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Overview of Artificial Neural Networks 

Hello and welcome to the next lecture in this course in Pattern Recognition, for the last 

few classes we had been discussing ideas on statistical learning theory, and how one 

gives performance guarantees for learning algorithms or how one can bound the 

generalization error of a learning system. So, specifically we have seen you know the V 

C theory, so just to recap in two sentences, we looked at some ideas from statistical 

learning theory. 
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And the basic thing that we have introduced is the, so called risk minimization 

framework, whereby we essentially have a hypothesis space which represents some class 

of functions from the feature space to reals. And we evaluate each function or each 

hypothesis in terms of risk which is expectation of loss, so we seen that the risk 

minimization frame work gives a very good perspective on learning from examples, and 

it allows us to look at all the various learning algorithms under single unifying theme. 

So, now that we have this perspective, now we go back and look at learning algorithms 

again, how to learn pattern classifiers some examples and also regression functions, and 



examples, but this time we will be discussing things a little bit more in the risk 

minimization frame work. So, we have already discussed before we discussed statistical 

learning theory, we already studied some methods for learning linear classifiers and 

linear regression models. So, I will very quickly review because in some time I will very 

quickly review the algorithm for learning linear models, and then move on to learning 

non-linear models. 
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So, in the two class case a linear classifier as we now is given by sign of W transpose X 

plus W naught, so we have to learn this W and W naught to learn a linear classifier this is 

a two class case, we also see in the multiclass case, but let us not worry about it is just a 

review. Specifically, we also said this is important for us, that we can think of a linear 

classifier also as W transpose phi X plus W naught where phi X is some sort of m 

functions of X phi 1 X up to phi m X. 

So, this also such a model can also be learnt using the standard linear model learning 

techniques as long as these phi’s are fixed, so if the phi’s are prefixed functions then this 

is still a linear model, because they are linear in the parameters to be learnt. Phi’s can be 

non-linear functions of X, but does not matter as long as they are fixed the only things 

we are learning are the parameters, and the this W transpose phi X plus W naught it is 

still linear in it is parameters. So, linear models will still work for example, we seen how 



we can think of simple linear least squares method for learning any degree polynomial 

function. 
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There are many algorithms we are learning the w, the first and the simplest we 

considered is the perceptron algorithm that is the simple error correcting type algorithm. 

And it guarantees to find a separating hyperplane if one exists we are still discussing two 

class case, actually we showed that is we proved a perceptron convergence theorem, that 

shows that given any training set of linearly separable patterns. Starting with any 

arbitrary initial W if you run the perceptron algorithm, we ultimately stop after some 

finite iterations and output is separating hyperplane. 

Now, actually this might be a good example of asking what is it that the statistical 

learning theory gives you, what the perceptron convergence theorem says that give me 

any training set of linearly separable patterns, I will find a separating hyperplane, that 

separates the training examples. So, if I give only two patterns also it will find a 

separating hyperplane, if I give 20 patterns also it will find a separating hyperplane, if I 

give 200 patterns also it will find a separating hyperplane. 

So, let us assume the class linearly separable, so all examples will also be linearly 

separable, but the separating hyperplane, it finds on 2 patterns may not be same as what 

it finds on 200 patterns. Obviously, if you give very few examples I may learn a 



separating hyperplane that separates the examples, but may not separate the pattern 

classes. 

So, the statistical learning theory is that we have studied tells us how many iid examples 

we should have, before we can be confident that the hyperplane that separates the 

examples, we will also do l n test and all. For example, in this particular case we know 

the family of hyperplanes in our d the d dimensional equivalent space as we see 

dimension d plus 1. 

So, as a thumb rule we need at least 10 times the examples before a hyperplane that 

separates the examples is also very likely to separate the pattern classes, so that is the 

two (()) we first need an algorithm that does well on the examples. So, for example, the 

perceptron algorithm does well and as shown by the perceptron convergence theorem, on 

the examples it does well in the sense it separates the examples, then we have enough iid 

examples. 

Enough depends on the d c dimension of the hypothesis space we are considering and in 

this case the hypothesis space is the set of hyperplanes and we know the d c dimension, 

we have seen how to calculate the d c dimension further. So, given the d c dimension the 

statistical theory tells us, that if I have sufficient number of examples then a hyperplane 

that does well on examples iid examples will also do well on the test data. 
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The other main algorithm we considered for learning linear models is the least squares 

method, least squares method simply minimizes this function of W. Here, for simplicity 

of notation we have gone back to the augumented feature vector, I hope all of you 

remember that instead of writing W transpose X plus W naught, we can simply write as 

W transpose X by having W naught as the first component of W and putting a first 

component of 1 in each X, thus called the augumented feature space representation. 

Now, of course, in the least squares algorithm we considered earlier this 1 by n was not 

there, actually we put a half to cancel these two when we differentiate, but any constant 

here does not change the minimizer of W and minimizer of J. So, we can think that least 

squares method actually minimizes thas why do we write it like this, this is very much in 

our risk minimization framework. 

Now, our hypothesis space is a set of all function that is completely represents W 

transpose X, so it is parameterized by the vector W and what we are minimizing, now 

this is nothing, but the empirical risk for the squared error loss function. So, this is the 

output of my function this is h of X W transpose x, h i this is y i, so my loss function is h 

X i minus y whole square, so I am using the squared error loss function. Then J is the 

empirical risk and a squared error loss function, so what least squares method is doing it 

is doing empirical risk minimization and squared error loss function that the hypothesis 

space of linear functions. 
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We have seen how to obtain the least square solution that turns out to be A transpose A 

inverses A transpose Y, where A is the matrix whose rows are the feature vectors and Y 

is the vector whose components are y i. And the least squares method can as easily learn 

linear regression models, the only difference between the classification idea and the 

regression idea is that, when you are learning a regression function the y i’s are real 

value. If you are doing the two class classification y i’s are binary valued, if I learning a 

general function y i are real value, except for that we still will be minimizing the same 

squared error and this is the least square solution. 
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We also seen that we can minimize the empirical risk which is same as J W using 

gradient descent, and we also seen that we can run this gradient descent in incremental 

fashion, one example at a time rather considering the entire gradient. And that gives us 

one more classical algorithm what we call the L M S algorithm, and the added line just 

like perceptron that is also a very classical model up to linear element and that is nothing, 

but minimizing the empirical risk, in gradient descent using an incremental version we 

seen that also. 
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And we also seen that least squares method can be learnt to can be extended to learn a 

model g of W transpose X, for in some function g rather than J’s W transpose X. What is 

the utility of this if I am learning any function of X here in as much as this empirical risk 

is a good approximation with expectation, if this is expectation of some g of X minus y 

whole square. 

Then the best function is the conditional expectation, so if I mean a classification 

problem with y i’s represented as 10, then we saw that this is the best function the 

conditional expectation is nothing, but the posterior probability. So, minimizing this it is 

trying to learn a learn a posterior probability of function learn a proper function of X, 

that gives me the posterior probability of class one for X and we are modelling the 

posterior probability by g of W transpose X. 

Earlier if you just choosing W transpose X we are trying to model the posterior 

probability by linear function, which is not a very nice model, so sometimes if you 

choose a right g in g of W transpose X i is a nice model class of posterior probability and 

by linear least squares method. We can learn the proper posterior probability function 

and hence the proper classifier, as we seen an important example of this is the logistic 

regression, where g is taken to be the sigmoid function. 

So, in that case of course, because of the g here we can no longer use the simple linear 

algebra method of getting a close form expression for w, but we can still minimize this 



using gradient descent. So, generally when we use logistic regression, we minimize J by 

gradient descent or an incremental version of gradient descent. 
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Another important method that we consider for learning linear classifiers is the fisher 

linear discriminant, where the idea is that we look for a direction W. Such that when the 

patterns of the two classes are projected onto this one dimensional space represented by 

W, then the two classes are well separated, well separate in the sense the distance 

between means is large relative to the individual variances. 

Starting with such a objective function, we seen how to obtain the fisher linear 

discriminant and we also mentioned that such a linear discriminant, can be thought of as 

a special case of linear least squares method of learning a regression function with 

special target values. Normally, when I am learning a two class classifiers think of the 

target values are binary we shall think of them as binary. 

I mean they are still true values, but if I take some special values then as we seen fisher 

linear discriminant can be thought of as a special case of linear least squares, so it is 

essentially a linear least squares method. So, these are all the set of methods that we have 

at our disposal for learning linear models, many of them are very efficient many of them 

are reasonably good and depending on the problem depending on what you want to learn 

we can use any of them. 
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But, the problem is all of them learn only linear models, because learning linear models 

is generally efficient these are all nice algorithms for example, linear least squares has a 

nice close form expression, it just involves one generalized inverse of a matrix. 

However, linear models may not be sufficient, if i have a if I have data X i and y i and 

want to model the function model the function relation between y i and X i. y as some 

function of X a linear function may not be the best fit for my data, so the best linear 

function may still be a poor fit right then what do we do. 

We discussed this right in the beginning of the course when I was giving you a general 

overview over the courses and there we have kind of intuitively identified at least three 

broad approaches to learning non-linear classifiers. What are they, the first one is say just 

like we have linear least squares on linear functions, linear functions are very simple I 

can always write them as W transpose x. 

So, we need a similar way of parameterizing a sufficiently good class of function, the 

problem with non-linear functions is non-linear function is any function that is not linear, 

linear functions have a very nice structure. So, linear functions we know how to 

parameterize, but non-linear functions are a very heterogeneous class, so if we can find 

some good way of parameterizing a sufficiently large class of non-linear functions. 

Then once again possibly we can use a squared error loss function and minimize 

empirical risk over that family of functions to learn a good non-linear function. So, one 



approach is to look for methods whereby I can get a good parameterizer class of non-

linear functions, and over that parameter over that class of functions ask are there some 

efficient ways of minimizing empirical risk let us say under squared error loss function. 

The second approach is to say next best to linear is piece wise linear, so try and 

intuitively breakdown the feature space, not intuitively find some algorithm to 

breakdown the feature space. So, that within each part of the feature space I can learn a 

linear model, so I have to learn the partitioning of the feature space and the appropriate 

linear model together, they are not independent problems. 

And this way of looking for piecewise linear models is another approach to learning non-

linear models, best exemplified by this, so called decision tree classifiers, which we may 

or may not consider in this course. And the third approach is the kernel the kernel 

function based approach where the basic intuitive idea is that, I first non-linearly 

transform my feature space into some other high dimensional space, and there learn the 

learn a linear function. 

As, we have seen what is non-linear in the original feature space can be linear in some 

other high dimensional space. So, if I can find an efficient way of transforming my 

original feature space to a high dimensional space and learn a linear function there, then I 

have learnt the non-linear function towards a feature space these are the three broad 

approaches. So, first we are going to consider the first approach, learn using a good 

parameterized class of non-linear functions, and that is called the neural network models, 

so that is what we are going to discuss next. 
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So, what the neural network models give us basically, as I said we need a good 

parameterized class of non-linear functions to learn non-linear classifiers. So, we are 

looking at what is a good parameterized class of non-linear functions and the, so called 

artificial neural network models are one such class. Here, non-linear functions are built 

up through function composition of the functions of finding linear sums and passing it 

through a non-linear function such as a sigmoid function, so I keep composing this 

operation of finding linear sums and passing through a non-linear function again and 

again. 

And that is how I build up many non-linear functions we will see all the details, you this 

is this models are useful both for classification regression as a matter of fact that general 

models on non-linear functions. So, essentially what they do is learning a function given 

examples X i y i how do i represent y i as a function of X y as a function of X is why 

these models are for as we seen even though classifier is a binary valued function still a 

function so we can still use a general function learning method to learn classifiers also. It 

is in that sense actually this is a regression function learning model, which is also useful 

for classification. 
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Artificial neural network models are pretty varied they are they are they are they are rich 

class of models, for this course we will study only what are known as multilayer feed 

forward networks as these provide the kind of parameterized class of non-linear 

functions that we are interested in. They offer a good parametric class on non-linear 

function and there are some efficient algorithms to learn them, so essentially they are 

useful for pattern recognition regression. 

So, that is the only kind of neural networks that we consider, but having said that the 

neural network models themselves are developed historically, some other motivation the 

original motivation not just to find a good parameters class of non-linear functions. 

While, that is there actually the entire field neural network developed, through somewhat 

of a different stand point basically the development was motivated by some ideas on the 

structure of human brain. 

That is the reason why these are called neural networks as you know what we have in our 

brain are called neuron, that is the basic computing element in the brain and these 

artificial neurons are somehow trying to model the structure of human brain at least that 

part of the structure of human brain which may be useful for computation. So, 

historically that developed as an approach towards engineering intelligent machines, 

while, that view point may not be strictly relevant to us. 



Since, you are studying these models it is always good to look at that, so what I am going 

to do in this class is I will briefly present you this perspective of how neural network 

models have come up as an approach towards engineering intelligent systems. So, this is 

a kind of general introduction to the entire set of model that go under the under the rubric 

of artificial neural network models. As, I said we would not be studying all these models 

there is this sub class of models there, we will be only studying one particular kind of 

models which are useful for pattern recognition ultimately, but in the introduction we 

will look at the neural network models as an approach to engineering intelligent systems. 
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So, from this point stand point we can define an artificial neural network as follows we 

will start with a general textbook based definition, we think of neural networks as a as a 

interesting computation paradigm. Like as opposed to the standard digital computer 

stored program digital computer method that we know of computing, which possibly 

whose generic abstract model is a turing machine. 

As, opposed to that we think of a slightly different way of looking at computation, so one 

way you can define artificial neural networks is a parallel distributed information 

processor. It is a information processor say it is a kind of computing machine, which is 

both parallel and distributed. And it is made up of very simple processing units it is 

parallel in the sense there are many processing units, but each processing units not very 



complicated it does not have for example, huge stored program capability it can only 

represent very simple input output function, but there are many such processing units. 

So, it is a parallel processor made up of large number of simple processing units and as a 

whole it has propensity to acquire knowledge through experience, so basically that is 

what is useful for us because as we seen all of machine learning is about learning from 

examples, almost a machine learning is about learning from examples. So, a computing 

paradigm which puts learning as the constrone of all problem solving is important to us. 

So, that is that is how the original artificial neural networks are thought of parallel 

distributed information processing processor, contains large number of simple units and 

has a has a propensity for acquiring problem solving knowledge through experience. So, 

what is it characterized by large number of interconnected units, each unit implements a 

very simple function may be a non-linear, but very simple it does not have much of 

stored program capability a simple input output relationship is all it has. 

The units are interconnected as we shall learn them each of the interconnection has some 

weight or strength some parameter associate with the so they are called interconnection 

strengths. And much of the knowledge resides in the interconnection strengths by 

knowledge, we mean it is ability to solve a problem comes because of the 

interconnection strengths not because of the individual processors input output function. 

Process input output function is very simple, but it is the interconnection strengths that 

can program or make the machine learn to solve a particular problem, so the problem 

solving ability is often through learning. So, it is quite distinct from the way normal 

digital computing machines are looked at, where the knowledge resides in the programs. 

So, to say by executing a precise sequence of operations and the particular precise 

sequence is where the knowledge resides. 

That is how a a generic digital computing machines solves a problem, because here we 

have large number of units, they are interconnected each interconnection has a strength 

each unit itself is very simple, but this interconnection is what gives it the ability to solve 

a particular problem or represent a particular function. This is say somewhat of a 

different architecture, it does not look like the standard computing architecture the reason 

why such architecture were at all thought about is because they are inspired by the 

structure of the brain. 



While, we may still may not know fully exactly how our brain gives us all the 

capabilities that we have, lot is known about the structure of the brain and it is quite 

distinct from the standard stored program computer architecture that we have. What is 

the structure of the brain? 
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In the brain in the human brains neurons are the basic computing units, our brain is 

nothing, but a highly organized structure of interconnected networks of neurons. Now, 

what does each neuron do of course, there are many different kinds of neuron, but for our 

purposes we can ideally visualize a neuron like this. Neuron is a cell a biological cell, it 

is a cell body and it has input and output terminal, so to say, so there is one process thing 

sticking out of the neuron, which is it is output terminals, so to say it is called an axon. 

And it has many inputs coming they are called dendrites, so on the dendrites axons of 

other neurons come and make connections, these connection points are called synapses. 

So, whenever a neuron fights let us say essentially when the when the the neuron at it is 

resting is at roughly minus 40 milli volts from the surrounding medium, and for some 

reason if the neurons potential increases above some threshold. Then the neuron fights 

what is called an axon potential, it is essentially of of a travelling wave of ionic current 

which is let out through it is section. 

So, if the potential goes above some threshold briefly the neuron fights is called a spike, 

which is a kind of a ionic current that travels down the axon, when it travel down the 



axon the axon then branches out or what is called arborizes, and makes connections with 

lot of input terminals sort of other neurons. That generates of other neurons is such a 

connection is called a synapse, at the synapse because of this axon fights ionic current 

part of that ionic current comes and injects some potential into the receiving neuron at 

the synapse. 

Now, the synapses are on the dendrites and dendrites make a big tree structure on one 

side on the neuron, so different synapses can be at different distances from the cell body, 

the soma and synapses can be of different types. So, because of that the amount of 

charge injected at a synapse will have different affects on the surface potential of the cell 

body of the receiving neuron. Now, so each of these injected potentials contribute a a 

part to the surface potential of the receiving neuron cell body. 

So, we can think that the incoming signal is multiplied by some connection weight of the 

synapse, and that is what gives us the the add the addition to the surface potential of the 

receiving neuron. There are many, many synapses all of them are summated to get the 

surface potential, if it goes enough then once again the neuron fights and this is how it 

goes on is an highly interconnected structure of neuron and all computing goes through 

like this. 

So, each neuron is simply you know it receives lot of inputs through the synapses 

essentially at each synapse because of the inputs from other other neurons, some charges 

injected into the receiving neuron. And the net effect of all the charge injections at 

various synapses and it is input terminals, they are called dendrites is a increase in 

surface potential of the some of the receiving neuron. And if it goes above it is threshold 

then it fights an action potential on it is own, which now travel through it is axon and 

through the axon arborization to all the downstream neurons family and so on. 

Now, this is the generic structure of how simple neurons function, now the the the the 

real complexity is in numbers, in the human brain there of the order of about 10 power 

eleven neuron. That is about hundred billion most of these estimates most of the 

estimates, so say give or take a 10 power roughly, on the average there are about 10 

thousand synapses per neurons, at a low of thousand to a high of hundred thousand. So, 

of the order of about 10 thousand synapses per neuron that is the amount of find in a 

neuron has and similar amount of find over to a neuron has. 



And so, total synapses taking 10 thousand per neuron and 10 power 11 neuron is about 

10 power 15 synapses in the brain. A neuron time constants are in the milli seconds, so 

as a matter of fact once neuron files an action potential it takes some time before it 

comes back to it is resting potential till then it is not sensitive to any other input it 

receives. So if we think of this firing of action potential as the switching, then switching 

time constants are neurons are in milli second range, which means a single neuron can 

send up to about a hundred spikes per second, these are the numbers. 

So, essentially the entire computing is now to be mediated by various neurons sending 

spikes, when they receive inputs and it is coordinated activity is what gives rise to all the 

intelligent behaviour we know, because it is a highly organized structure of networks in 

neurons. It is not just any arbitrary network, but not bothering about that just looking at 

the basic structural connectivity. 
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We can do some simple rough estimates, let us say each synapse is to be viewed as 

analogous to doing one arithmetic operation. Then we can do 10 power four operations 

per neuron per spike, that many synapses because may not be that much, but let us just 

put a arbitrary estimate. We can send about hundred spikes per second, so we can do 10 

power 6 operation per neuron per second, that is about 10 power 7 operations per second 

Indian type brain. 



Obviously, things cannot work at this throughput pace, it does not because there is so 

many of few neurons are meant to keep you keep your metabolism going, keep your 

heart going, you know keep your body posture going and so on. But, and you know there 

are many neurons in your you know eye and retina and so on. So, there are lot of 

sensitive neurons lot of motor neurons, which are needed for the organism to function, 

but still this is staggering amount of operations possible. 

If if we know if the if all the neurons are working in concept, so this is something that all 

of us know massive parallelism can deliver massive computing power. If only we know 

how to manage it of course, one does not know how to manage you know a 100 billion 

process to act together, but having said this then one can as kit seems to be a a a very 

simple structure. Each neuron has very simple input output behaviour and somehow the 

entire power seems to be the way in which they are interconnected and made to work in 

concept. 
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So, should not we try and think of computing system architectures, which somehow 

mimic this, so here is a dramatic way of saying this if we look at digital computers, they 

are very precised design of course, you use very sophisticated software to design the chip 

layout. They are highly constraint not very adaptive or fault tolerant if something goes 

wrong in the chip that is the end of it, mostly centralized control mostly deterministic 

and our basic switching times of the order of nanoseconds. 



That is the natural neural networks are massively parallel, they are highly adaptive and 

fault tolerant neurons keep dying we do not have many bone marrows, where new 

neurons are made at the current knowledge, we think if at all just a very small fraction of 

neuron degeneration grows most of the neurons that we were born with only dying. But, 

in spite of it we have lot of adaptation and lot of fault to lerance of course, they are self 

configuring self repairing noisy stochastic, and have basic switching times of only 10 

power minus 3 seconds the switching times are milli seconds. 

And what is important is that it is not pre-programmed most of what a person of 5 or 10 

year old can do, almost 99 percent of the capabilities of 5 or 10 year old person are are 

not there at birth. When your born with your neurons you cannot even do very simple 

things like sitting up or standing and walking, so most capabilities of our brain are all 

learnt. So, not only it has very strange architecture, but it essentially relies on learning, 

given that neurons input output structure is is very simple and already well constrained. 

It looks like the only thing that we can learn not synapses may be we form new synapses 

or we modify existing synapses. So, essentially synaptic strength might be what what 

change when we learnt, so essentially is the interconnection strengths that that that 

translate into having learnt a particular capability. So, whatever knowledge resides in the 

brain must be that of interconnection strengths, this is actually was first propounded as a 

as a theory or a hypothesis by a famous psychologist called Hab. 

When he wrote a book in late 40’s called organization of behaviour the basic premise is 

very simple because neuron functions seems to be very straight forward. There is not 

much scope there for doing something drastically different, but the behaviour of a 2 year 

old human being to a 5 year old human being is so different. That there must be 

something that are changed in the brain and most probably what is changed are all the 

synaptic strengths, so all learning is in terms of changing synaptic strengths. 
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So, now stepping back a little bit if you think of the feel of artificial intelligence of 

course, artificial intelligence today means one particular set of techniques, but let us not 

worry about it. Let us think of it in the sense of what the name suggests, it is grand goal 

is to understand intelligence in computation terms. And develop machines that are 

intelligent everything we put in codes, so that let us not get into any philosophical 

arguments. 

Let us not define what a machine is and what intelligence is, but that is irrelevant, but 

within the context of what all of us understand, artificial intelligence support 

understanding an intelligent behaviour in computational terms and developing machines 

that are intelligent. Historically, today what we consider that there were 2 distinct 

approaches that people followed, one may be called the symbolic approach, where the 

idea is to develop models to for a intelligent in terms of processing symbols. 

The idea is that the resulting methods or algorithms may not resemble, how brain does 

any thing as a matter of fact you may not even understand how brain does something, but 

if you understand what computation is involved in a particular intelligent behaviour. 

Then we can simply try and create it through some symbol manipulation, the second is to 

say well we do not know how the brain actually achieves it is function, but we know lot 

about the brains architecture. So, lets us try and mimic the architecture of the brain, and 

then ask does it lead us to a kind of machine that has some interesting behaviour. 
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The first approach can be called the symbolic A I approach, the basic idea there is that 

the brain is to be understood in computational terms, so may be brain is to be understood 

only in computational terms that is if I look at any intelligent behaviour speech natural 

language understanding, common sense. All of it is some kind of a computation I may 

not fully understand what kind of computation it is, but nonetheless I can think of it as 

just a computation and any computation can be done on a turing machine. 

So, essentially any machine that is capable of carrying what abstract computation is 

capable of exhibiting intelligent behaviour, that is the basic idea of the symbolic 

approach. This is often referred into what is called a physical symbol system hypothesis, 

what the hypothesis says is that any any physically realisable system is capable of 

creating, storing, modifying, abstract, symbols is in principle capable of intelligent 

behaviour. 

So, essentially intelligence says that you you symbolically represent the world outside, 

through some symbols inside and define proper operation of the symbols to represent. 

You know whatever inferences you you want to make or whatever changes in the outside 

world that you want to track and so on. So, any such system which is capable of creating, 

storing and modifying abstract symbols is capable of exhibiting the intelligent behaviour. 

Since, a digital computer is a universal symbol manipulator and it it can in principle be 

programmed to be intelligent. 



That a digital computers architecture is vastly different from the brains architecture is 

really irrelevant, because brain is one way of representing one physical system that can 

represent abstract symbols may be. Digital computer is another kind of physical system 

that can represent a abstract symbols, so as long as the system has the capability to 

manipulate abstract symbols, it is capable of intelligent behaviour. So, we have to just 

figure out how to understand any intelligent behaviour in computational term, so that we 

can program it in a digital computer this is the basic symbolic A I approach. 

Of course, it has given rise to lot of interesting application expert systems, chess playing 

programmes all of them come out of this symbolic A I approach, but something that 

characterizes the symbolic A I approach is the the the the the faith, the dogma, the 

theory, the hypothesis, whatever we want to call it. Which, says that the architecture of 

brain per se is irrelevant for engineering intelligent artifacts, that the specific architecture 

if the brain is some accident of the evolution. So, it is not necessary that such an 

architecture is needed for intelligent behaviour, and this is this is the faith and 

symbolically A I approach. Where, we are discussing it only to context of the neural 

networks, we are not saying right or wrong or which is better and all those those are 

unnecessary philosophical debates, but this is one approach. 
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The other approach which we are more interested in is the artificial neural network 

approach, which is another approach towards understanding brain or building intelligent 



machines. An approach characterized by mimicking the brain at an architecture level and 

I am trying to see within that architecture, can we think of some simple learning 

algorithms, which will allow us to solve some problems. 

So, it it represents a computational architecture inspired by the structure of human brain 

or structure of mammalian brain or structure of any intelligent organisms brain, so it 

gives rise to computational methods for learning dependencies in the data streams. There 

are many interesting they are just like expert systems on the symbolic A I set, there are 

many interesting application game on this system identification for pattern recognition so 

on. 

There are some interesting methods of learning using the structures, the characteristics of 

the structures is that the emergent properties, what is there are some properties of the 

entire structure which cannot easily be assigned to any subunit. So, the the the network 

as a whole has some interesting properties, which it cannot be said that it is synapse that 

has the property or the neuron that has the property. 

The other interesting aspect of this models is because they are built up very simple 

processing units, and every thing resides in the connection strengths, learning is the only 

way to program them. So, we have to somehow find the weights and the only way we 

find the weights are through learning, whether artificial neural networks really gave rise 

to understanding biology is a is a difficult question. I will come back to it in a in a in a 

few minutes again, when we finish the discussion, but most of the model is that we are 

considering here, can be thought of as mathematically purified neurons. 

They are not sufficiently realistic in terms of real biological neurons, they can be thought 

of as very simple mathematical model. So, we can think of them as models or 

mathematically purified neurons and in that sense this the this specific models, we 

considered may not have much to do with modelling biology. 
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So, we can now sum up the discussion artificial neural networks are computing machine 

that try to mimic brain architecture, so what do they have large number of interconnected 

units. Each units like a neuron that is why they are called artificial neurons, sometimes 

people omit the word artificial, but at least in the beginning we view the word artificial. 

Each unit has simple input output mapping like your neuron firing an action potential, so 

essentially it takes some sum of some weighted sum of it is inputs and passes it through 

some function to get it is output. 

So, each input is a very simple input output mapping, and they are interconnected and 

each interconnection has a numerical weight attached to it it is like the synaptic strength, 

in the in the real neural networks, and the output of a unit depends on the outputs and 

connection weights of units connected to it. Each unit receives inputs from many other 

units which are interconnected network of units and the output of any unit depends on 

both the outputs of the units, that send their outputs to you as well as the weights that 

connect those outputs to this unit. 

The knowledge resides in the weights, essentially if you want the system to do anything 

the only thing you can change are the weights. The the the functional relationship of how 

output depends on the weights is prefixed, but you can change the values of the weights, 

so the knowledge essentially resides in the weights that is the kind of structure artificial 

neural networks give rise to. 



And the problem solving ability hence is often through learning, so because of large 

number of weights and it is impossible to analytically decide how the weight should be 

or impossible to get close form expressions for how weight should be much like in what 

we are considering, so far in pattern recognition, the problem solving ability often comes 

through learning. 
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These models we have already seen actually, we can think of a single neuron model like 

this, there are many inputs say X 1 to X n. Each input is connected with a neuron through 

some synapse, so that interconnection is a weight, so called W hat and y is the output of 

the neuron. So, what does the neuron do it calculates it is net input as a weighted sum of 

inputs, so this is input coming to the neuron, so multiply that with the weight and sum 

over all the inputs that we call the net input. 

And you calculate your output as some function of the net input where f is called the 

activation function, this is this can be a simple model of a neuron, we have seen such 

models already in pattern. Perceptron is a very simple model, when we studied 

perceptron are actually said that it comes from some simple neuron models. So, 

essentially if I take this activation function to be a step function, this exactly over the 

perceptron does, it takes the weighted sum and thresholds it at some point. 

So, if the if the net input is greater than some threshold output is 1, net input is less than 

the threshold output is 0. We can think of this as these are the incoming charge injections 



into the neuron, these are the synaptic strengths, so at the soma the net input represents 

the total increase in potential and if it is above some threshold you find neuron action 

potential. So, but viewed simply as a mathematical model within the structure, if I take f 

to be a step function I get a perceptron model. 

If I take f to be a linear function, we get that adapt to linear element model which is what 

we said is the original L M S algorithm is based on. So, these models as I said already 

are used in pattern recognition at that time we did not talk of them as a neural network 

models, but these are what we have considered as our linear models can be simply 

thought of as single neuron models, but really the reason why these neural networks are 

more powerful is that you can interconnect them. 
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We can connect a number of such units to form a network, so when we when we say 

network what means is output of one neuron can become input to another neuron like 

this. So, if I take neuron 3 it takes inputs from neuron 1 and 2, calculates it is output we 

call it y 3 and that itself now forms inputs in neurons 5 and 6. So, in this diagram the 

notation is y j is the output of the j-th neuron and W i j is the weight of connection from 

neuron i to neuron j, do not read anything into the bold characters. 

The weights are in bold only because you know the diagram is crowded and if I did not 

input in bold it was becoming very difficult to notice them, that is the only reason the 

weights are put in bold, so in all my diagrams a symbol being symbol being in bold 



means nothing. So, again, so y i is the output of j-th neuron y j is the output of j-th 

neuron and W i j that is our notation, so W 1 3 connects neuron 1 to neuron 3 W 3 6 

connects neuron 3 to neuron 6 and so on. So, essentially a if you take this neuron, it gets 

some inputs from other neurons calculates output this output itself, now forms input to 

some other neurons and so on, so there is a network like this. 
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How does this network compute, each neuron computes weighted sum of inputs and 

passes it through an activation function to compute it is own output. 
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So, for example, if we go to neuron 5, how does neuron 5 calculates it is output, it takes 

output of neuron 3 multiplies with W 3 5 output of neuron 4, which is y 4 multiplies with 

W 4 5 and passes it through it is own activation function. 

(Refer Slide Time: 47:15) 

 

So, y 5 is f 5 the activation function of the neuron 5 of W 3 5 into y 3 plus W 4 5 into y 

4, now how are y 3 and y 4 obtained. 
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They themselves are obtained in the same way, y 3 is obtained by multiplying y 1 with 

W 1 3 y 2 with W 1 y 2 with W 2 3and passing it through the activation function of y and 

similarly, y 4. 
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So, if I expand that this y 3 and y 4 can be expanded to y 3 becomes f 3 of W 1 3 y 1 W 2 

3 y 2, and y 4 becomes f 4 of W 1 4 y 1, so as you can see the this output is now a 

function of all the weights and here the input is y 1 and y 2. And these are obtained 

through composition, so I have linear sum and some activation function, now once again 

a linear sum over such things and an activation function. So, I have used composition of 

linear sums and non-linear activation functions to build more more and more 

complicated functions. 



(Refer Slide Time: 47:28) By convention in in networks like this, we take these as the 

input neurons we will we will look at the full notation later on, but essentially for the 

input neurons it is output will be input, so it is just a find over device. So, we will take by 

convention y 1 is equal to X 1, y 2 is equal to X 2, so the expression we wrote for y 5 

directly gives y 5 as a function of the inputs, inputs X 1 and X 2. 

(Refer Slide Time: 47:48) So, that is the if I take y 1 is equal to X 1, y 2 is equal to X 2 y 

5 is a function of X 1 X 2, it is a kind of non-linear function because the f f 3 f 4 f 5 are 

all non-linear, the w’s are all the parameters of the function. So, X 1 X 2 are inputs y 5 y 

6 are outputs, so that particular network model represents some function, from r 2 to r 2. 
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So, a single neuron as we have seen because it has only one output represents a class of 

functions from some m inputs to a single real output r m to r. Specific set of weights 

realise specific functions right you have perceptron can represent any hyper plane, which 

hyperplane it represents depends on what weights we put on a perceptron. By 

interconnecting many neurons we get more complicated functions now from r m to r m 

prime, we have seen an r 2 to r 2 function network. 

So, we can get more complicated model that can represent functions from r m to r m 

prime, the architecture of the network will of course, constrain the function class that can 

be represented. We will look at it later what kind of architecture can represent what 

function classes, but the architectures in some sense is reasonable to assume that 



constrains the class of function that can be represented whereas, specific weights define a 

specific function within that class. 
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And finally, to form meaningful networks nonlinearity of the activation function is 

important, look at this function if suppose f 3 f 4 and f 5 were all linear functions. Then f 

3 of this is some linear function of y 1 y 2, which is X 1 X 2, f 4 of this is some linear 

function of y 1 y 2. So, I can write the whole thing as a linear function of X 1 X 2, now if 

f 5 is also linear the whole thing is a linear function of (( )). 

So, essentially it represents no more than what a perceptron can even, if f 5 is non-linear 

if f 3 and f 4 are linear, what is inside here is simply a linear sum a linear function of X 1 

X 2 on the weights. So, essentially it is representation capabilities these are no different 

from what a single neuron can represent, so nonlinearity of the activation function is very 

important, typical activation functions used in this models are things that we have 

already seen one is what is called a hard limiter. 
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Essentially, if the net input the the argument to the activation function is greater than 

some threshold, then output is 1 otherwise it is 0. Of course, as we have already seen in 

the perceptron case I can always take tau to be 0 by pushing tau to the input side we will 

see that later on. Another activation function that we seen is the sigmoidal activation 

function, so the hard limiter is not differentiable, sometimes it may give us problems, 

that we shall see later on. 
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So, we can make that into a nice smooth differentiable function that is a sigmoid. This is 

sum 1 by 1 plus exponential minus b x, I can always scale it to a, here a is actually 2 this 

is the rough shape of it, and the coefficient b determines this slope of it near 0. The 

sigmoidal function takes only from 0 to, so it cannot take both positive and negative 

values. 
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If I need to take both positive and negative values, I can take hyperbolic transit which 

has roughly as the same shape as sigmoid, but goes from positive to negative. Once again 

actually goes from minus 1 to 1, but I can put any amplitude there, and also I can put a 

parameter b to control the slope near 0, so these are the three most often used activation 

functions neurons. 
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Now, why does one study such models, one we have already seen that believe that the 

architecture of the brain is somehow critical to intelligent behaviour, so if I mimic the 

architecture and sees what models of this architecture can do it may tell us something 

about how intelligent behaviour may come about the models. As we have seen 

implement highly non-linear functions, they are adaptive and can be trained by learning 

the weights. 

So, it gives us a good class of non-linear functions, that is useful in many applications 

time series prediction, system identification control and most importantly for us pattern 

recognition regression. There can be a third goal models can help us understand brain 

function, so actually I can put models like this then tweak them to be realistic to some 

specific neurons in terms of how many synapses they have maybe, I can put some non-

linear synapses. 

And then try to see what the model predicts and then go back to experiments see, if it is 

if it can be observed in real neural tissue then once again tweak the model and so on. As 

a matter of fact there is a field, now name computational neuroscience, theoretical 

neuroscience which actually does this, and they do much more sophisticated models of 

neurons than what we considered. They actually take care of lot of nonlinearities lot of 

models for how the potentials are transmitted through the neuron through the dendrites 

and so on. So, there are methods of using such models as a way of understanding brain 



function, so of course, we are not interested in any of these as we have already said we 

are just interested in these models as some nice parameters class of functions for doing 

pattern recognition regression. 
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Of course, as you the the network that we considered is only one simple model is can be 

called a feed forward model because there are no feedback connections. Let me let me 

come to feedback later, but let us ask what are all the possible models, we can think of 

one is whether the models work in discrete time continuous time or all the units change, 

compute their outputs together in a clock fashion like a digital computer or a everybody 

does at some random time of their choice. 

By the activation function deterministic stochastic, this is one kind of choices we have, 

we have choices in terms of architecture where the interconnections are only feed 

forward or also having feedback, whether the outputs of units are binary. They take only 

finitely many values they are continuous functions there are many different combinations 

and all combinations are combinations are possible. 
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So, for example, here is a simple network is if the rest of it looks like a previous network 

we have concerned the outputs go only in one direction, but output of some unit can 

come back. So, we can think of this as using z inverse as a usual unit symbol, what it 

means is the output y at at time k is some function represented by the network of some 

input X 1 k another input X 2 k and y of k minus 1, so this can model a dynamical 

system. So, many of these models are used for non-linear dynamic system modelling 

also. 
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Of course, as I said we considered only feed forward networks, which provide a general 

class of non-linear functions. By feed forward this is the network model that we 

considered last time, so each each neuron calculates it is output and sends it to 

downstream neuron, there is no feedback connections, because there is no feedback 

connections we can always organise them as layers. Such that a neuron in one layer gets 

it is input only from the immediate previous layer sends it is outputs only to neurons in 

the next layer. 

As we can always do this a little thought will tell you, because if suppose neuron 3 has to 

also get neuron 2’s output, I can simply put a dummy unit here, which only gets neurons 

two’s output and then passes it on to neuron 5. So, the by by adding such dummy units if 

I need I can think of this network always having a layered structure, so I call this layer 1, 

I call this layer 2, I call this layer 3 any neuron in any layer gets inputs from the 

immediate previous layer, and sends it is output only to the immediate succeeding layer. 

We call the layer one as the input layer and that takes inputs from the external system, 

last layer as the output layer which sends it is outputs to the external world, everything in 

between is a hidden layers, so this we call hidden layers later on I will tell you why the 

name hidden. So, this particular network represents some class of functions from r 2 to r 

2, it has 2 inputs and 2 outputs, so if I put this entire thing into a black box, it is it has 2 

inputs, 2 outputs, it represents some function from r 2 to r 2. 
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Each unit can also have a bias input, so earlier we only considered only this, but we can 

have y as a function of W i X i plus some biased W naught. We can always think of bias 

as a extra input because I can make this summation going from instead of 1 to d, I can go 

it from 0 to d, and call W 0 as the weight and an extra connection which is permanently 

connected to an input that is permanently kept at plus. So, I think of X 0 as a extra input 

which is permanently plus 1 and I can represent it as a bias input. 
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So, in general we can havefeed forward networks like this. So, what we are going to 

study next class is now we will forget all about intelligent machines and everything, we 

will just look at these as a non-linear class of functions. So, there are layers, so each 

neuron completes it is output and sends through a succeeding layer, so using and we can 

have many number of layers many number if things. So, using such models we will ask 

how we can represent and learn non-linear functions that are useful in pattern recognition 

regression.  

Thank you. 


