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Hello and welcome to this next lecture on Pattern Recognition. We have started looking 

at methods for learning non linear classifiers and regression models, earlier we have 

looked at linear classifiers and how to learn linear regression mainly using least squares 

methods. So, last class we started looking at neural networks as a model for learning non 

linear classifiers. 
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We have, we looked at neural networks in general historically what is the motivation for 

such models are and so on. But as I told you already for this class, our main motivation 

our interest in artificial neural network models, is that they provide a good parameterized 

class of non linear functions, because they provide a good parameterized class of non 

linear functions, that is useful for us to learn learn non-linear classifiers non linear 

regression models. 

We have seen in last class non linear functions in the here are built through composition 

function to composition of summation and sigmoids, the models are useful both for 

classification and regression problems because essentially these networks can represent 



any kind of non linear functions. So, including binary valued functions or multiply 

valued functions. So, of course, most of the time they represent continuous functions, we 

appropriately threshold things to get classifiers we will see the details, but essentially 

these models are useful for both classification problems as well as regression problems. 

We already looked at the models in general and I have mentioned to you that we will be 

looking at only feed forward the, so called multilayer feed forward network models 

because those are the only thing that we will be using in this course. So, this class we 

will discuss a little more on multilayer feed forward and how one learns such models 

given some training data. 
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As you see in last class a single neuron, essentially represents a class of functions from R 

m to R because it essentially it is output is some activation function applied on 

summation of weighted inputs. So, f of w i f of summation w i x i, so given the number 

of this inputs and the kind of activation function, certain class of functions can be 

represented, so such an expression right. 

And specific set of weights, if I put specific w it realizes specific function, as you already 

seen things like perceptron and so on. Or essentially examples of such single neuron 

classifiers, by interconnecting many neurons, one can make the networks represent many 

more complicated non linear functions, right from arbitrary m dimensional real Euclidian 



space to some other m prime dimensional real Euclidian space, where m and m prime 

could be arbitrary right. 

So, when we use a multilayer network, essentially the architecture of the network, that is 

the number of layers we have, number of nodes we have in each layer, how we 

interconnected nodes all this, kind of constrains the class of functions that can be 

represented. So, a given network architecture is capable of representing certain family of 

functions and within that family when I put specific weights I will represent a particular 

function. 

So, we normally choose an architecture based on what kind of functions we want to 

represent and then learn the weights. So, that the network can be particularised to 

specific function, by using the training data. So, we have also seen that, to form 

meaningful networks, nonlinearity of the activation function is very important. So, 

before we go into general notation for general feed forward network models let just take 

another look at a simple network. 
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So, as we have already seen all feed forward networks can organised into layered 

structures, that is I can organise the nodes into layers, so that any node say in layer 3 gets 

inputs only from nodes in layer 2. Similarly, nodes in layer 2 get inputs only from layer 1 

as it is a any feed forward structure as long as there are no feedbacks, then always be put 

into this by having dummy duplicated nodes if need be. 



So, here is a simple 3 layered network, the first layer gets external inputs. So, that is 

called the input layer, the outputs of the nodes in the last layer or what are given out as 

the final outputs of the network right. So, the layer 1 is always called the input layer, the 

last layer in this case layer 3 is the output layer, right everything in between is called 

hidden layer because these these nodes are not seen by the external environment at all. 

These nodes are seen in the sense, the inputs come from the external world or external 

environment and these nodes are seen in the sense their outputs affect the external world 

or they are at the external outputs whereas, for these nodes, both their inputs and outputs 

are internal to their networks. So, they are hidden from the external environment so they 

are called the hidden nodes, in a as a notation here, we are representing the output of 

node i by y i. So, output of node 1 is y 1 output of node 2 is y 2 output of node 3 is y 3 

and so on. 

A node that connects a a a a link that connects node i to node j will have some weight as 

we said this this is an optic weight, our notation is is w i j. So, link that connects node 1 

to node 4 is w 1 4. So, what does any node do, as we have already seen last class it takes 

a weighted sum of inputs, that is you multiply whatever is the input on this line by that 

lines y weights and so on sum it up and then pass it through an activation function right. 

And essentially by a notation we take up the input layer as special. So, when the external 

inputs come because all inputs into all nodes, we want to organise like this, we think of 

the input layer nodes as simply fanning out nodes. So, for the input layer the output is 

same as the input, right it is just a input port. So, y 1 will be x 1, so that is what is going 

as the input into nodes 3 and 4 in this figure.So, let us say just to get our notation right, 

let us say we want to write the output of node 5, what will be the output of node 5 it is a 

weighted sum, so y 3 into this phase w 3 5 and y 4 into w 4 5. 
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So, if I want to write the output of node 5, I will write y 5 as f 5 that is the activation 

function of node 5, into it is net input which is w 3 5 y 3 plus w 4 5 y 4 right, w 3 5 y 3 w 

4 5 y 4. 
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Now, of course how do I get y 3 and y 4 by the same way, y 3 is it is activation function 

let us say f 3 of it is net input, that is y 1 into w 1 3 plus y 2 into w 1 4 right, you take the 

weight of sum of inputs into this node, pass it through it is activation function you get y 3 

similarly for y 4. 
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So, I can get, I can write y 3 as f 3 of w 1 3 y 1 plus w 2 3 y 2. Similarly, y 4 is w 1 4 y 1 

plus w 2 4 y 2. Now we have already said y 1 and y 2 are nothing but the inputs. So, I 

can substitute. So, the y 5 is a function of the inputs x 1 x 2 where function is given by 

this. So, it is essentially I have summation a sigmoid now, these are composed. So, I 

have a summation and sigmoid and now, on top of that I have another linear summation 

and another sigmoid this is how, by composing summation sigmoids we are building 

more and more complicated non linear functions right. 

Also this tells you why the activation function should be linear because if it should be 

non linear. Suppose, f 3 is linear, then this is some linear function of x 1 and x 2 you are 

multiplying with a constant it will become another linear function of x 1 and x 2 this will 

also become a linear function of x 1 and x 2 you add them up you will get a linear 

function and you apply another linear function you will get another linear function. So, 

ultimately whether you have multiple layers or a single node, it will represent the same 

linear function. So, the activation functions have to be necessarily non linear, we need a 

little more we will see later on just any non linear function you want to. 
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But, this is how we can represent the output of this network; right I hope the notation is 

clear right. 
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So, similarly we can represent y 6 also as a function of x 1 and x 2 right. 
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But, the problem with this way of writing is if I have an arbitrary network with arbitrary 

number of layers, I cannot write it as 1 2 3 4 because I do not know how many numbers 

there are. So, I need some more consistent notation to represent any general network. So, 

first let us start with some general notation to represent a general network. 
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So, this is going to be our notation. So, we have capital L number of layers we will 

always use capital L for the number of layers. So, layer 1, 2, so on as said layer 1 is input 

layer, layer l is output layer everything in between are hidden layers, there can be one or 



more hidden layers it is a multilayer network. So, there can be any number of layers, 

there is the first layer is the input layer, last layer is the output layer everything in 

between are hidden layers, input layer gets external inputs x one x 2, so on. So, within a 

layer first layer has n 1 nodes, second layer has n 2 nodes and so on. So, l’th layer has n l 

nodes that is our notation. 
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So, we have L layers, L is the number of layers, n l is the number of nodes in each layer, 

n l is the number of nodes in layer l and layers go from 1 to l. 
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We take the inputs layer nodes or external inputs, for anybody else the inputs come from 

the previous layer. So, for node let us say 2 in layer 2 the we will represent output as y 2 

2 y superscript 2 superscript 2 denote the layer, subscript denote the number of node in 

that layer. So, a node j layer l will be y l j, y superscript l subscript j and so on right. And 

all weights connect only between layers. So, in for in general if I take a layer l and layer l 

plus 1 there will be a weight, connecting a node j in layer l say node i in layer l to node j 

in layer l plus 1 right all all weights connect only a layer to it is next layer. 

So, we will represent that such weight as w l i j, w l i j connects node i layer l to node j 

layer l plus 1, I only need to do this notation only need to give me, the node number here, 

node number here and this layer number because I know what the layer number where 

the j is because it is a it is a layered network weights only go from 1 layer to the 

immediate next layer. 
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So, let us continue with the notation n l is a number of nodes y i l is output of the i’th 

node in layer l, w i j l is the weight connecting node i in layer l to node j in layer l plus 1 

right all weights connect only from the l to l plus 1 for some layer number l. So, w i j l is 

the weight of connection that connects node i in layer l to node j in layer l plus 1. So, l’s 

go from 1 2 up to capital L minus 1, right w i j capital L minus 1 connects some node in 

layer l minus 1 to node in layer l. So, there will not be any weight, whose superscript is 

capital L because I do not have any l plus first layer, as we represent eta i l as the net 



input to node i in layer l, as we seen net input is nothing but the weighted sum of inputs 

coming to it. 
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So, what does this network represent, it represents a function from inputs to outputs how 

many inputs and outputs we have. 

(Refer Slide Time: 13:22) 

 

The number of inputs is equal to number of nodes in layer 1 by our notation is n 1, 

number of outputs will be number of nodes in layer l by our notation is n subscript l; so n 

subscript capital L. 
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So, this network represents a function from n one dimensional real Euclidian space to n l 

dimensional real Euclidian space right this is our general notation. 
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Now, the input layer as we have seen gets external inputs right that is all the input layers 

job is to find out the external inputs, the outputs of the output layer are the outputs are in 

network. So, in what does this mean, if you want to learn a function from R m to R m 

prime right, then all it means is that n 1 will be m and n l will be m prime. So, if I am if 



we want to represent a learn a function from m dimensional space to m prime 

dimensional space; that means, I need m input nodes and m prime output nodes. 

So, number of nodes in the input layer will be m and number of nodes in the output layer 

will be m prime. The nodes in input layer is just to find out the inputs as we have already 

said right, they do not be any any weighted sum and non linear function computation. All 

other nodes essentially calculate their net input, as weighted sum of inputs that are 

getting and pass it through an activation function to compute their outputs, this is the 

generic structure in which the network functions. 
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So, let us say we represent by capital X the input all the inputs to the network. So, 

because I have n 1 input nodes capital X will have n 1 components will be a vector with 

n 1 components. So, let us say x 1 x n 1 represent the components of capital X which 

represents the external inputs to the network. So, what does the input layer do the input 

layer as we seen is special is only to find out the output. 

So, in layer 1 the output of node i which is y i 1 is simply the i’th input right because 

layer 1 is there only to find out the inputs, we can immediately write y 1 i is equal to x i 

for i is equal to 1 to n 1. Now, what happens from layer 2 onwards, from layer 2 onwards 

units in each layer successively compute their outputs, see once all the outputs of layer 1 

are are computed. Now, inputs to every node in layer 2 are ready. So, now, I can 

compute net inputs to nodes in layer 2 and hence there outputs. 



Once all the outputs of layer 2 nodes are computed now, inputs for layer 3 are ready and, 

so on. So, from layer 2 onwards, units in each layer can successively compute their 

outputs how do they do this. 
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Each unit computes it is net input, as a weighted sum of its inputs right. So, a unit in 

layer 3 will compute it is net input, as weighted sum of all the outputs of units in layer 2 

to which it is connected and the weights of the weighted sum or the connection weights. 

So, once I calculate net input, it is passed through an activation function to get the output 

right. So, for simplicity of notation let us assume that all units with the same activation 

function then. 

So, I will start from layer 1, layer 1 simply its output is simply equal to the input they are 

getting now, each unit in layer 2 compute it is net input and hence it is output, then layer 

3 computes then layer 4 computes all the way up to output layer and once the output 

layer computes the outputs of all these nodes, those are the outputs of the network which 

I can give to the external world. 



(Refer Slide Time: 17:26) 

 

So, output of any typical unit is computed as follows right. So, we take some arbitrary 

unit, let us say unit j in layer l right, how does unit j in layer l computes it is output, as 

we said each unit computes it is output through 2 steps, first you have to compute the net 

input and then the output, what is the net input of unit j in layer l it is the weighted inputs 

you are getting, it is gets all its inputs from layer l minus 1. 

So, essentially is y i l minus 1 right, some node is the l minus 1 layer multiply. So, take it 

is output multiply by the weight, the weight connecting any node i in l minus 1 to this 

specific node j is w i j l minus 1. So, net input into node j in layer l is sum of w i j l 

minus 1 y i l minus 1 where sum is over i and i varies from, i varies over the nodes in 

layer l minus 1. So, i varies from 1 to n l minus 1. So, net input is i is equal to 1 to n l 

minus 1 w i j l minus 1 y i l minus 1 right, that is it is that is the net input of a node in 

layer l. 

Once I compute the net input, I compute the output by passing the net input through an 

equation function. So, this is how any any node typically computes it is solute a if if if I 

want the output of this node. So, it I will look at this output. So, what it is connected to. 

So, those nodes output into the weight of that connection plus the next nodes output into 

weight of the connection and, so on find the net input and then the output. 

Now, of course, in this that input we have not shown any bias input to the which is just 

taking only weighted sum of it is inputs, as we have already said last class each node can 



optionally have a bias right, it is like as we want the linear model to be w transpose x 

only or w transpose x plus w naught normally we need a w naught. 
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So, we can include a bias by adding some b j l for node j at the at the bias in calculating 

that input, very often we do not have to think of this as an extra special edition, we can 

think of bias as an extra input, by writing this as sum over i is equal to 0 to n l minus 1 

instead of 1 to n l minus 1 w i j l minus 1 y i l minus 1. So, compared to this sum, this 

sum because it goes from i is equal to 0 there is only 1 extra term namely w 0 j l minus 1 

into y 0 l minus 1, that term should represent b j l. 

So, for that we take a notation, that w 0 j l minus 1 after all there is no node 0 in any 

layer. So, there is nothing that connects from node 0 to node j. So, it is just a notation w 

0 j l minus 1 represent the bias weight for node j right, w 0 is l minus 1 represent the bias 

weight for node j in layer l right because of the way we put the notation that is how it 

works out and we always take the 0’th node in each layer, so to say, to be something that 

is permanently struck at one. So, we simply think of y 0 l for any any l is simply plus 1. 
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It is like, the same thing this node gets all it is inputs from the previous layer plus 1 extra 

input, from something whose output is plus 1. So, this is like permanently connected to a 

plus 1 supply, right and this weight, weight on this connection is your bias. So, whenever 

we graphically want to show things, we will show the bias input like this right. 
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Algebraically bias input can always be incorporated like this. So, just like when we 

considered augmented feature vector as in considering linear classifiers, we know that 

bias input can always be included like this. So, with with this in mind, we assume that 



bias is included even though we sometimes put the summation from i is equal to 0 

sometimes put it from i is equal to 1, but even if you put i is equal to 1 the idea is that 

whenever we need we can add bias right bias to every unit all right. Of course, units in 

the input layer would not have any bias input because they are they are just connected to 

external inputs and their job is only to find out inputs. So, even it is the first layer will 

not a bias, but all the other layers can have bias inputs, but they can be simply thought of 

as extra inputs through this notation. 
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And notation ally we will always represent it like this, right an extra bias input. 
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So, let us comeback to our general network. So, I hope now things are clear. So, this is 

input layer, this is the output layer, these are the hidden layers, this is for any typical 

node I compute it is net input by taking the outputs of nodes is connected to multiply by 

that weight, sum it up I get the net input pass it through an activation function I get it is 

output, the way network compute input is from the external world we give inputs x 1 to x 

n 1.  

Now, first all the layer 1 units compute the output, which are simply equal to these 

external inputs. Now, all the layer 2 units compute their output right, they compute their 

net input and output by using the outputs of layer 1, once all the layer 2 ones got their 

output then layer 3 starts computing it is output and, so on all the way up to layer l and 

the outputs of the layer l are the outputs that are give out to the external world. 
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So, let us sum it up. So, given x 1 to x outputs are computed as follows, for the input 

layer y i 1 is simply x i and for layers 2 to l onwards I compute the net input n j l for any 

node j in layer l as w i j l minus 1 y i l minus 1 summed over i, i goes over all the nodes 

in layer l minus 1 as I said I just put it 1 here, if I want bias input this simply becomes 

summation from 0, it is output of node j in layer l is simply the net input passed through 

an activation function and because we are assuming the same activation function for all 

nodes I can put f there, this is how the output is computed. So, finally the outputs of the 

l’th layer nodes capital L is the output layer. So, output of the capital L’th layer nodes, 

that is the outputs of the output layer nodes, from the final output of the network. 
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So, the network represents a function from R n 1 to R n l to get a specific function we 

need to learn appropriate weights. So, what are that we have to learn ultimately we have 

to learn w i j l, if I assume that their biases, i goes from 0 to it is a w i j l connects a node 

in layer l minus 1 to a node in layer l. So, i goes over nodes in layer l minus 1 j goes in 

goes over nodes in layer l, l plus 1. So, i goes from 1 to n n l j goes from 1 to n l plus 1 if 

I want to use a bias then I can also go to 0. 

So, w i j l where i goes from 0 to n l if there is a bias otherwise 1 to n l, j going from 1 to 

n l plus 1 because j goes over the nodes in a layer l plus 1 and the l itself goes from 1 to 

capital L minus 1 this is the number of or these are the set of parameters we have, this 

the values if I put values for all these parameters, that determines a specific function, this 

is what I have to learn let put all of that together into some capital W, we can think of 

capital W as a big vector whose components are this of course, we will write the 

components with, so many subscripts. So, that we understand what the components are. 

So, essentially the outputs of the output layer, which are the external, which are the 

outputs of a network are functions of all these parameters, functions of this capital W and 

also functions of the external input x right of course, we do not write it explicitly most of 

the time, in the beginning and a few times then we express in needed it I will write y i l 

as a function of w and x, but whether or not we write it we should always remember, 

there is always a function of the weights of the network and the external inputs. 
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So, let us just quickly look at this notation to understand something that we already 

know, suppose you take a 2 layered network. So, 2 layers then there is only input layer 

and output layer, unless we have only single output problem, right then what will be it is 

output. So, there is only one output. So, I call it y is f the activation function of this node 

of the net input, summation j going over this acts as a m m nodes here, 1 to m w j 1 1 

right from layer 1 to layer 2 connecting node j in layer 1 to node 1. So, these 2 are 1. So, 

whether or I put the 1 it does not matter it is like f of summation j w j x j. 

So, what is it, it is like a perceptron or adaline, if I take f to be a step function, right a 

threshold function, then it is a perceptron, if I take f to be linear it is adaline, if I take f to 

be sigmoid it is like, what we use in logistic regression right. So, a 2 layered network by 

our notation is like a single neuron model and we already know single neuron model, 

many of what we thought many of things that we considered in linear classifiers are all 

single single neuron models. 

So, this is how a. So, a single neuron model for us is essentially a 2 layered network 

because in a 2 layered network, there is no scope of any hidden layers. So, there are only 

inputs and outputs. So, output is simply f of linear sum of inputs, that is what all single 

neuron models are. So, they in our notation turn out to be 2 layer. So, in layer feed 

forward neural networks, 2 layer networks are like perceptron right. 
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So, I need at least a 3 layered network to have hidden layer, in a 3 layered network there 

is a hidden layer. Now, if I consider only layers 2 to 3 it is like a 2 layered network. So, 

this part of the network is like a perceptron or adaline. So, what does that mean, 

essentially if if what will be x m’s for example, I am doing a pattern recognition problem 

these will be the feature values. 

If I have given these outputs of these nodes as feature values, then this perceptron can 

represent, suppose this this particular network represent a classifier I want; that means, if 

these were the actual feature values, then a a single neuron model essentially a 2 layered 

network, could have represented it. So, what a 3 layered network is doing, it is taking the 

actual inputs and then transforming them, right on the hidden layer to some appropriate 

values. So, that now, a simple linear classifier can finish the job. So, we can think of the 

hidden layer, as computing what can be called an internal representation of the feature 

vector. 

So, that now a single unit can complete the a classification or predict the right output 

right. So, we can think of the way these things are doing non linear classification, is we 

said a linear classifier is not good enough. So, what this network is doing is linear 

classification is not good enough only because of the particular way the feature vector is 

represented. So, by transforming this appropriately into some other representation, right 

this may be m dimensional representation this might be a p dimensional representation 



right. So, by appropriately transforming into another representation. Now, a a a a linear 

classifier would do because these 2 layers now, together are simply a 2 layered network. 

So, we will come back to this notion, but it is good to remember, that what the hidden 

layer is doing is computing an internal representation. 
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So, let us consider how do I train this networks to represent a function of interested. So, 

in all like a like all our pattern recognition we are first looking at the regression problem, 

we are not looking at the classification problem let us say, let us first looking at learning 

in a regression problem. So, given training data, all the while we are taking X i y i as the 

training data, X i as the input vectors, y i as the target values, but in this notation we are 

used y’s for representing the outputs of specific nodes. 

So, the training data we will think of x n x i and d i where d is because we can think of it 

is a desired output, essentially this training example means when I give you input X i the 

network should ideally say d i because d i is the desired output for that. So, let us say we 

think of X i d i I going from 1 to N as the training samples, we put the i in the superscript 

because now we have been, specifically need to look at the components of these vectors. 

So, then we can use the subscripts for the components. 

So, that is what we are going to do. So, X i is a vector with m components. So, it is an R 

m. So, this superscript denotes the index of the training training vectors. So, X i is the 

i’th training example, each training example input is a vector with m 1 components and 



let us say the desired output is also a vector of m prime formula, meaning I am giving 

you pairs of vectors the the input part in m dimensions, output part in m prime 

dimensions. 

So, I want you to learn a function using these examples, which is from m to m, if m to m 

is 1 is the usual regression function, learning problem if m prime is greater than 1 we 

simply mean that we are learning a vector valued function. So, given X i d i are the 

training data X i in R m d i in R m prime, we want to learn a neural network that can 

represent this function. So, just like a least squares and, so on now we have to train the 

neural network meaning I have to learn the weights for this. So, how do I do that, I want 

to learn a function from R m to R m prime. So, I need m input nodes and m prime output 

nodes, right that much I already know. 
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So, we use some L layered network with n 1 is equal to m and n l is equal to m prime. 

Then what do I have to fix I to fix what is the capital L how many layers I want then I 

have to fix the number of nodes in all the other layers, the first and last layer I know how 

many number of nodes because I have to learn a function from R m to R m prime, but n 

2, n 3 all the way up to n l minus 1 are the number of nodes in the hidden layers and I 

can fix it to be anything. 

Let us say I somehow fix it, right now we will think of it arbitrary we will we will look at 

some guidelines later on, but really there is no correct ways of determining this, this is a 



part of the parameters of your model, which you have to just choose. So, we will choose 

some number of layers and some hidden nodes for each layer of course, we assume that 

all nodes, in all layers including the output layer use the same sigmoid activation 

function right as I said that is our notation now. 

Which essentially means, the outputs of the output nodes, can be only between 0 and 1 if 

I am using sigmoid, if I am using tan hyperbolic it can be only between minus 1 to plus 

1. Now, of if I am giving an arbitrary function how can I represent it if my outputs are 

only can vary only between 0 and 1. So, we either assume that d i are between 0 and 1 

we can easily scale the outputs of the training samples or we can linearly scale the output 

node, right we we can multiply the sigmoid with any constant we want. 

So, that instead of going between 0 to 1 it can go from 0 to k for any k or 0 to some m for 

any m of course, if you want the outputs to have both signs, we can use tan hyperbolic or 

we can simply use a simple linear activation function for the output nodes, we can do any 

of these to take care of the the output of the network being having the same dynamic 

range as d i’s. 

So, we will just without worrying about it we will assume that we will do the something 

like that but right now we will assume that we have an activation function f which in the 

in a specific case may be linear may be a a sigmoid with some extra constant and so on 

for the output layer alone, just because the output layers of outputs how to be able to 

represent all the numbers in going over the range that d i takes. So, so now, with this 

small comment we would not bother about this anymore. 
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Let us say y l is the vector that denotes the output of the network. So, it is component are 

y 1 up to y n l because there are n l nodes the output nodes. So, that is the vector, of 

course, we as I said we should actually right as that is y l w comma X or y i l W comma 

X and, so on. So, only when we need it we will write it, we will remember that the 

outputs are all functions of the weights and the input. 

So, now, we can think of it in the risk minimization framework as follows, in the risk 

minimization framework we have a hypothesis space h, then we choose a convenient loss 

function and we were searching h to find a hypothesis, to find a function that minimises 

empirical risk with respect to the chosen loss function. So, we fix h by fixing the 

architecture of the network. So, we fix the L we fix n l and. So, on that essentially fixes a 

class of function that can be represented now, by changing all the weights. So, having 

fixed h, we know now this hypothesis space is parameterised by W, W contains all the 

weights in the network. So, what do I have to do now, which choose a loss function and 

learn the best W by minimizing empirical risk with respect to that loss function and for 

neural networks we will choose the squared error loss function, just like in the least 

square sense, here also we choose the squared error loss function. So, where does this 

take us. 
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So, you know what is the empirical risk now, given any W and if I have n examples n 

training examples, then my empirical risk is R hat n W as that is the notation we 

following earlier is 1 by N summation over i, i is equal to 1 they are n examples W by l 

W comma X i is the output of the network, right is the vector output of the network on 

input X i the desired output is d i. 

So, y l W comma X i minus d i is the error i square it because these are vectors I have to 

take the norm and square it and that summed over all samples and 1 by N gives me the 

empirical risk with respect to the squared error loss function, right what norm should I 

choose I can choose Euclidian norm. So, this norm square now, expands to sum over j 

over the components of the output they are m prime outputs right. So, y j l W comma x i 

minus d i j whole square right this d i j is the j j’th component of the desired output y l j 

is the j’th output of the network y l j of course, is the function of the weights in the 

network and also X i. 

So, the what is it the inner parenthesis this big parenthesis, is the error between the 

output of the network sphere error, between the output of the network and the desired 

output when I use the training example the i’th training example right. Now, sum it over 

all the training examples and divide by 1 by N that gives me the empirical risk with 

respect to squared error loss. So, this is the function of W this is what I want to 

minimize. 



So, ultimately given X i d i i I want to find a W to minimise this function, right 

minimizing this function we know that this 1 by N is of no consequence, that constant 

makes no difference to the minimization and instead of 1 by N I may want to use 1 by 2 

because when I want to minimize ultimately I may have to take a derivative if I take a 

derivative this 2 will come out. So, not to carry that extra unnecessary extra factors I can 

cancel that 2 in when I differentiate by choosing a one by 2. So, instead of minimizing 

this I can as well minimize 1 by 2 of this the rest of the expression right. So, that is what 

we did even in linear least squares. 
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So, because it is no longer actually equal to empirical risk it is only proportional to 

empirical risk, we use some other symbol. 
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So, minimizing finding a W to minimise this, is same as finding a W to minimise this j 

W. So, now, I am writing j W see this has 2 summations, sum over the example of the 

errors, then errors themselves are the Euclidian distance between the output of the 

network and the desired output. So, we will brought you the whole thing up the errors 

per example into one symbol. 
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So, I can write, what I want to find as you find a W to minimise J W which is summed 

over example J i W, where J i W I write as half of J is equal to 1 to m prime this phi 



right, the only difference between this and this expression that i have taken this 1 by N 

and put a half there, only thing is this half I pushed into the first summation and called 

the term inside the first summation as J of i. So, essentially I am minimising this I may I 

am finding that W to minimise this, where each J i is given by this. 

So, what is J i, J i is the square of the error, actually half of the square of the error the 

input that half, but any half of the square of the error, between the output of the network 

and the desired output for the training example. So, I have just when I want distance I 

have taken Euclidian distance, that is why this sum comes. So, this square of the error 

between the output of the network and the desired output and you sum it over all 

examples and that is what you want to minimise. 
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How do I minimise we already know we have used it in the in the linear case, linear case 

also we had a similar thing, only thing is this is much simpler expression and what did 

we do use for example, in for the LMS algorithm we used a gradient descent right we 

can still do the gradient descent, say unlike in the least squares we we cannot, we cannot 

use linear algebra here because these are all some arbitrary non linear functions we 

cannot analytically solve them, but we can certainly use gradient descent. 

So, one way of minimising j is to use gradient descent. So, if I want to use gradient 

descent I know what my algorithm is it, is an iterative algorithm. So, my parameters at 

iteration t plus 1 are given by parameters at iteration t minus lambda times of gradient of 



J at W t right, given the current values W t I find the gradient of J at the current value of 

my parameters and moving move a small distance, in a negative gradient direction right 

because I want to minimise. 

So, this is my algorithm, components of W or W i J l components of gradient or del J by 

del W i J l. So, in the component equation this will be W i J l of a t plus 1 is W i J l at t 

minus lambda times dou by dou W i j of capital. So, this is my gradient algorithm. Now, 

we know that j is sum of J i. So, gradient of J is sum of gradients J i. So, I can write 

gradient of J as summation i is equal to 1 to n gradient J i within bracket W t simply 

means that of course, I have to use, because iterative algorithm I have to evaluate the 

gradients as the current value of parameters right. 

T is the iteration count and gradient descent has a step size parameter lambda I am using 

a constant step size I would not be doing any line such and as you know, if I use a 

constant step size gradient descent I have to keep this step size very small for you to 

converge, but this is my algorithm norm that is all. 

(Refer Slide Time: 43:25) 

 

If I have to actually consider 2 layered network with a single output node with a linear 

activation function, this is exactly LMS algorithm, this is what we did in LMS algorithm 

right where the J i is simply W transpose x minus y whole square right. So, if I had used 

a 2 layer network, with a single output node, then this is exactly the gradient descent that 

is the LMS algorithm, in that case there is quadratic function of the weights and that is 



why we can always learn good weights, but now J is a W is firstly, high dimensional 

there are, so many layers between every pair of layers there are, so many weights. 

So, the number of weights would could be very large, we can make a rough estimate 

suppose I have got a 50 dimensional say 100 dimensional feature vector. So, there will 

be 100 nodes in the input layer, let us say I have put 100 nodes in hidden layer and 1 

node in the output layer, how many weights are there, each of the 100 nodes in the input 

layer, how do we connect it to each of the 100 nodes in the output hidden layer. So, that 

is 10000 weights. 

So, number of weights will grow pretty fast. So, in general J w is a high dimensional non 

linear function, high dimensional meaning it is input is a high dimensional vector of 

course, J is a real valued function. So, minimising J is actually gradient descent in a very 

high dimensional space and J is also non linear function. So, gradient descent can only 

give us a local minimum right of course, our J W is roughly same as our empirical risk, 

but we want to find the global minimize of the empirical risk to do well, well this is a 

non linear problem just because we want global minimum we may not be able to get 

global minimum. So, very often the best we can do is to get a local minimum. So, we 

will settle for it we are using gradient descent, we know we get a local minimum, but you 

know that is possibly very often the best we can do, so thus what will do to along this 

networks. 

  



Also for the gradient descent we need J to be differentiable right, essentially what is 

there inside J is J a while inside J a is pi minus d i whole square. So, essentially if y is 

differentiable that is good enough, differentiable with respect to weights y is the output 

of the nodes, it will be differentiable with respect to weights, if the activation function is 

differentiable, right y is f of summation. So, summations are anyway differentiable. 

So, just the question is whether or not the activation function is differentiable for 

example, if I use threshold activation function like in perceptron, it would not be 

differentiable, but if I use sigmoid it is differentiable. So, we will simply take the 

activation function to (( )) a sigmoid of course, we would have taken tan hyperbolic and 

many other differential functions are there, but we we we simply for now, assume that it 

is always a sigmoid of course, it really does not matter we will always use f as the 

symbol for activation function. So, but if we want any specificity we simply think that 

we are using sigmoid activation function, any case for using gradient descent we want 

our activation function to be differentiable. 
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So, now if the algorithm completely specified, almost completely specified. If we can tell 

how to derive the expressions for the functions of gradient of J of course, it is a 

complicated network. So, unless we have some nice expressions at least, we may not 

even be able to numerically complete gradient or may not be able to complete gradient 

efficiently. So, what is that we want actually in terms of the individual weights as we 



said w i j l t plus 1 w i j l t plus gradient del J where del w i j j is summation J s. So, it is 

summation over s, as a equal to 1 number of examples dou J s by dou w i j by l. 

So, essentially for any one input any arbitrary input I put at the input of the network I 

calculate the output and hence calculate the error between output of the network and the 

desired output, that error is J s I need to know how to find the derivative partial 

derivative of error for anyone training example, with respect to any weight in the 

network that is all I need right of course, given this expression, we can immediately see 

that like in the LMS case, we can either have a batch or an incremental version of the 

algorithm right. 

So, if I give examples one by one at the input calculate the outputs find the errors, find 

the derivative for each of them at the same W and after finishing all the presenting of all 

the n samples once, then I update the weights, that is the batch node right. Otherwise I 

can present one input immediately calculate the output for that error I can calculate the 

gradient and then immediately update the weights and then go to the next thing, then that 

is an incremental version as we have seen in case of perceptron and in case of LMS we 

seen the batch versus incremental version all of them come only because your iterative 

algorithm has a summation over examples of the gradient right. So, it is a question of 

whether at the same value of W you calculate I present all the training examples one by 

one and only then update W’s or update it immediately after each training example. So, 

the same issues of batch versus incremental come here also. So, let us not go into them. 
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So, what is that we have to do now we have to calculate the partial derivative of the 

square of the error, for any one training sample, with respect to any weight in the 

networks because if I can calculate for one I can calculate for each of the others right. So, 

that is the computational one. As it turns out because the structure of the network there is 

a very efficient way of doing such computation, that is the reason why we we are going 

into, so much details here. So, we will do it for any one training example. So, let us not 

make any explicit mention of the specific training example, now. 
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So, let us say the output now is y 1 L y n L and we said desired output is d 1 to d n L we 

are not putting any superscript on d because I can ultimately put what is superscript I 

want, but basic computation involved is present one input at the input at the network, 

calculate the output find the error with respect to the desired output and then find all the 

derivatives, right if I can do it for one training example I can do it for all of them. 

So, take any one of them. So, now, we will define a J without any subscripts actually this 

is like a J s there is I am only finding error with respect to one example, but this is this is 

what we need to find given this J y j L minus d j whole square, right we need to find the 

derivatives of J with respect to each of the weights, we need partial derivatives of J with 

respect to each one of the w i j L’s. 
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Now, let us ask any weight w i j l how can it affect J, it can J is a only dependent on the 

final output of the network and any weight inside can only affect the final output. So, 

how does the affect the final output, it can affect the final output only through what it 

contributes to the net input in the next layer, this is the w i j l this weight, this weight 

only contributes to the net output of only the j’th node in the l plus first layer. The only 

way this weight can effect what happens at the output is by it is effect on the net input to 

this one particular node and nothing else right. 



So, w i j l can effect J only through it is affect on n j of l plus 1 because w i j l connects 

from l layered to l plus first layer. So, w i j l can affect the output only by it is affect on n 

j of l plus 1. 
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Which means using chain rule of differentiation I can write del dou J by dou w i j l dou J 

by dou n j l plus 1 into dou l j l plus 1 by dou w i j l because I know that the only way w i 

j l affects capital J is through this net input to node j l plus 1. Now, this second part is 

easy to evaluate, why we know n j l plus 1 net input to node j layer l plus 1 comes from 

layer l’s outputs, so w s j l y s l as going from 1 to n l.  

Now, if I want derivative of this with respect to w i j l all the weights in this of j at the 

second index. So, only one time in the summation, namely when s becomes equal to i 

will contribute to the derivative and then the derivative is simply y i l. So, given this 

expression for n j l plus 1 I know that dou n j l plus 1 by dou w i j l is y i l. So, this 

second time is y i l I do not know what the first term is let us first put a symbol for the 

first term. 
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So, let us say delta l j is dou J by dou n j l of course, what we wanted is in that expression 

is dou J by dou n j l plus 1. So, that become delta n j l plus 1, but we are defining delta j l 

as dou J by dou n j l right. So, earlier we had dou J by dou w i j l is dou J by dou n j l 

plus 1 dou n j l plus 1 by dou w i j l. So, I can write this as delta j l plus 1 into y i l. So, y 

i l is very well known. So, known everything boils down to calculating delta j l plus 1 for 

various l’s. So, if I can calculate l’s I can calculate all the del these deltas I can calculate 

all the partial derivatives. 
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And this is what we had, now this we can calculate recursively delta j l by definition is 

dou J by dou n j l and I can always write it using chain rule as dou J by dou n s l plus 1 

dou n s l plus 1 by dou n j l. 
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Why I want how the final output gets affected by n j. So, n j n j l is what is coming into 

this this node, what is coming into this node can affect the final output, only in terms of 

what goes out of this node and what goes out of this node can only compute only 

contribute to the net inputs of all the nodes in layer l plus 1. So, the only way this n j l 

affects capital J is through all the n s l plus 1’s. So, by chain rule of differentiation partial 

differentiation is s equal to 1 to n l plus 1 dou J by dou n s l l plus 1 dou n s l plus 1 by 

dou n j l because what is coming into this node affects the final output, through it is 

affect on the net input to each of the nodes in the layer l plus 1. 
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So, I have this now I know how to do this n s l plus 1 dou n s l plus 1 I can write dou n s l 

plus 1 by dou n j l. 
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The only way the net input into this node, affects net input of any of these nodes is 

through the output right. 
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So, I can write n s dou n s l plus 1 by dou n j l in terms dou n s l plus 1 by dou y j l right 

and dou y j l by dou n j l this I know what it is this simply y j to n j connection is in terms 

of the activation function. So, this is nothing but the derivative of the activation function. 

n s 2 y j connection you already know n s is a sum over all the y j l’s n s l plus 1 sum 

over all the y j l’s. So, I know how to calculate this partial derivative and this by 

definition is dou s l plus 1. 
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So, this is dou s l plus 1 this as we this is easy to see because if I am asking what is n s l 

plus 1 which is this y into this weight, this y into this weight right. So, if I want partial 

derivative with respect to the y’s, I get the corresponding weight. 
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So, that partial derivative is nothing but w j s l and this is f prime. So, I can calculate dou 

j l if I can calculate dou s l plus 1 for every s. So, this is the recursion right. 
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So, all partial derivatives are given by this and for weights I need this for l is equal 1 to L 

minus 1. So, I need to calculate deltas for 2 to L if I can calculate delta j l for l is equal to 

2 to L I am done right. 
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I have this recursion formula. So, I have to first compute for capital L delta j l that is 

small l is equal to l minus 1 is what I have to compute first right. So, that is the only one 

for which I do not have a recursion formula. So, that is where the recursion has to end. 

So, let us try to calculate it delta j capital L that is dou capital J by dou eta j l this is easy, 

because J is given by this. 
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So, differentiate this with respect to the weights. So, dou J by dou n j L will be that half 

will cancel. So, dou J by dou y dou y by dou n j this is nothing but y j minus d j into f 

prime right. So, this I can calculate for each node in the output layer. 
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Once again calculate it for each node in the output layer, then we can calculate delta l’s 

for all the remaining nodes, recursively right, because we have just derived the recursion 

formula right then. So, what does that mean, we compute all the partial derivatives right 

because once I know the deltas for all the output layer nodes, then I can I know delta j l. 



So, if I put little l is equal to l minus 1 here, then inside here I need delta s capital L for 

various s that I already know. So, I can calculate delta j capital L minus 1 for every j 

once, I know that I can calculate delta j capital L minus 2. So, that is why I am saying l is 

equal to L minus 1 l minus 2. So, on I can do all this calculation right. 

(Refer Slide Time: 58:14) 

 

Then I can calculate all the partial derivatives and hence I can do the weight updates of 

course, I have which we shown it for one input, we have to do it for all inputs. So, this is 

essentially the learning algorithm for the network. So, we will start from here and look at 

why this is efficient, why this recursive comparative delta j’s give us efficiency in the 

next class. 

Thank you. 


