate, so that I get errors layer L minus 1 then, I back 

propagate I get layer set L. This is what back propagation is all about.  
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So, now let us fully understand what is involved in training the network. So, we have to 

do the same process for each training examples. So, let us look at it any one example. So, 

let say X s, d s be an arbitrary example. X s is as got n 1 component because, n 1 is the 

number of nodes in first layer at the input layer according to our notation. And d will 

have n 1 components, n capital L components. Once again, I have notation that is the 



desired output. So, essentially learning a function from n 1 dimensional space to n L 

dimensional space.  

So, what do you do? We first have to calculate the output of the network y L, which will 

have n L components. y L, we have to calculate when the inputs are X s. So, I will put X 

s as the inputs and successively calculate the outputs. So, this is what you have to first do 

and we can think of this at the forward computation. So, what do we have to do for 

forward computation? We have to first put the current input axis as the input layer and 

then, successively from layer one onwards, keep calculating outputs of the next layer 

right and then, at the end will have the output of the network. Once you calculate the 

output of the network.  
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Then, we know the desired output and hence, we have to calculate delta j capital L for 

each node in the output layer. Once you calculate that, we can calculate for layer L 

minus 1 by back propagation. This is the backward computation. So, starting with layer 

L minus 1, I can keep back propagating errors and keep calculating errors at each of the 

nodes backwards. I will first calculate errors at node L then, I calculate errors at node L 

minus 1 then, I calculate at l minus 2 and so on. So, this is the back ward computation. 

At end of the backward computation, all the errors delta j l are known. Now, we can 

compute all the partially derivates and updates the weights. 
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Now, let us go into the details for the forward computation, computing output a network, 

how do I do? Layer by layer. For the input layer y i 1 is x i s. y i 1 is in the one super 

script is in the input layer the i-th node. So, the i-th node simply takes the i-th input x i s. 

For all other layers, layer 2 onwards. I first compute the net input, eta j l as the weighted 

sum of the output from the previous layer, y i l minus one w i j l m minus summed over i. 

And then, I pass it through an activation function.  

This is the forward computation. See, essentially for the forward computation for every 

weight in the network, different weights in a different layer but, for every weight in a 

network have to do one multiplication. And for every node in a network, I have to do one 

function computation. So, this is my forward computation. Once we have we do it for all 

the up to layer L, we have the output of the network and now we can start calculating the 

errors.  
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At the output layer, once I have y j L and this is from the training input desired input, I 

can calculate the errors for all nodes in the outputs layer. Once, I have that. I start going 

back from layer L minus 1, L minus 2, all the way up to layer 2 to compute delta as L. 

Once I compute all the delta as a l’s, I can updates the weights. Of course, I have written 

it as a incremental version here, of course otherwise, have to do it put a summation here. 

This is the overall view. So, we have a forward computation. 

That is my forward computation. I first get the output of layer 1 nodes simply the inputs 

and then, from layer 2 all the way up to L I calculate net input and passes through 

activation successively. So, first I do it for layer 2 then, I get all the outputs from layer 2. 

Now, I can calculate net inputs into layer 3 and so on. Ultimately, I will get outputs of 

layer L, which is the network output. And then, i have I will calculate errors, first errors 

of the output layer. And then, using my recursive back propagation formula, I calculate 

errors at all the other nodes going back in the layers and once all the delta available, I can 

update the weights. So, this is the back propagation algorithm for training the network. 
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So, let us sum it up. We train the neural network by minimization of empirical risk under 

this squared error loss function we are given some. We are essentially looking at training 

the zonal network to represent a function, we have given X as d s. X s belong to some 

unknown dimensional space and d s belongs to some n L dimensional space. I am 

learning a function from r n 1 to r n L.  

So, we train the network by minimizing the empirical risk under squared error loss. For 

minimizing the empirical risk which is essentially some of squared errors with much like 

your least squares method. We use the gradient descent for the minimization. Because of 

the network structure, the needed partial derivates are computed very efficiently. What is 

the process involved? One forward pass to compute outputs of the network and one 

backward pass to compute all the errors and hence all the derivates.  

So, first there is a forward way of pushing inputs in the network to the outputs as 

network, which involves off course weighted sums and function computations and once I 

have the output network, by comparing desired output I can calculate errors at the output 

node. Now, I do back propagation which once again simply involves weighted sums and 

functional computations. So, one forward pass to compute the output network and one 

backward pass to compute all the errors and hence, all the linear derivates. And then, I 

can update the weights and keep going on.  



This iterative algorithm for learning weights in your network is called the back 

propagation algorithm, is short for back propagation of errors. As a matter of fact, back 

propagation algorithm has been historically so successful in zone networks. For a large 

majority of neural network model users, neural used feed for neural network models is 

synonymous with the back propagation. This course as I said, we using back propagation 

for training feedforward neural networks, is a very good algorithm for feedforward 

neural networks. But, will see that there are other methods of training neural networks. 

But, in spite of that, for neural networks where we have this kind of sigma activation 

function, back propagation is the most famous algorithm for training the network.  
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Now, let us look at a few issues about back propagation. Suppose, we have M w and M 

number of weights, total number of weights in network between all layer counting 

weights between all layers, let us say M w M number of weights in network and there are 

M l number of nodes in the network. Now, the forward computation, what we have to 

do? I have to do weighted sum. In the weighted sum each weight is used only once 

exactly.  

So, I will do in calculating the net inputs of all nodes in the network put to be the through 

all the layers, I would do as many multiplications as there are weights. So, M w M 

number of multiplications I have to do. We can assume that each function computation is 

some constant time say, multiplication cost wise, I do as many function computations as 



there are nodes M l. So, totally my computation is M w multiplication plus some 

constant times M l multiplications or M l function (( )). So, we do one multiplication per 

weight, one function evaluation per node. So, the total computational complexity is 

should have been M w plus M l. 

M w multiplication plus k times M l so, is an order notation. So, k does not matter. But, 

often M w is the order of k l square because a weight connects every pair of nodes. So, if 

I got 10 input nodes, 10 output, 10 hidden layer nodes. There 20 nodes. But, I will have 

400, I have 100 weights. Because, each of the 10 input nodes are to be connected to each 

of the 10 hidden nodes.  

So, normally the number of weights is of the order of square of the number of nodes. So, 

M w plus M l is the same order as M w because, M w goes as M l square. So, the 

forward computations complexity essentially order M w, I will do of the same order of 

multiplications as the number of weights in the network and very reasonable because you 

compute outputs, each weight participates in a weighted sum computation once. So, total 

number of multiplications is of the order of the number of weights. Of course, of the 

number of weights plus number of nodes but, we left out number of nodes because, 

number of weights is an order higher than number of nodes. 

What about the back propagation? Back propagation, the nature of computation is same. 

Essentially, you think of the errors at the output nodes like the inputs at the input layer 

and then, do the same kind of weighted sum calculation. So, for the back propagation 

error, the number of computation needed is of the same as the order as the forward 

computation. In the forward computation, I am calculating f; backward computation 

calculating f prime. So, is not particularly different. So, in the back propagation of error, 

the number of computations needed out of the same order as the forward computation. 

Now, one back propagation one pass of back propagation gives me all the partial 

derivates respect to all the weights which means, we need computation time of the order 

of M w to obtain all the partial derivates. 
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We know forward pass is of the order of M w, backward pass and forward pass are about 

the same computation. And one backward pass gives me all the partial derivates. So, to 

get all the partial derivates is respect to all the weights, all the M w weights, I need 

computation only of the order of M w. This is a remarkable efficiency. I am calculating 

M w partial derivatives. If I am calculating M w partial derivatives, I can do anything 

less than order M w computation.  

Obviously, I am calculating M w numbers so that my order of computation should be of 

the order of M w that gives only linear as M w which is really nice. To appreciate this, 

let us say we want to compute the partial derivatives numerically of course, you have to 

do the partially derivatives computation with us for a particular input. So, I you know if I 

do analytical expressions then, I will get a huge expression, as big as the entire input 

output mapping of the network for each (( )). 

So, that may not be as nice. But, suppose you want to compute partial derivates 

numerically, what does that mean? For each weight, I have to perturb the weight and 

calculate the output. I need the derivate, the output with respect to the weight. So, I put 

the current value of the weight calculate the out that I have already done. Now, perturb 

one weight only one weight keeping everything else same as earlier and now, find the 

output. And then, change in output by change in weight will give me the partial derivates 

respect to weight. Now, if I do this, what it means is; because each weight has to be 



perturbed once, I have to calculate the output of the network as many times as there are 

weights.  

Which means, I need to calculate the outputs networks M w times, each computation of 

the output will be of the order of M w multiplications. To find all the partial derivatives, 

I need M w square computations r w square. Because, if I want to do numerically like 

this, for each weight I have to calculate one output. Calculations of output take r M w 

computations. 

So, there are M w weights. So, I take M w square computations. Even, if I am using my 

equations will be the same because, for each weight the amount of computation is 

equation would be of the same order of as calculating the output of the entire network 

starting from the input. So, if I am doing blindly or in a simple minded manner finding 

all the partial derivatives either by, brute force crunching of expressions or through 

numerical estimation, I would do order M w square computation. Whereas, that 

perturbation allows me to do it in order M w.  
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Of course, one the reason is in back propagation we use a lot of interesting properties of 

the partial derivatives. For example, we show that the partial derivative this, can be 

written after the partial derivatives. That is how the error at an over came. Multiplied by 

the output of the previous node and because this is known, I only need to calculated these 

partial derivatives, to know these partial derivatives. 



See, these are weights partial derivative. So, there are as many partial derivatives as 

weights here, there is any many partial derivatives as nodes. So, this will certainly save 

me even if I am doing numerical. We can use the same idea in partial derivatives 

numerically also. What it means? Instead of finding this partial derivative numerically, I 

will only find this partial derivative numerically. What does that mean? Instead of 

perturbing one w i j l at a time, we perturb one n j l at a time. 

So, how many n j l’s are there? As many as there are nodes. There are M l nodes. So, for 

each node I have to perturb once for which means, each node I have to do one forward 

pass of computing the output of the network. So, how many times you have to compute 

the output now? Earlier, I am computing M w times the output of the network, I need not 

how to do it for M w times, I need to do only M l times. So, my order of computation by 

perturbing a node at a time is sometime called node perturbation method of numerically 

evaluated in the partial derivatives. 
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So, which means we need only to calculate order M l forward passes. Because, there are 

only M l nodes for each node, I want to find the output once. Because, I have found 

output with n j l already, I perturbed only that particular that input keeping all others 

constant and find the output so that I can get partial derivative with respect to that input. 

So, ultimately I need to calculate the output of the network M l times. So, I need order M 

l forward passes, each forward pass has a order M w computations. So, I need order M l, 



M w computations. Given earlier that, M w is M l square kind of thing. M l, M w would 

be like M w log M w. M l will be of the order of log M w. So, we need M w log of M w 

computations, if we do no perturbation. 

But back propagation is very efficient because it takes only order M w computation to 

calculate all the M w partial derivative. I cannot do any better than this. So, this is one of 

the reasons why back propagation is a very popular algorithm for doing gradient descent, 

gradient descent minimization of the squared error empirical risk on for learning weights 

in a new electron. 
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So, let us go little further to ask how these networks are. Now, let us consider 3 layer 

networks again. Let us say, there are m input nodes. Let us say, p nodes in the hidden 

layer and one node in the output layer. As we seen, layer 1 is always input layer; layer 3 

is l the last layer is always output layer. Everything in between are hidden layers in node 

because, I have a 3 layer network, there is only 1 hidden layer. So, suppose there are p 

nodes in the hidden layer, m nodes in the input layer and 1 node in the output layer. So, 

such a network will represent a function from R m to R. So, let is write an explicit 

expression for this function. What will be the function? This output is, this weight into 

this output plus this weight into this output, this weight into this output, all added have 

and passed it through the n function of this. 
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So, I can write that as, f of summation j is equal to 1 to p as many as hidden nodes. w j 1 

2 this is the weight that connect nodes j in layer 1 to node j in layer 2 to node 1 in layer 3 

into f into output of node j in layer 2.  

What is output of node j in layer 2? I f I want any node output, I have to find the 

weighted sum of all the inputs. inputs are The outputs of these layers is access. So, I 

make the corresponding input multiplied by the weight and pass it through activation 

function that gives me the output here.  
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So, it will be that. Well, suppose the network uses the activation function, this is the 

activation function with the output node; let us say we use linear activation functions. So, 

the output node is linear. So, this weight only depends on the index in the hidden layer. 

So, that 1 and 2 are constant, let me write it as, B i j; j goes from 1 to p. Then, I do not 

need this 1 here, w’s are only here. So, I can write a w j x i plus here, I did not put the 

bias, I told you earlier each node can have bias. 

So, I will put a bias. So, if I have a one hidden layer network with p nodes in the hidden 

layer. Mind you; whenever, I am representing a function the number of nodes in the 

input and output layers are fixed based on the dimension of the domain and range of the 

function. So, if I am running a function from R m to R, there should be m input nodes, 

one output node that is fixed.  

So, the only thing I do not know is, if I am using one hidden layer, I do not know how 

many hidden nodes I can have. Let us say they are p then, this is a general expression for 

a function represented by a neural network with one hidden lower layer with p hidden 

nodes. Beta j f represents the weight between the hidden node j and the output node; 

there is only one output node. w i j is represents the weight between the i-th input node 

and j-th hidden node; x i’s are the input and beta j is the biases for the hidden nodes. I am 

not putting the bias for the output node. So, this is the form of the function represented 

by this 3 layer network. 
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Now, we can ask the question, what kind of functions can be represented by like this? I 

am asking; 
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If I consider function from R m to R, some functions can be written like this, some 

functions may not be written like this, depending on what type I am choosing. So, I am 

asking, for what all functions will there be some beta j’s, w i j’s and b j’s such that, they 

can be written like this. That will tell me what kind of functions my network can 

represent. So, the question is, what kind of questions can be represented like this. Now, I 

state a theorem says that if p is sufficient then, this 3 layer network can approximately 

represent any continuous function over compact section in R n. Given any compact set in 

R m; if those of you do not know what compact set is, simply take a task closed is like a 

cylindrical set of closed n terminals. 

So, think of it as the closed bounded set in R m. So, given any compact set R m, we can 

approximate any continuous function by such a network. We will formally state the 

theorem now. So, for simply the notation for compact set we can simply think of them as 

some closed interval to the R power m that is what we are going to do. So, here is the 

theorem: Let phi be some bounded strictly monotonically increasing continuous function. 

This will serve the purpose of our activation function. 

So, given some function phi which is bounded, strictly monotonically increasing and 

continuous, which is all what our sigmoids and our tan hyperbolic everything satisfies. 

Let us script C of I m with the set of all continuous real valued functions on I m; where, I 

m is the cylindrical set in is the set of all is the 0, 1 to the power m. I m is the unit 

hypercube in m dimensions. The interval 0, 1 raise to the power m is the Cartesian 

product of the interval 0, 1 m times. 

So, 0, 1 to the power m is the hypercube of side 1 in R m. One of its corners is at the 

origin. If you call that as I m, this is a simple compact set you have taken R m. C of I m 

is the continuous real valued function that map I m to R. So, any continuous function 

continuous real valued function that maps elements of I m to R in C I m. If we taking I m 

because as I said we only want to consider any compact set in R m and this is as good as 

any other compact set in R m. So, let us see I m be the set of all continuous real valued 



functions and we have asking, can I represent every function in C I m using a network 

and we can. 

(Refer Slide Time: 47:02) 

 

Then, given any function in C m, given any continuous function, continuous real valued 

function h and any epsilon. I want h represented in a epsilon accuracy then, there exist a 

p some number of hidden nodes and real numbers beta j, b j, w i j that means the 

weights. Such that, if I calculate a function h hat, which is actually was this through a 

network represents with p as the number of hidden nodes and this beta b and w i j as the 

corresponding weights. If I calculate h hat like this then, the maximum difference 

between h and h hat, maximum taken over all points in I m is less than epsilon. That 

means, given any epsilon and given any function h, I can always find a 3 layer network 

with some number of hidden nodes and some weights such that, the output of the 

network does not differ from the actual value of the function by more than epsilon at for 

any input. 

It is a very remarkable theorem. This tells me that my 3 layered network is good enough 

to represent any continuous function to an arbitrary accuracy. Of course, I do not know 

what really network I want. What do you mean by what 3 layer network? The only thing 

that is not known 3 layered network is p, how many hidden nodes I should have. This 

theorem only tells me if a p exists. I do not know what the value of p is. 
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So, what is the theorem says is that a feedforward network with a single hidden layer but, 

with sufficiently many nodes in the hidden layer can approximate any continuous 

function to an epsilon accuracy for any epsilon. So, essentially if I put sufficient nodes in 

my hidden layer, I can represent any continuous function. So, it is a very good 

parametric class of function because I do not need, I can represent all continuous 

functions is good enough for me. 

Now, see in this representation I am using phi as the activation function the hidden nodes 

that is why I chose phi to be bounded strictly want to turn increasing continuous and so 

on. The only catch is of course that I do not know how to estimate this p. So, given some 

samples nobody will tell me how I can choose a particular 3 layered network. A 

particular 3 layer network By a particular 3 layer network we mean, how many nodes in 

the hidden layer should I chose. But, such as it is, if I chose sufficient number of hidden 

nodes then, the theorem guarantees that I can find a representation. 

Now, because the supremum diference between h x and h hat x is bounded essentially, I 

can find the corresponding weights for a given p by minimizing this sphere error. So, if I 

can actually find the global minimizer of this squared error then, you know I can 

arbitrarily I can get a good approximation to any function. So, in this sense, the 

algorithm that we have given is reasonable. This theorem gives me some justification for 

the algorithm essentially, even if I use only one hidden layer, if I put sufficient nodes in 



the hidden layer and if my algorithm can get me the weights that are global minimizers 

of the squared error loss then, I can approximate any continuous function. 

So, the theorem assures that the feedforward networks are good networks for generic 

parameterized class of non-linear functions and provide some justification for the 

algorithm we have presented. Of course, our algorithm is gradient descent and hence it 

stuck in local minimum. But, if I can go to global minima, I get weights and if I start up 

with sufficient of hidden nodes, I can represent. So, essentially we set out to have a good 

parameterized class of non-linear functions and the models we considered all good 

parameterized class of non-linear functions the theorem assures us that. And we can 

certainly find the weights by minimizing the empirical risk under squared error loss. 

(Refer Slide Time: 51:28) 

 

Let us look at it a little more carefully. So, this is what it 3 layer network represents: D i 

is equal to 1 to p beta j f of i is equal to 1 to m w i j x i plus b j. When we did our linear 

least square regression, we said that any function in the linear regression model can be 

written as j is equal to 1 to p beta j phi j X. So, if I think of all this part f of summation is 

equal to 1 to m w i j x i plus b j this is something that depends on only on j because 

summed over all the j of course, it depends also on the X’s. 

So, I call it phi j X. So, this structure is same as this structure. We already know how to 

learn this using our linear regression models, what is the difference. So, we said that the 

linear regression models linear least squares can do this. So, what is extra that it is 



giving? Difference is the linear least squares these phi j’s have to be fixed beforehand, 

they are not they cannot be chosen based on the data.  

Whereas here, phi j’s are this, if phi j’s involve this w i j and b j and w i j and b j are 

learnt using the data. So, if phi is the functions of not prefix, they are learnt using the 

data. In the linear regression models this phi is a functions of prefix like x, x square x 

cube so on. Whereas here, I am choosing the w i j’s and beta i j’s are learnt from the 

data. So, it is effectively as if I am learning the phi j’s needed using the data. 
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The difference is that, the basis functions are not fixed beforehand. Basis functions 

themselves are adopted or learnt using the training data. These phi j’s actually come from 

here, they contain adaptable adjustable parameters. So, when I am not using fixed basis 

function, if you remember again and again when you talked about linear regression we 

kept on saying as long as the basis functions are fixed. So, that is the issue. If basis 

functions themselves are adopted then, I can learn non-linear functions. So, we can think 

of the output of the hidden layer. 

Now, if I go back to my 3 layered network. If I just consider hidden through output layer, 

this is like that b beta is a phi j x because the outputs of this f i j x, once the weights are 

all fixed, phi j’s are fixed. So, this is like a fixed basis representation. So, we can think of 

what we are doing using back propagation is learning this weights so that instead of 

representing input as x 1 to x m, we representing as phi 1 x, phi 2 x, phi p x. The phi 1 x, 



phi 2 x, phi p x is good representation because now a linear model can represent the 

function you want. So, the entire issue of learning these weights is like transform this 

representation x 1 to x m representation to phi 1 x, phi 2 x, phi p x representation. 

So, we can think of back propagation as learning a proper internal representation. It is 

nothing to do with only one hidden layer, there can be any number of hidden layers. So, 

essentially from the input up to the last but one layer is a representation of the output. So, 

back propagation allows you to learn the right representation so that now under that 

representation a simple linear model can learn. That is what my back propagation is 

doing. 

So, you can think of the output of the hidden layer as a proper representation input so 

that now we can use a linear model for predicting the target. This is the reason why the 

activation algorithm learns proper internal representation that is how it is termed. So, one 

often says that, use back propagation to learn proper internal representations. 
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There is one more issue we should consider, we said that the 3 layer network can 

approximate any continuous function hence, very nice; so, it is a very good model for 

non-linear functions that is the reason we are we are studying it and so on so forth. But 

then, there may be many other ways of representing all continuous function. This result 

is also true for many representations; for examples I can use polynomials, I can use you 

know fourier functions. There are many families of basis function to represent all 



continuous functions. Continuous functions are compact sets, it forms a vector space, so 

there will be some spaces for it and in terms of basis I can represent anything.  

(Refer Slide Time: 56:21) 

 

What does that mean? Given any continuous function h, we can always represent h x 

equal to i is equal to 1 to infinity because this function space may have infinite 

dimensional. Beta i phi i x where; phi 1, phi 2 and so on is a basis for a vector space. So, 

such a representation always exists. And polynomial is one particular thing we already 

know for example, in an R to R very function can be represented given the basis 1, x, x 

square x cube so on.  

All continuous functions of compact sense can be represented as polynomial. So, there 

are many such basis functions phi i and I can represent any continuous function as an 

infinite sequence infinite summation basis function like this. Once I know that this 

infinite sequence converges to h X there would always exist a number m such that, this 

sum will be equal to epsilon equal to h X would be with an epsilon of h X. So, I can 

always have a p such that, if I take the sum up to p then, that h hat x is a good 

approximation to h X. So, what is the big deal again, we have the 3 layer network also 

continuous function, this also represents all continuous functions. In this case I am used 

fixed basis. In 3 layered network I am not using fixed basis. 



(Refer Slide Time: 57:35) 

 

What is the difference? By using neural network, I am adopting the basis function rather 

than choose a fixed basis. Is there some advantage? Yes, one can choose the neural 

network whose weights globally minimize the sum of squared error would achieve better 

approximation accuracy than the function learning using fixed. So, given a fixed number 

of examples, a neural network will give me better accuracy then any of the fixed basis 

functions. Essentially, that is what is meant by I can achieve better approximation.  

So, even though I can use fixed basis and still get the result that any continuous function 

can represented. By using a neural network, I can get better approximation. That is for 

the same number of examples I get better approximation. So, this is what the neural 

networks where the basis functions themselves are adopted are giving me as an 

advantage. There universal approximates of continuous functions and I can learn it with 

better accuracy than using a fixed basis. So, there we stop for today. Next class we will 

look at a few more issues of back propagation.  

Thank you. 

 


