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Lecture - 25
VC-Dimension Examples; VC-Dimension of Hyperplanes

And welcome to this next lecture on pattern recognition. We have been looking at for the
last few classes, on some basics of statistical learning theory. Essentially, we were asking
at a theoretical level, what kind of guarantees can we give on the generalization abilities

of a learning algorithm specifically, we were considering the question of.
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Recap

» We have been considering the question of
generalization abilities of a learning algorithm.

* A learning algorithm can learn the minimizer of the
empirical risk.

* We actually want the minimizer of risk. Hence, the
question we are considering is when does minimizer
of empirical risk approximate well the minimizer of
risk.

Formally understanding the generalization abilities of a learning algorithm in a
classification context. So, today will be the last class, we will, rap up everything, that we
have done, so far in terms of VC dimension. So, let us quickly recall what we have been
doing basically, we have introduced the risk minimization at a generic frame work. In
which any method of learning, from examples can be viewed that allows us to take care
of arbitrary distributions with respect to which examples come different kinds of loss
functions. All noise models, and so on, so risk minimization as, we have seen is a very
general model. For learning from examples, and we have defined, we know the feature,

feature space or what we call the input space x and the outcome space y. We choose a



convenient family of classifiers h and we define a loss function and risk is the

expectation of loss.

And, we are looking very minimizer of risk unfortunately as we seen risk cannot be
minimized, because to calculate risk we need the underlying probability distributions.
So, we approximate the expectation that is in the risk by this sample, average, that is how
we got the empirical risk. So, what any learning algorithm can do, is to minimize the
empirical risk all learning algorithms as we have seen, minimize the empirical risk with
respect to some convenient loss function, say 0 1 loss function or square error loss
function or what have you. But what we actually want, is the minimizer of the risk, the
true risk that the expectation of loss. So the question, we are considering is when does

minimizer of empirical risk be a good approximation to minimizer of true risk?
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« We minimize empirical risk over H, a chosen family of
classifiers.

+ |f VC-dimension of ‘H is infinite, then empirical risk
minimization is not effective.

* When dy(H) < o, then I?,(h) converges to I2(/)
uniformly over H.
* This ensures that with large number of examples,

minimizer of empirical risk would have low true risk
also.
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Now, we minimize empirical risk over some family of classifiers H, and what we seen is
that if the VC dimension of this family of classifiers is finite, is infinite then the
empirical risk minimization is not effective. That is the minimizer of the empirical risk
can have two risk that is vastly different from the global minimizer of the true risk. On
the other hand, if the VC dimension of the family of classifiers is finite. Then the finite

VC dimension essentially implies, that the convergence implied by law of large numbers.



That is the sample mean expectation, sample mean approximation of expectation r hat n
h converges to r h. The true expectation of the risk uniformly over h and this uniform
convergence in turn guarantees that minimizer of empirical risk, would also have low
value of the true risk. So, essentially finally, the question boils down to if you were, if the
family of classifiers h over which you are minimizing empirical risk has finite VC

dimension then minimizing empirical risk is.
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* Further, the true risk can be bounded above by
empirical risk plus a complexity term that goes to zero

as dvc(H)/n.

* The higher the VC-dimension the higher is the
number of examples needed.

* In this sense, dy«('H) tells you the complexity of
learning with 'H.

« |f the number of examples is large relative to the
VC-dimension, then, we can be confident that low
empirical risk would imply low true risk also.

i}

In addition, we also saw that the true risk can be bounded above by empirical risk plus a
complexity term which goes to 0, as the ratio of the VC dimension of h by n. So, this also
tells us that how many examples we actually need, before we can believe the empirical
risk. So, if the empirical risk is sufficiently small, we can be confident that the true risk
also be sufficiently small. If the VC dimension of h is divided by the number of
examples is sufficiently small. So, higher the VC dimension higher is the number of
examples needed. So, in that sense VC dimension not only tells us, whether empirical
risk minimization is effective but, more importantly it tells us the complexity of learning
with a particular classifiers h. So, for example, learning with a linear classifiers learning,
a best linear classifier might have less complexity and learning a polynomial classifier of
degree up to p. And that happens, because the VC dimension of one would be higher than
the other.



So, the VC dimension tells us, the complexity of learning with a particular h. And
correspondingly tells us, what is the number of examples we need, before we can have
confidence on empirical risk. In this sense, while the bounds, we got with for this
generalization error or the true risk of a classifier or rather loose, it still gives us an idea.
Of how many examples we need, before we can be confident that low empirical risk
would imply low true risk. Essentially how many examples, we need depends on VC
dimension as | said as a thumb rule we need at least 10 times the VC dimension as the

number of examples.
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* We have defined VC-dimension of a family of binary
valued functions on X'

* For this case of 2-class classification problem, we
have seen how to find VC-dimension by looking at the
largest shattered subset.

« Let us recall the definition.

.Q\“ G

The we have, we have defined VC dimension for the classifier case that, is when h is a
family of binary valued functions on x though we are considering only two class
classification problem. And, we have seen that for this particular true class classification
problem. We can define VC dimension in terms of the largest shattered subset, of course,
this the idea of VC dimension, the idea of bounding the true risk by empirical risk for, for
say complexity terms. Holds for all kinds of families of functions, we are defining the
corresponding VC dimension for other class of functions is more difficult. So, we have
restricted ourselves to only considering 2 class classifiers. So, let us recall this definition

of VC dimension based on the shattered subset.
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» Aset A C X is said to be shattered by H if
- forevery B C A, thereis a i € 'H such that

h(z)=1Vxe€e B and h(z)=0Vz € (A - B)

« If A is an m-point set that is shattered, then, for
everyone of the 2" possible labellings of points in A,
there is a function in 'H to realize that labelling.

» Hence we know that \/(H.m) = 2".

Given any subset of our input space, that is the feature space let us say A, is a subset of x
it is said to be shattered by the family of classifiers H. If for every subset B of A, there is
A h, so give me any subset B of this of a as a of a subset a, so give me any set of points
in the feature space A. Then for every subset b of a there is a particular h in my family of
classifiers, such that h takes 1 for all points in b and takes 0 on all points in a minus b. If
of course, the h that depends h that exists will depend on the b that we chose but for
every subset b of a, If I can find A h that realizes that classification. By choosing a subset
of B is effectively as if you are saying out of the set of points A, | have now | want to
label all points in B as 1 and all points not in B as 0 that is what. And then there is a
particular classifier in h that can achieve that classification, if this can be done for every

subset of a then, we say a, is shattered.

So, if an m point set is shattered, so if a, has m points then thy, are 2 power m different
subsets that is 2 power m different ways of labelling each point in a, with either 0 or 1,
And if a, is shattered that means for each one of the 2 power m possible labellings. There
is a function in h, there is a classifier in h which will realize that labelling or which will
which will classify the points as labeled. So, shattering of a set a simply means you, you
do an arbitrary labelling of the points of A, with 0 and 1 then there must be a classifier in

my family of classifiers. That would achieve their classification, so when an m point set



is shattered, each of the 2 power m possible labeling of points in a are realizable with
functions in h, which in turn means, what we call M h of the maximum number of
distinguishable functions in h based on all possible M tuples. Of examples is 2 power m
that is the reason why the VC dimension can now be defined at the cardinality of the

largest shattered subset.
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» VC-dimension of H is the cardinality of the largest
shattered subset of X

« If for every integer n, there is a m-point subset of A’
that is shattered by H, then, VC-dimension of H is
infinity.

* Note that if we have a m-point subset of H that is
shattered by H then, for every i’ < m, there is a
m'-point subset of A’ that is shattered.

» This is same as the earlier definition that \/(H.m)
‘ grows as 2" only till m < dy¢(H).
:}

So, we as we seen last class, VC dimension of h is the cardinality of the largest shattered
subset of x. I will emphasize once again shattering is a property of a subset of x and a
family of classifiers a subset of x, is shattered by a family of classifiers. So, whenever we
say shattered because the H is already understood. So, VC dimension is the cardinality of
the largest shattered subset of X, so on the when we say largest we are assuming there
exist a largest. For example, for every integer m there is an m point subset of X that is
shattered. That mean there is no larger subset and hence VC dimension of H is infinity.
As | mentioned last class if an m point set is shattered by H then for any m prime m
prime less than m. There is also an m prime point sub set of x that is shattered namely an

m prime point subset of this m set.

So, a set a, with m points is shattered that means all possible labellings or the m points

are realizable by the classifiers in H. You take any subset of that a then all possible



labellings of that subset are also realizable by classifiers in H. Thus whenever, there is a
m points of sets that is shattered for every m prime less than m, they will also be an m
prime point subset that is shattered. So, this is same as saying that the number of
maximum number of distinguishable functions grows as 2 power m only till m reaches
VC dimension of h. And hence defining VC dimension by the large cardinality of largest

shattered subset is correct.
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* We have considered some examples last class.

» We showed that the VC-dimension of axis parallel
rectangles in R is four.

* We also showed that if we take H = 2" then the
VC-dimension is infinite.

* Essentially, if the family of classifiers is too ‘flexible’
then VC-dimension is infinite.

Once again let us understand what shattering means, if we find one m point subset of x
that is shattered. Then, we can conclude that the VC dimension is at least m because
there is at least one m point subset that is shattered. Of course, this does not mean that all
m points subset are shattered. There may be other m point subset that are not shattered,
but if there is at least one m point subset that is shattered. Then we can conclude that VC
dimension is at least m. On the other hand to show that VC dimension is strictly less than
m, we have to show that no m point set is shattered. To show that is at least m all we
need to do is exhibit one example, where as to show that is less than m we have to show

that no possible m points of set is shattered by H.

We considered some examples last class for example, we showed that the VC dimension

of axis parallel rectangles is four and as | mentioned is also interesting to know that the



family of axis parallel rectangles can be represented by four parameters. Because each
axis is parallel rectangle is completely determined by the co-ordinates of its bottom left
and top corners which need four numbers. we also seen that if we take H to be all
possible two class classifiers H is equal to 2 power x the power set of x then VC
dimension is infinite. Essentially, if the family of classifiers over which you are

minimizing the risk is too flexible, then VC dimension becomes infinite.

We seen both these examples last class, the the infinite VC dimension example that we
considered of course, looks too drastic. We are saying if we take all possible two class
classifiers then VC dimension is infinite. That is that is very obvious, because you cannot
learn if you know we do not restrict our set of classifiers at all. But, that is not how VC
dimension, becomes infinity is essentially this this (()) phase too flexible. We can we can
think of many other families of classifier for which VC dimension will be infinite,
because all those other families of classifiers are essentially too flexible in the sense. For

example, it is very difficult to parameterize them with finite parameters.
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» We can construct other examples of families with
infinite VC-dimension.

» For example, take H to be the family of all convex
polygons over R”.

* Once again, the family is too flexible'.
» We can show that VC-dimension is infinite.

So, we will we will look at one more example, let us say H is the family of all convex
polygons over r 2. For example, axis parallel rectangle is a specific convex polygon

which contains only four sides even among four side convex polygons is a very specific



thing because it has to be an axis parallel and rectangle. But, instead of that suppose you
take all convex polygons, of course, this is much, much smaller than smaller in the sense.
There are many two class classifiers which cannot be expressed as convex polygons,

because convex polygons means one class is a convex set.

The region of one class is always a convex set, so that looks like fairly restricted. But,
still because we allow all convex polygons of any number of sides. Once again it is too
flexible it is like fitting polynomials of any degree two points. So, if we take H to be the
family of all convex polygons over r 2 once again the VC dimension will be infinite.
Why, because the family is too flexible because | am allowing convex polygons of any
number of sides. So, let us show this, so that we understand where the infinite VC

dimension comes from.
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« For this we have to show that for every 2, we can find
a m-point subset of R” that is shattered by H.

» Take the n points on a circle.

* Now, given any labelling of these points by 1 and 0,
we have to show that there is a convex polygon such
that points labelled 0 are outside it and points labelled
| or inside or on the polygon.

What do we have to show that VC dimension is infinite; we have to show that you give
me any integer m any, any positive integer m. Then | can find an m point subset in R 2
that is shattered by H mind you we do not have to be able to show that every m point set
is shattered. All I have to show is for every m there is at least one m points of set that is
shattered. So, | have to just choose one particular or, or | have to exhibit one particular m

point set for every m that is shattered. Here is how I can do it you give me any m | take



all the m points on a circle, circle put anywhere in R 2 its circle and radius does not
matter its center and radius, does not matter except that all the points have to be on a
circle. So, I will take an m points of set or m point set such that all m points are on a

circle.

Now, we are going to show that this is shattered, by the family of all convex polygons.
What do | have to show that now given any labelling of this m points so you arbitrary
label this m points 1 or 0. Then given any one labelling like that, we have to show that
there is a convex polygon, such that the points labelled O are outside the convex polygon.
And points labelled 1 are inside or on the polygon that been doing all alone, we, we are

taking our, our functions to be such that.

Whenever, we take like axis parallel rectangles on on the polygon also as classl, it is a
arbitrary thing but, let us take like that. So, we have to show that given any m and, and |
take all the m points on a circle, now you can put any labelling of this points by one and
0. Now | have to show you a convex polygon, such that all points labelled O are outside

the outside of it and points labelled 1 are inside or on the polygon
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» Take any arbitrary labelling of the points.

* Now we draw a convex polygon as follows.

« Start with any point labelled | as a vertex of the
polygon. Then join that point to the next point in the
set that is labelled 1.

« Since all points are on a circle, the next point can be
defined as the next one in the clockwise direction.

* We continue this process till we reach the starting
point.

.. * Now we have a convex polygon whose verices are
i) points labelled | and points labelled () are outside it.

7
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So, | will construct this as, as follows, so | have taken all the m points on a circle, now



you take any arbitrary labelling of these point. And what do, | do I have to draw a convex
polygon for it I will draw it as follows. | start with any point labelled 1 as 1 a one vertex
of the polygon. Then join that point to the next point in the set, that is labelled 1 , 1 will |
will start with a one point then skip over all the 0. So, to say so | will find where is the
next point labelled 1 and join this 1, this point labelled 1, to the next point labelled 1

what is the next point in R2 well all the points on a circle.

So, | can take the next point to be at the next one in the clockwise direction, so keep
going like this till 1 reach the starting point. What | have is a convex polygon, because |
just joined points on a circle, and it is easy to see that, we have a convex polygon whose
vertices are all points labelled 1. And all the points labelled O are outside it because | am
drawing a cart in in the circle which is inside the circle. Between two successively two
points that are successive labelled 1 all the points in between are on the arc those are the

labelled 1 so they will be outside the circle.
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» Here is an example of such a construction

So, here is a example so | have taken 1 2 34 5 6 7 8 points on a circle arbitrary labelled
on this is 0, this is | have, | have to, to show the labellings, | have put the points as a
circular across. So, all of them are on a circle even though the, the labelling sometimes

comes on it and sometimes a little bit. Because of my poor drawing, so this is label 0,



this is label 1, this is label 0, this is, label 1. These two are label O these two are label 1,
so | start from this point, let us say, and then join it to the next point labelled 1. Join it to
the next point labelled 1 join it to the next point labelled 1 and join it to the next point
labelled 1.

Obliviously this is a cord, and all the points labelled 0 are in the arc of that cord, so all of
them are outside the convex polygon. So, this way all points labelled 0 will always be
outside the convex polygon, and all points labelled 1 will be on the convex polygon.
They will be the vertices of the polygon, so this shows that any set of m points can be
shattered. And hence the family, of all possible convex polygons also has VC dimension
infinite. Now let us move, from these examples to one class of functions which are very

important to us.
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* We want to show that VC-dimension of hyperplanes in
R" is 3.

« For this we have to show at least one 3-point subset
that is shattered.

* Also we have to show that no 4-point set is shattered.

We, we mentioned last class that linear classifiers is an important special case actually
we spent lot of time before, we coming to before we came to the series of lecture on
statistical learning theory on learning linear classifiers, linear classifiers and linear
regression functions minimizing empirical risk under square loss function. We have
considered lot of algorithms and seen very many important properties of it as will

become evident later. On in the course, linear classifiers are important, special case of



classifiers so let us ask what is the VC dimension of linear classifiers. So, in R d some d

dimensional space we want to know, what is the VC dimension of hyperplane classifiers?

We are considering only two class classifiers any two class linear classifier is represent
by hyperplane, there is a hyperplane on Rd and one side is 1 class other side is other
class. So, the set of all hyperplane classifiers is same as set of hyperplane functions, set
of all linear classifiers is same as set of hyperplane functions. As is turns out the VC
dimension of this class is d plus 1 if you are considering feature space of dimension d
then VVC dimension of linear classifiers is d plus 1. Now going to prove this, this, this is
going to be the main result of this class. So, before we prove this in general d

dimensions, let us first consider the case of hyperplanes in R 2.

So, in R 2, | have to show that, that, the, the VC dimension is 3, because d is 2 d plus 1 is
3. So, what do | have to show, | have to show, that VC dimension of hyperplanes in R 2
is 3. As, we seen to show that VC dimension of something is m what do | have to show I
have to exhibit at least one m points of set that is shattered. And show that no m plus 1
point set is shattered. So, to show that VC dimension of hyperplanes in R 2 is 3 | have to
show that there is at least one 3 point set that is shattered. And no set of four or more
points | say no set of four points is shattered. That is what we have to do, we have to first
show that there is at least one 3 point set that is shattered. And then we have to also show

that no 4 point set is shattered.



(Refer Slide Time: 20:55)

* Here is a 3-point set that is shattered.

So, here is a 3 point set as a matter of fact you take any 3 point that form triangle, then
you can shatter it as a matter of fact. I shown only see what do | have to show for
shattering, that | can draw a hyperplanes keeping all 3 points on 1 set | have not shown
that. So, that will be in the hyperplanes, so that all 3 labelled as 1 or all 3 labelled as 0 as
gone. Then the remaining labelling is one of them 1 other, other two are 0, so | should be
able to separate any one from the other two. So, there are 3 such cases, so here are the 3
hyperplanes that separate any one from the other two. So, for example, these are the 3
hyperplanes, that show you that the 3 points set is shattered, very simple as you already

seen that one 3 point set is shattered does not mean that all 3 point sets are shattered.
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» Note that if the three points are collinear then the set
is not shattered.

A

Here is a simple example, of a 3 point set that is not shattered, so if you give me 3 points
in a line label the middle one as 0 the other two as 1 then I cannot draw any hyperplane.
That puts the middle point on one side and the other two points on the other side of the
hyperplane. So, the 3 points are collinear then the set is not shattered that is also valid.
There is just one other thing | would like you to pay attention to while | drew the
coordinate axis here. The coordinate axis is really useless this shattering is essentially a
geometric property. Given these 3 points | am telling you | can separate them with
hyperplanes whether my coordinate origin is here or here or here or here. If I move this
coordinate origin anywhere, it makes no difference to whether or not a given set of points

is shattered.

So, shattering is essentially property of how the points are organized in space, rather than
what their actual algebraic coordinates, also coordinate origin. For example, makes no
difference to shattering, the same is true of this. All I want is the 3 points in a line it
really does not matter, with respect to the origin where they are so | can move the origin
anywhere. But, these 3 points will not be shattered this is also important towards later on
all. Now to complete the proof | have to show that no 4 point set is shattered we already

know something a 3 point set is not shattered, if the 3 points are collinear.
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* Now, to show VC-dimension is 3, we have to show
that no 4-point set is shattered.

« |f any three of the four points are collinear, then the
set is not shattered.

» Suppose no three are collinear. Then the four points
form a quadrilateral.

« If we label one pair of opposite vertices by 1 and the
other pair by 0, no hyperplane can realize this
classification.

Which means give me any four point set if 3 of the 4 points are collinear. Then the set is
not shattered so all possible four point sets in which 3 of the four points are collinear is
anyway not shattered that is over that is shown. Now what is left | have to show for four
point sets where no 3 are collinear in R 2. If you give me four points such that no 3 are
collinear. Then the four points, form a quadrilateral, that is, that is the definition of
quadrilateral. Given any four points in R 2 if no three of them are in a line then the four
points will form a quadrilateral. Because they form a quadrilateral if 1 label one pair of
opposite vertices by one and the other pair of opposite vertices by 0. Then no hyperplane

can realize this particular labelling, I hope that is clear, this is let me show the.
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* Here is such a generic set.

So, here is such a generic set give me four points such that no 3 are collinear then the
four points form a quadrilateral. For a quadrilateral there is always, | can say which of
the opposite pairs of vertices. So, this is one opposite pair of vertices, so which one
diagonal will be and this is the other pair of opposite vertices. So, if I label these two by
one class say one and these two by other class say 0 that does not exist a linear classifier.
As a matter of fact if you remember when we did perceptron we showed one of the
simple problem that perceptron cannot solve with the x r problem. This is like the x r
problem as | said coordinate origin makes no sense no difference. So, | can think of let us
say this is 0 and this is one so essentially these points can correspond to 0 1 and 1 0 and
these points can correspond to 0 0 and 1 1. So, 0 0 and 1 1 has to give me one output and

0 1 and 1 0 has to be give me another output.

So, this is a typical exclusive or gate kind of problem, that cannot be solved by a linear
classifier, because there does not exist a line to separate this pair of points with this pair
of points. So, this is, this is going to be our learning example to show that, you know
there are simple problems that can be, that cannot be solved by linear classifiers. Anyway
in this particular exercise this shows us that no four point set is shattered because of the
four points if any three are collinear then any way it cannot be shattered. If no 3 are

collinear then the four points have to form a quadrilateral and if they form a quadrilateral



they cannot be shattered. Because if | label one pair of vertices by one and the other pair
of vertices by 0, then no linear classifier can realize this classification. So this shows that
there is a 3 point set that is shattered, no four point set is shattered, and hence VC

dimension of hyperplane is 3 hyperplanesin R 2 is 3.
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* Let us now consider hyperplanes in k.

*» To show that VC-dimension here is  + 1 we need to
show that there is a set of ¢ + 1 points that is
shattered and that no set of / + 2 points can be
shattered.

* To show a set of i points is shattered by family of
hyperplanes, we need to show the following.

* Given any division of the set into two sets of /2, and
my = m — m, points, we need to show that the two
sets of points are linearly separable.

So, now let us consider hyperplanes in R d what do | have to show we have to show that
the VC dimension of hyperplanes in R d is d plus 1. Once again what does this mean |
have to show that there is at least one set of d plus 1 points that is shattered. And no set
of d plus 2 or more points can be shattered. | have to exhibit one set of d plus 1 points
that can be shattered. And no set of d plus 2 or more points can be shattered, this is what
we are going to prove now. A bit of maths a lot of equations, so let us go slowly. To show
that a set of m points is shattered by a family of hyperplanes, what does that mean a set is
shattered if every possible labelling of these points by 1 and 0. For every possible
labelling of this points by 1 and O there is a classifier in by back that realizes that
classification, which is same as saying the following see my classifiers are all linear

classifiers.

So, a given labelling if its realized by my classifiers, that means the, the points labelled

0, are linearly separable from the points labelled 1. If | have set of points some of them



are labelled 0 and some of them, are labelled 1 and there is a linear classifier that can
realize this classification. That means the set of points labelled O are linearly separable
from the set of points labelled 1. Which is same as saying given any m point set if |
divide that set into two sets one containing m 1 points other containing m minus m 1 is
equal to m 2 points. |, i partition that set into two sets one containing m 1 point other

containing some m 2 points m minus m 1 points.

We need to show that these two sets of points are linearly separable so to show that an m
point set is shattered by a family of hyperplanes. What do we have to show is for every
possible division of this set into two subsets. The resulting two subsets are linearly
separable, this is what we have to show, so to show this we have to first understand the
geometry of linear separability. How can we say whether two given sets of points are
linearly separable or not so to understand this geometry in a way that we need.
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* For the proof we need the notion of a convex hull.

* Given S = {ry, ---. r,}, the convex hull of S is

Conv(S) = {AI' S — Z oz, o; 2 0, Z b= 1}
i=] i=|

» Convex hull of a set contains all points that can be
written as convex combination of points in 5.

Here is a, an important concept that we need, we need, the concept of what is called a
convex hull. I do not know how many people, how many of you know what a convex
hull is. Let us define the convex hull 1 am assuming that all you people know what is a
convex combination and what is a convex set | will any way | will | will briefly tell it.

When | am defining a convex hull given a set S contain containing the points x 1 to x m



these are all points in R d the convex hull of s is defined to be a set of all x. So, that x can
be written as summation I is equal to one to m alpha X i, where x i are these x one to x m
I is equal to one to m alpha x I, where this alpha i are scalars, and the scalars alpha a i is

are, they are all non zero.

And they sum to one so given any set of vectors x 1 to x m and set of scalars alpha 1 to
alpha m where the scalars satisfy alpha i greater than equal to 0 and summation alpha i is
equal to 1 that this vector summation alpha i x i i mean vector or (( )) summation alpha x
i iisequal to 1 to mis called a convex combination of these points. Given points x 1 to X
m summation i is equal to 1 to m alpha i x i is called a convex combination of x 1 to x m,
if the scalars alpha a i satisfy these two conditions. So, a convex hull is nothing but, a set
of, a set that are points that can be written as a convex combination of points of S. So,
given a set s of some finite points and the convex hull of s is the set of all points that can

be written as a convex combination of points in S.

Suppose you have only two points the convex combination in R 2 or given in R d if the
line segment that joints this S 2 points, because of this condition. For example, if i have
three points not two which form a triangle, then the convex hull is the triangular disc
formed by joining those three making a triangle as with those 3 points as vertices. Then
all points, which are on or inside the triangle, become the convex hull, of those 3 points,

a little later, 1 will show you some simple geometrical example.
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eLetS, ={ry, -+, x,,}and S, = {y,, ---,
two sets of points in 1.

* They are linearly separable if and only if
Conv(S;) N Conv(S,) = o.

« Two sets of points in R’ are linearly separable if and
only if their convex hulls do not intersect.

* This is easy to show.

Let us say | am given two sets of points in R d S 1 consisting of x 1 to x m s 2 consisting
of y 1 to y m. Then a very useful result for us, is that the sets of points S 1 and S 2 are
linearly separable. If and only if convex hull of S 1 and convex hull of S 2 do not
intersect that is the see convex hull of S 1, is some set of points in R d which is obtained

as convex combinations of points from S 1.

Similarly, convex hull of S 2 is that subset of R d which is obtained as convex
combination of points in S 2 so the set of points S 1 and S2 are linearly separable. If and
only if the convex hulls of these two sets of points do not intersect. So two sets of points
in R d, are linearly separable, if and only if their convex hulls do not intersect. It is not
very difficult to show by using some well known property of convex sets, so let us show
this.
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* As is easy to see, by definition, S C Conv(S) for any
set S.

+ Given any two disjoint convex sets in R, there exists
a hyperplane such that the two convex sets are on

either side of the hyperplane.

* Hence, if Conv(S;) N Conv(S,) = ¢, then, S, and S,
are linearly separable.

Given any two disjoint convex sets in R d see, every convex set the, the, the property of
convexity see, what is a convex set a convex set is a set where if you take any two points
and find convex combination of those two points. All convex combinations of those two
points are inside, the set, that is how a convex set is defined. The convex set a set is a
subset of R d such that if | take any 2 points in that set, and find the convex
combinations, find the convex combinations is just drawing a line joining those two
points. All convex combinations are in that line segment on that line segment so if | take

any two points the set and join a line or join them by line.

Then all points in that line are inside the set such a set is a convex set. The convex hull,
because is made of convex combinations of points in it will be a convex set, given any
two disjoint convex sets in R d there always exists a hyperplane. Such that the two
convex sets are either side of the hyperplane, this is because any given convex set can be
supported by a hyperplane, supported means there exists a hyperplane, which just
touches the convex set. And all point of the convex set are on one side of the hyperplane
meaning there will be a hyperplane such that the normal to the hyperplane will always
make an acute angle with every point, on the convex set. That is the reason given two
disjoint convex sets in R d they will always exists a hyperplane, such that the two convex

sets are in either side of the hyperplane.



So, given this if convex hull of S 1 and convex hull of S 2 do not intersect, that means
convex hull of S 1 and convex hull of S 2 are two disjoint convex sets. Then there will be
a hyperplane, such that convex hull of S 1 is on one side of the hyperplane convex hull of
S 2 is on the other side of the hyperplane. And the way the convex hulls are made S is the
subset of convex hull of S for any set, because is a trivial convex combination one alpha
is one and all others are 0. Because S is a subset convex hull of S if convex hull of S 1
and convex hull of S 2 can be linearly separable then S 1 S 2 are also linearly separable.
So, this shows that if the convex hulls do not intersect then S 1 S 2 are linearly separable.
Now, we will show the other way if S 1 S 2 are linearly separable then the convex hulls

do not intersect.
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* Now assume S, and S, are linearly separable. Then,
{1V, b such that

”".r, +b>0, Vr; € S, and H']_//, +Fb< O0Vy, € S,

* Let r = 5 a,r; be any point in convex hull of S;.
* Then

WTy 4+ b= Z a,WTz, + b= Z a;(WTz,+b) >0

r, €85, r, €5,

(Note that o, > Oand > «, = 1).

i)

o 4

So, let us assume that S 1 S 2, are linearly separable, what is linear separable means
recall from our lectures on p at the time of we discussed perceptron. We defined linear
separability linear separable means, there is a exists a hyperplane such that all point of S
1 are one side of the hyperplane all points of S 2 are on the other side of hyperplane. So,
the hyper plane is in R d determined by W and b W is a d dimensional vector and b is a
scalar. So, if S 1 and S 2 are linearly separable can there exists W and b such that W
transpose X i plus b is greater than O for all x i in S 1. And W transpose y i plus b is less
thanOforallyiinS 2.



Now this is what we are given because we are given that S 1 S 2 are linearly separable,
now let x is equal to summation alpha x I, be any point in the convex hull of S 1. Then
suppose you take W transpose x plus b now x is this so this will be alpha i W transpose x
i plus b which i can write as summation over x i belong to S 1. Because this, this
summation is over x i belong to S 1 summation over x i belong to S 1 alpha i into W
transpose X i plus b. Why can | write this, because if take the second term that is b
summation alpha i will be equal to b because summation alpha is equal to 1. So | can put
b inside the summation by multiplying alpha i with W transpose x i plus b. Now for
every X i in S 1 W transpose X i plus b is greater than 0. And we know alpha a i is
positive, so the summation over x i in S 1 alpha i times W transpose x i plus b will also

be positive.
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e Thus W7z + b > 0forall x € Conv(S,).

* Similarly we can show that /"7y + b < () for all
y € Conv(S,).

* Hence the two convex hulls do not intersect.

+ We have shown that two sets of points in R’ are

linearly separable if and only if their convex hulls are
linearly separable.

So, what it means is whatever may be the W and b that separate S 1 and S 2 are such that
W transpose x plus b will also be positive. For every x in the convex hull of S 1 not just x
in S 1 but, for every x in the convex hull of S 1, by exactly identical argument, we can
show that W transpose y plus b is less than 0 for every y in convex hull of S 2. Which
means there are some W and b such that for all points on the convex hull of S 1 in the
convex hull of S 1 W transpose x plus b is greater than 0. And for all points on the

convex hull of S 2 W transpose x y plus b is strictly less than 0. Which means convex



hull of S 1 and convex hull of S 2 cannot intersect.

This shows that the two convex hull do not intersect and when the convex hull, do not
intersect we, we completed the proof. So, what we have shown if the convex hull do not
intersect then S 1 S 2 are separable linearly separable. If S 1 S 2 are linearly separable
then convex hull do not intersect, thus we shown that two sets of points in R d are
linearly separable. If and only if their convex hulls do not are are linearly separable, or,

or the convex hulls do not intersect.

(Refer Slide Time: 38:18)

* Here is a simple illustration of this.

So, here is the example take this set of points, and this set of points they are linearly
separable, because | can draw a line what is the convex hull of this points, and to make

all convex combinations, so as | said essentially.
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* Here is a simple illustration of this.

The convex hull will be that, | join all the, the outer lying points with lines to make a
convex polygon, so all points on and inside the polygon are the convex hulls. So, for
those for this set of points and for this set of points those are the convex hulls. And the
set of points are linearly separable, if and only if the convex hulls are linearly separable.
Because the convex hull, because the convex hull is such that you know it does not go
beyond the extreme points, so to say in the set. And hence if the two sets are linearly
separable, the convex hulls will also be linearly separable, this is what we just know
algebraically shown.
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* Theorem: Given i points in R/, Take one of them as
origin. The set of m points is shattered if and only if
remaining . — 1 points are linearly independent.

* For the first part we need to show:
linearly independent = shattered.

o LetS={0,2y.--.1,_,} be the set.
(Here, 0 is the origin or zero vector in R).

» We are given that the (1 — 1) points are linearly
independent:
we can not have Y ~,r, = () unless all -, are zero.

o~

So, now let us go back to using this to show that VC dimension of hyperplanes in R d is
d plus 1 before that we will do one theorem. Given m points in R d take any one of them
as origin then the set of m points is shattered. If and only if the remaining m minus 1
points remaining meaning the points other than the origin are linearly independent. So,
showing if you give me m minus 1 points on the origin in R d that makes m points. The
set of m points is shattered, if and only if the non zero m minus 1 points are linearly
independent. So, to show this because if and only, if to show this | have to show that
linearly independent implies shattering shattering implies linearly independent. So, for

the first part let us show that linearly independence implies shattering.

So, we are given points a set of points 0 and m minus 1 points let us call them x 1 x 2 x
m minus 1 be the set. This is going to be the set for throughout this proof so let us
remember this is the set here 0 is the origin or the zero vector in R d. We are given that
the m minus 1 points are linearly independent we are showing that given linearly
independent imply shattering. So, we are given that the m minus 1 point linearly
independent which means for any scalars gamma i summation gamma X i is equal to 0
only if all gamma is a 0. Unless all gamma i is are O | cannot have a summation gamma x
i is equal to 0. For any scalars gamma i that is what a linearly independent means, so this

IS what we are given | have to show they are shattered.
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» Suppose the set is not shattered.

» That means, there is a way of dividing S into two sets
Si and S, such that they are not linearly separable.

* Hence, Conv(S5,) N Conv(S,) # ¢. This implies
Jo;, (3;, . Z T = Z 5,
r; €951 Yi€S2
(where v, 7, > 0and Y o, =Y 3, = 1).

So, you have to show shattered so let us assume they are not shattered, they not shattered
that means there is a way of dividing them into two sets S 1 and S 2. Such that there are
they are not linearly separable, they are not shattered means the set can be divided into S
land S 2 suchthat S 1 and S 2 are not linearly separable. Which means convex hull of S
1 intersection convex hull of S 2 is not equal to phi, because we have seen not linearly
separable is same as the convex hull center set t, which means there is a point which is in
the intersection of convex hull of S 1 and convex hull of S 2 any point in convex hull of
S 1 can be represented as summation alpha i x i X i belonging to S 1. Any point at convex
hull of x 2 can be represented as summation betaiyiyiinS 2 notethatS1andS 2 are

disjoined sets.

So, the x i is here will be all different from the y i is here because the convex hulls
intersect there is at least one set of alpha i and beta i. Such that summation alpha x i for x
iin S 1is equal to summation betaiyiforyiinS 2. Were of course, alpha i alpha and
beta summed to one and they are positive. So, if i bring it the on this side call for all x i
in S 1 call gamma is equal to alpha i for all x i in S 2 i call gamma i is equal to minus
beta i. Then this is what | have so out of the m minus one points, some will be in S 1
some will be in S 2. If I bring it this side | am considering all points all the m minus 1

points in S.
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* This means, there exist -, such that

* This contradicts the fact the the (1» — 1) points are
linearly independent.

* This completes the proof for

linearly indeperfdent = shattered.

So, essentially what | have is that there exist scalar gamma i that i is equal to one to m
minus 1 gamma i x i is equal to 0. But, this is not allowed because | am given that the
points are positive and not all gamma i can be zero because gamma i are obtained from
this alpha i beta i and alpha i and beta have to sum to 1 so not all of them can be 0. So, if
the set is not shattered then they must exists, scalars gamma i satisfying this which is not
possible because X i is are linearly independent which means linearly independent means
shattering. So, we completed the proof that if the remaining m minus 1 points are linearly
independent then the set is not shattered, then the set is shattered.
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* Now we have to show:
shattered => linearly independent.

» We show this in its contra positive form.

* That is, we show:
not linearly independent = not shattered.

* Now we are given that there are scalars
a;. 1= 1,---,m — | such that

! >

So, the second part we have to show that shattered implies linearly independent, we have

shown that if you give me 0 X 1 x m minus 1 x 1 to x m minus 1 are linearly independent,
then this set is shattered. Now, we are showing that if the set is shattered then x 1 to x m
minus 1 are linearly independent. So, a, implies b is same as not b implies not a, that is
called the contra positive form. So, we will show this in the contra positive form namely,
not linearly independent implies not shattered. If they are not linearly independent means
now this time there are scalars alpha i, so there summation alpha i x i is equal to 0 not all

all alpha i are 0.

But, summation alpha i x i 0, this is just a linear combination mind; this is not a convex
combination. Because we are only given that they are not linearly independent, so there
exists a linear combination of x i that that is 0. So, for example some of the alpha i is
may be positive some of them may be negative, the alpha i is do not have to sum to 1. It
just show all that not linearly independent means is that there is one linear combination
of x 1, that will that will sum to 0. We are given that there exist alpha i such that i is equal

to one to minus 1 alpha i x i is equal to 0.
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* In a linear combination, the scalars can take any
positive or negative value.

* Hence we consider two separate cases.

* First we consider the case where all o, are of the
same sign.

* Then we consider the case where some o, are
positive while others are negative.

So, in a linear combination let us remember that the scalars can take any positive or
negative values firstly they can be positive or negative. And there is no restrictions such
as they have to sum to one or anything, so we will consider two separate cases. In the
first case where alpha i are of the same sign that is the simplest case and that will also
give us some idea of the proof of the general case. And then we consider the general case

where there can be both positive as well as negative alpha i.
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* When all o, are of same sign, we have

m~1
Z | |z; =0
i=1

|ev; |

Y eyl

« Note that+, > 0and "' 7, = L.

:\;

So, let us suppose alpha i has this all alpha i has the same sign we have we have been
given the alpha i is, are that this linear combination is 0. So, if all of them are in same
sign either all of them are positive or all of them negative. If all of them are negative |
can multiply by minus 1 and the equation still holds, so if all alpha i are of the same sign.
Then what | am given is that summation i is equal to 1 to m m minus 1 modulus of alpha
i into x i is equal to O, like we are considering only real scalar that is why this is the

absolute value.

Now, we take gamma i to be absolute value of alpha i by summation absolute value of
alpha j then gamma i is, are greater than equal to O summation i is equal to m minus 1
gamma i is equal to 1. That is easy to see just normalize this by dividing it by some
modulus absolute value of alpha j. So, this gamma i is now are greater than equal to 0
and summation i is equal to 1 to minus 1 gamma i is equal to 1. So, what do | have now
if I divide this equation by summation over j absolute value of alpha j, there are some

constants? So, | can divide this that then the then the factor becomes gamma i.
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* Now we have

* This means that the zero vector is in the convex hull of
the rest of the points.

o If we take S, = {x,.---.x,_} and S, = {0}, then,
convex hulls of S| and S, intersect an e we can
not linearly separate them.

* Hence S is not shattered.

i}

So, what | have is i is equal to 1 to m minus 1 gamma i X i is equal to 0 where gamma i is
are such that gamma i is greater than equal to 0 and summation gamma i is equal to 1.
Which means what | have on the left side is a convex combination of points in X i that is
| have a convex combination of X 1 x 2 x m minus 1 which gives me the zero vector.
What does that mean the zero vector is in the convex hull of the rest of the m minus 1
points, because the convex hull of clustered m minus 1 points contains all convex
combinations of x I, and there is one convex combination of x i that equals 0. Which
means the zero vector is inside the convex hull of the rest of the points, which in turn
means suppose | am my set Sis 0 x 1 X 2 x m minus 1. So, if | divide into two subsets S

land S 2, where S 1 contains X 1 X 2 x m minus 1 and S 2 contains O.

Then the convex hull of S 1 and S 2 intersect there is there is a point in S 2 namely 0 of
course, that is the only point in S 2 which is inside the convex hull of S 1. So, because
convex hulls of S 1 and S 2 intersect S 1 and S 2 cannot be linearly separated. Which
means the original set S cannot be shattered, that means not linearly independent implies
not shattered. So, what have we shown if you give me m points in r R d then if | take one
of them as origin and if the rest of the m minus 1 points are linearly independent, then

the set is shattered, if they are not linearly independent, they are not shattered.



Of course, for the not linearly independent they are not shattered, we have done it only
for the simple case. We have been considering, so far the case where all alpha i are of the
same sign. So, we have to consider the more general case, where the more general case is
the same thing see, because all of them are same sign. | have this once are this | could
normalize to make it a convex combination, once | make a convex combination | can

show convex hull center set, the same thing will follow for the more general case.
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* Now we consider the more general case.
elet} ={i : o;2>20}and I, = {i : a; < 0}.
e Define 5, =a,, Vie I,and v, = —a,, Vi € [,.

* Note that 7,.~, > 0.
* Now, what we have is

So, we consider the general case of course, | could have only considered this because this
includes a special case some of them are positive some are negative. But, anyway let us
say now they are both, positive or negative alpha i is so let us say the set i i i 1 consist of
all indices. | such that the corresponding alpha i is are positive and i 2 contains those
which are negative mind you these alpha i is are those scalars which are in the linear
combination of x i is that goes to 0. Because x i is are given to be not linearly
independent there is one alpha i x i that is equal to zero with respect to those alpha i is, |
am defining the sets i 1 and i 2. Such that i 1 consists of all indices where alpha i is are

positive i 2 consists of all indices that where alpha i is are negative.

Now | know that over all points i summation alpha i x i is equal to 0, now let us say we

define a beta i is equal to alpha i for all i ini 1 a gamma i is equal to minus alpha i for all



in i 2. Now | have summation alpha i x i is equal to O the, i and i 1 those are positive
terms i and i 2 those are all negative terms. So, | can take all the negative terms on the
other side if | take negative terms on the other side the coefficients becomes gamma i and
the positive term the co-vision become beta i .

So, what | have now because | am given summation alpha i x i is equal to 0, summation
alpha i x i is equal to 0 is same as summation over i in that i 1 beta i x i the summation
over j inside i 2 gamma j x j. Essentially from the equation summation alpha i x i is equal
to O, | have taken all the negative terms on the other side. So, | get this equation now the
equation is nice because all the scalars are positive. Now for in i 1 alpha i is positive, so

beta i is positive in i 2 alpha i is negative so gamma is positive.

Now this almost looks like if i take x i ini 1 x i such thatiisini 1 andasonesetand X j |
in i 2 is another set. Then a linear combination of the points of first set is equal to the
linear combination of the points of the second set where the linear combination contains
all positive coefficients. So, | have to now turn it into convex combination but, I cannot
simply normalize, because the summation beta i is may be different from summation
gamma i is. | have to somehow just make sure that that does not pose a problem, so that

is what we are going to do next.

So, given this what we doing now is, let us say summation of beta i is i i belongingtoi 1
IS z and summation over gamma j is z prime. If z is equal to z prime we are done,
because it is simply says, that if i divide it by that corresponding common normalizing
factor. Then this becomes a convex combination some of the x i this becomes convex
combination of the remaining x i. So, the two convex hulls intersect, and hence this set

and that set cannot be separated.
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elet) ., Bi=Zand} . =2

J

» Without loss of generality, assume Z > 7.
» Now we can rewrite the earlier equation as

; v | Z-7
7J" Z 7Al'/ + Z “

e, i€l

* Note that

3. vi Z-—=1Z
27—Iand ;7+ 7 =

l;/ﬁ

g

icl,

%

But in general z and z prime did not have to be equal, one of them has to be greater than
the other, so without loss of generality, let us assume z is greater than equal to z prime.
Now I can write the earlier equation this is my equation beta i x i is equal to gamma j X |
iiniljini2. That equation now I will write as i i i divide it by z first, so | get beta i by
z into x i is equal to gamma j by z into x j to that now i add a 0. This is sum scalar z
minus z prime by z multiplied by 0 the zero vector. So, this gives me anyway 0 so still
true, | earlier have beta i x i is equal to gamma j x j i divided both sides by z. So, beta i
by z into x i is equal to gamma j by z into x j this is summation i i 1 this summation j i
2.Now | can always add a 0, so | add a 0 with a coefficients z minus z prime by z, what is

the purpose of this.

The purpose is now this is a convex combination of x i with i in i 1 because summation
beta i by z summed over i is 1. There are anyway positive and the sum to one, now this
entire thing on the left hand side, is a convex combination of x j such that j in i 2 plus the
zero vector. Because if | sum all the co-vision for x j jin i 2 is the co-vision is gamma j
by z and for the zero vector the coefficient is z minus z prime by z. If | sum all of them
summation over j gamma j by z plus z minus z prime by z summation gamma j is z prime
so this becomes z prime by z add both of them | will get 1. So, what is there on the right

hand side now is the convex combination of all the x x j is such that j in i 2 plus the zero



vector.
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oletS, ={zr; :i€li}and S, = {z; : i € [,} U {0}.

* Then convex hulls of S, and S, intersect and hence 5,
and S, are not linearly separable.

o

* This shows S is not shattered.

» This completes proof of the theorem

So, we take S 1tobe xiisofthatiinil, S2tobexiisofthatiini 2 union the zero
vector. So, S 2isall xiiini 2 and the zero vector, S 1 is x i such that i in i 1. Then this is
a convex combination of points in S 1, this is a convex combination of points in S 2,
because the convex combination of x j is such that j in i 2 plus the zero vector. So, this is
a convex combination of points in S 2, if | take S 1 to be this and S 2 to be this, what we

have shown is that the convex hulls of S 1 and S 2 intersect.

Because the convex hulls of S 1 and S 2 intersect, S 1 and S 2 are not linearly separable,
this shows s is not shattered. So, what have we shown now with this completes the proof
of the theorem, and what does the theorem say, if you give me n points m points in R d
take one of them origin. If the remaining m minus 1 points are linearly independent then
the set is shattered if they are not linearly independent the set is not shattered. That is
what we have shown this completes the proof of the theorem that we listed, now we have

to see how this theorem tells me that VC dimension of hyperplanes is d plus 1.
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* We can sum up our discussion of statistical learning
theory as follows.

* Risk minimization is a general framework that
captures all kinds of learning problems.

« Since we do not know the underlying probability
distributions, a learning algorithm can only minimize
empirical risk.

* We minimize the empirical risk over some convenient
family of functions H.

__* Thisis a general strategy followed by almost all the
i} learning algorithms we consider.

First as | mentioned already shattering of set of points by hyperplanes does not depend
on coordinate origin. So, | can always take one of the points as origin by shift of origin.
So, in R d, we can have d linearly independent points, so d linearly independent points
along with origin will give me d plus 1 points of the kind | want. | can take d plus 1
points, origin plus any other d linearly independent points and such a set of d plus 1
points is shattered. We shown, given any m points one as a origin remaining m minus 1
points are linearly independent, then the set is shattered. So, you take 0 and d linearly

independent points in R d, | can always get d linearly independent points.

So, if | take 0 along with d linearly independent points that gives me a set of d plus 1
points that is shattered. So, we now shown that there is at least one set of d plus 1 points
in R d that is shattered. Now take any any set of d plu S 2 points, we can take one of
them as the origin then there d plus 1 points. Now any set of d plus 1 points in R d will
be linearly dependent, because R d as dimension d any set of d plus 1 points in R d will
be linearly dependent. And hence given any set of d plu S 2 points in R d even, if | take
one of them as origin the remaining d plus 1 points will be linearly dependent and the set
is not shattered. So, we shown that there is at least one set of d plus 1 point that is
shattered and no set of d plu S 2 points is shattered. And that shows that the VC

dimension of hyperplanes in R d is d plus 1.



So, it is a very important theorem, so essentially as the dimension grows, the complexity
of learning hyperplane classifiers learning linear classifier also grows. So, from hundred
dimensional space | want to learn say ten ten thousand dimensional space hyperplane.
Then | need hundred times as many points, so in the hundred dimensional space if
thousand examples is enough to learn hyperplanes. In ten thousand dimensional space |
need hundred thousand points a hundred thousand examples to learn the hyperplane to
the same accuracy. So, this is last class on statistical learning theory, so let us quickly
sum up risk minimization a general framework that captures, all kinds of learning

problems.

Since we do not know the underlying probability distributions a learning algorithm can
only minimize empirical risk. We minimize the empirical risk over some convenient
family of functions H, this is the general strategy followed by almost all the learning
algorithms. That we consider, so in that sense we introduce a very nice generic
framework in which all learning algorithms, can be viewed as far as the statistical

properties are concerned.
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» Minimization of empirical risk is an effective strategy
only if the VC-dimension of H is finite.

* Further, VC-dimension of H gives us a good
indication of the complexity of learning a classifier
from H.

« Essentially, if the complexity is large then we need
correspondingly larger number of examples.

And then we showed that minimization of empirical risk is an effective strategy, only if

the VC dimension of H, is finite. We can only do minimization of empirical risk and



doing that is effective, if VC dimension is finite. Further VC dimension of H gives us a
good indication of the complexity of the, of, of learning a classifier from H. Essentially if
the, the complexity is large, then we need correspondingly larger number of examples.
And the complexity also checks with our intuitive notion of complex as we seen for
hyperplanes in R d. We need d plus 1 parameters and the VC dimension is d plus 1 for
axis parallel rectangles also we need four parameters and the VC dimension is 4. And so
on, so this kind of completes what we are going to do on statistical learning theory. So,
from next class we will we will get back to looking at classification algorithms, for non-

linear problems.



