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Overview of Statistical Learning Theory;  

Empirical Risk Minimization 

Hello and welcome to this next lecture’s in the pattern recognition course. We have been 

looking at some basics of statistical learning theory. We have looked at some aspects last 

time. So, as we said for the next couple of lectures, we will be looking at this. So, just 

briefly recall what we have done last class. 
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We have, we are actually looking at some formalisms for addressing the issue of 

generalization. How can you theoretically talk about correctness of the generalizations 

made by learning algorithm, right? You see in any learning algorithm essentially given 

some examples, and it learns from the examples. A general rule for classification or 

regression or a general function of a regression and the generalization issue is that the 

algorithm should properly generalize. So, that it performs well on new examples which 

are drawn from the same distribution as the training samples. 

So, given some training samples if I am learning a classifier, then, similar examples, new 

examples given to me I should be able to correctly classify that I the issue of whether I 

am generalizing properly or not? Last class we looked at the notion of what is called 



 
 

Probably Approximately Correct learning. It is called PAC learning. And, we have 

presented the entire formalism. We also looked at an example of how we show that a 

specific algorithm, PAC learns a concept class. So, we take a very simple example of AR 

2 classification problem, what I called learning the concept of medium built persons.  

Essentially the target concept is an access parallel rectangle. We have seen example of 

trying to learn with two bisecting over two different class of classifiers. One is over the 

set of all possible axis parallel rectangles on R 2 and we showed that this algorithm PAC 

learn. The algorithm simply looks for any classified in its bag that is consistent with all 

the examples. If there is more than one you take the smallest. This algorithm, if we are 

searching over all possible axis parallel rectangles we showed that it PAC learns. 

Whereas, if we change it to searching over every possible classifier two class classifier 

over r two then it does not PAC learn, okay? 
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So, let us start by briefly recalling the PAC learning framework, so that we can now 

extend it. The PAC learning framework is as follows, we are actually given the instance 

space what, which we denote it as script x. So, all your feature vectors are input to a 

learning algorithm is an element of the instance space or script x, it is called so called the 

input space. y is the output space, that is the set of class labels for considering two class 

classifier. y will be either the set 0 comma 1 or the set z plus 1 gamma minus 1 and so 

on. 



 
 

And, a script C is said to be a concept space. It is a set of subsets of x. It is a subset of C 

itself is a subset of power set of x. So, elements of C are subsets of x. So, we have taken 

some specific subsets of x, and call it the concept space or the set of classifiers. This 

determines what class of classifiers we are searching over. And, we had given examples, 

where X i are drawn i i d according to some unknown distribution P x on X, and y i is 

obtained by classifying X i using a one particular element from C which is called C star. 

C star is the target concept. Of course, we do not know C star, we do not know P x.  

But we know X, y and C. So, its etching over C to find a good approximation to C star 

based on the examples X i, y i given to us that is the set of examples S. So, given the set 

of examples S, we have to set over the concept space C to find some classifier which we 

hope will be a good approximation to C star if there are enough examples given or 

notation was that, if I am learning with S. S has exactly n examples. So, after seeing n 

examples i output some element of C which is denoted by C n. 
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Now, the issue of correctness is addressed as follows. We say the algorithm PAC learns 

the concept class C. If given any epsilon delta there exists some n, so that probability 

errors C n greater than epsilon is less than delta for all n greater than n, which essentially 

means error C n converges to 0 in probability that is, what this means? So, essentially 

given sufficiently given many examples with a large probability, I make less than epsilon 

error, error less than epsilon is greater than one minus delta. 



 
 

So, with a large probability I can make, I will make small error. This must be 2 for every 

epsilon delta. You give me the accuracy to which I have to learn that is epsilon and the 

confidence with which I have to learn delta, then I will give you a set of number of 

examples I need. If you give me that many examples I will always be able to learn to that 

level of accuracy and confidence. No matter what the distribution P x is and what the 

target concept C star is, as long as C star is in C, where error is defined as the P x 

probability of C n delta C star. What is C n delta C star?  

It is the symmetric difference between the set C n and C star, so the set of all points that 

are in C n but not in C star, in C star, not in C n. So, these are essentially C n delta C star 

consists of the set of points in x where the classification based C n and C star will differ. 

So, we are asking what is the probability assigned to that set of points under the 

distribution P x. That is the probability of C n making an error under randomly drawn 

sample. When the random sample is drawn according to distribution P x, because our 

samples are IID with respect to P x, we are also testing our generalization on samples 

drawn with respect to P x.  

That is why, this is the proper definition for error. Of course, as we have seen errors C n 

itself is a random variable, because it depends on C n which in turn depends on the 

random n samples that we got in the sample set S. So, a PAC leaning probably 

approximately correct, is a learn an approximately correct classifier with a loss 

probability. Of course, I had written it the other way. We learn a approximately incorrect 

classifier with a small probability. 

Now, this with the large probability we learn a approximately correct classifier. As we 

have seen last class, whether an algorithm can PAC learn or not depends on the 

complexity of the class of classifiers we are considering. So, we seen a example where 

everything else is same but, if we search our C 1 then the algorithm PAC learns. If we 

search over C 2 the algorithm does not PAC learn. So, essentially if the class of 

classifiers is too complex, then I may not be able to learn anything. That is that is what 

we gathered from the the illustration illustrative example problem that we considered last 

class to explain PAC learning. 
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Now, the concept of PAC learning; PAC learnability is a very interesting concept which 

historically it is at least in computer science circles. This is the first ever time people 

formally addressed the issue of correctness for learning. It is said statistical circles it was 

there even in sixties or at least early seventies, similar concepts were there that is what 

we are going to look at next. PAC learnability the reason why we started PAC 

learnability is easy to understand. It is very simple framework, it allows one to properly 

define what is correctness of learning, allows one to ask questions like whether a given 

algorithm learns correctly?  

We have seen an example of showing that an algorithm learns correctly and showing that 

an algorithm does not learn correctly. We can, in the in the proof that we have given 

about showing the example learns correctly. We have also seen how given an epsilon and 

delta we can actually calculate our bound the number of examples that we need to learn 

to that given level of accuracy in confidence. 

So, this number of examples needed as a function of epsilon and delta is often called the 

sample complexity of the learning algorithm, of the learning problem. So, the PAC 

learnability also allows us to calculate complexities of learning problems, which in turn 

means that we can calculate complexity of different learning problems and hence the 

PAC framework allows us to appreciate which learning problem of given different 

learning problems which are more complicated that one problem is more complex and 



 
 

the other and so on. So, we can get an appreciation of the relative complexities of 

different learning problems, right? 
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Having said this, the inadequacy of PAC learning is that it deals with what can be called 

a ideal learning situation. What is ideal about PAC learning? We assume that there’s a 

god given classifiers C star right. And that C star is in our C. In our class of classifier that 

were searching over right. And the examples or all noise free and perfectly classified, 

which means at any given time over the class of classifiers. I am searching there is at 

least one classifier that correctly classifies all examples, right? This this is both these are 

really difficult assumptions to satisfy, that the God given if even if there is a God given 

correct classifier that it is there in the bag of classifiers I am searching over. Because 

before hand, I do not know what classifier structure would perfectly classify perfectly 

solve this problem and that all examples are perfectly classified is also not a very nice 

assumption. 

So, next we consider an extension of the PAC framework, so that we can analyze more 

realistic learning scenarios. Where we do not have to assume that there exists a target 

concept with respect to which all examples are correctly classified. And we can take care 

of at least the ordinary noise that we expect in any examples for any classification 

problem. 
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So, let us now describe this new frame work. Essentially, we are going to extend it in 

such a way that we do not have to worry about C star and we can talk about examples are 

are not perfectly classifiable. That means, same x may come from different classes with 

different probabilities. So, the notation for the new frame work is as follows. As a as 

earlier we have the input space x, which is the feature space. The output space y which is 

set of class labels or it will be equal to or if I consider regression problem. 

Now, we have what is called a hypothesis space. This is going to be our family of 

classifiers. Of course, it is not just that we changed the name from C to h. We are not 

assuming that h is a necessarily a subset of 2 power x. Instead what will do is each 

element of the hypothesis space is some function that maps x to some other set A. If we 

take y to be 0 1 and every element of h maps x to 0 1, then it is same as h being a subset 

of 2 power x and is same as concept. But, here we will make h such that each element of 

h is a function that maps x to some other set. We call that set A which is, which stands 

for action space. We will currently see why this will allow for many different learning 

situations to be incorporated. 

Another difference is, now the training set x i y i of n examples is drawn iid according to 

some distribution P x y and x cross y. We are not saying you first draw from x and then 

classify with a God given classifier C star. Now, training data is obtained by sampling 

from x cross y using some distribution P x y. Once again like P x in the other case we do 



 
 

not know P x y. But, the training set is drawn according to some distribution x cross y, 

okay? 
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So, let us ask what does this framework give us extra. The first thing as I said we have 

done here is we have replaced what we call concept space C with the hypothesis space H. 

C was defined to be 2 power x. We are taking y to be 0 1 and every we are searching 

over 2 class classifiers only. But now, so what it means is in the, in the new setup each 

element is the hypothesis space H is a function that maps the input space to the action 

space, right? 
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Now, first let us see that if I take A to be equal to y, which of course I can. Then it is 

same as earlier. Then h becomes same as what we call C earlier. But, because we can 

choose A, it allows for taking out a many situation. For example, suppose y is still 0 1 a 

2 class classifier. But, let us take A to be R, then what I am actually learning are 

functions on h that take real values. For example, a discriminant function. So, I may be 

learning a discriminant function, that maps x to real numbers, does not map x to 0 1, 

right? I can use the discriminant function to classify ultimately. But, I am searching over 

the class of discriminant functions.  

Now, that I can easily incorporate by taking my action space to be R even though y is 

equal to 0 1 only the examples have to come from x cross y. So, I cannot take y to be R 

because the examples come from class 0 or class 1 say examples still come from x cross 

y but, the learning algorithm is searching over functions that map exterior line. So for 

example, I can easily incorporate learning of discriminant functions here, which I could 

not have done in the earlier one.  

So, in particular once again as an example not that it is always easy to do this as an 

example you can think that when I take A to be R, right? I am actually learning real 

valued functions. So, which means I can ultimately think that sign of h X will denote the 

class label because I am still considering two class problems and the magnitude of h X 

may give me some measure of confidence in the assigned class. So, suppose X should be 



 
 

in class 1 and h X is positive. If h X is 10, then I would say I have lot more confidence 

that X is class 1 rather than h X is say 10 to the power minus minus 3.  

It is it is just greater than 0. So, in some sense I may be able to use learning problems, 

which actually deal with such things. We will see later on in this course that we will 

actually do this. We will use measure of value of h X sometimes as a measure of 

confidence. So, this is one extra thing that this framework gives us, the flexibility in 

choosing y. We will see a few more example of choosing A the action space. We will see 

a few more examples later on. 
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The second change in our framework is that the examples are drawn from x cross y, x 

cross y by x cross y. I mean the Cartesian product of the sets x and y, according to some 

distribution P x y and x cross y. This allows for much of natural noise. This training see 

for example, in the in the two class classification problem the two class conditional 

densities may all. What does that mean? We actually generate the training data which 

generated by sampling from one class conditional density and the other class conditional 

density, right? So, which means that the same X can come from different classes of 

different probabilities. 

This for example, it is not possible if I have to assume that there is a C star, because C 

star is a function. Given an X, X as one god given class label. But that is in general not 

true when class conditional densities overlap my samples never satisfy this condition. 



 
 

But now this is very nice because my examples are only drawn from x cross y. 

According to P x y and there is no God given classifier. This natural thing that happens 

in all classification problems is taken care off. Of course, in general given the joint 

density of any two random variables x and y, the P x y can always be factorized as to the 

marginal density of x marginal distribution of x multiplied by the conditional density y 

given x.  

Now, if P y given x say these generate distribution. What is that mean for a given value 

of x? Because it is a conditional density. Only one value of y has non zero probability 

and all others have zero probability. That is, when P y given x has degenerated 

distribution that is same as having a god given classifier. For a given x there is only one 

possible y. But in general when class conditional densities overlap, the P y given x is a 

proper density for the same x different y come with different probabilities, right?  

So, because we can always factorize like this and we can assume P y given x is a 

degenerate distribution. The old PAC PAC framework is still part of this new framework 

right. This new framework is a proper extension of the PAC framework. PAC framework 

can be still considered a special case of this but we get more flexibility in modelling 

learning situations. So, having examples done from a class y using the distribution allows 

for many more scenarios such as overlapping class conditional densities and many more. 
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Now, moving on like earlier, what does a learning machine do? It takes a training data 

consisting of n examples as input and output some hypothesis from h now. Earlier it is a 

concept. Now, it is etching over h so it outputs some element of h. Let us call it h of n. 

So, h subscript n is what the learning algorithm or learning machine will output given 

training data consisting of n examples. Now, to rate h n how do we rate h n? Earlier there 

is a God given target concept. So, we can say is h n close to the target concept in terms 

of classifying new examples.  

But, now there is no target concept. So, we have to find some other way of defining by 

their, the goodness of h n. We have already done it in the beginning of the course. We 

introduced briefly the idea of loss functions. We used a loss function this 0 1 loss 

function while developing the bayes classifier. But, that time we have not done this very 

formally. So, that is what we are going to do now again, but a little more formally now. 

Since, now to appreciate where you need loos function is not only that there is no notion 

of a target concept. In general there may be no h that is consistent with all examples.  

So, we cannot even say that the the the classification actually is C of h on the samples, is 

a good indicator of how good it is. Because may be the best possible classification 

accuracy which does not give you hundred percent accuracy, right? So, there may be no 

h is consistent with all examples. So, we need a different way to rate different h and for 

that we use the idea of loss functions to rate different h and hence we define the goal of 

learning. 
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So, what is your loss function? We have already as I said, we already encountered loss 

functions earlier in the course. A loss function in our new notation now is a function 

whose domain is y cross A. The Cartesian product of the output space y and the action 

space A, and maps it to r plus the positive real line. So, the idea is L of y comma h x. L is 

a function of two variables one is in the space y, the capital script y. That is the for 

example, the classification problem and classification labels and the other is in the range 

space of the functions h over, which we are searching.  

So, essentially on a random sample X y, a particular hypothesis h it would say h of X. 

Whereas, it should have said y so L y comma h X is the loss suffered by h on a random 

sample X y. This is how we earlier also introduced loss functions. In general of course, 

we can we can make the loss function also depend explicitly on X. So, we can write loss 

function as L of x comma y comma h X. What it means is; for example, in different 

regions of the feature space, we may choose to measure loss in using different criteria 

depending on the application that may be important.  

So, we could actually take loss function to have a domain which is x cross y cross A. 

Most of what we say here in this course will also hold for this mode general loss 

functions. But to keep notation and other things simple we will only going to look at loss 

function, a function of only y and h X. Also, by convention we assume that the loss 



 
 

function is non-negative or say the range space of loss function R plus because you are 

considering it as loss we assume it to be always non negative. 

Matter of fact, later on we assume loss function is bounded so that, bounded on one side 

anywhere it is bounded by zero. We assume it is bounded on the other side also. Given 

this what is that we want? An random samples X y, A h does h suffers a loss L of y 

comma h X. Now, I have learnt from samples drawn according to distribution P x y 

using the same idea of fairness, that we used in the PAC learning. Now, I can say that a h 

is good if an samples drawn according to P x y, its average loss is small, right? That is, 

how we are going to define the goal of learning. Essentially on samples drawn according 

to the same distribution P x y our hypothesis that have low average loss or better. 
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So, we define a function R that maps H to R plus. That means it assigns a real number to 

every hypothesis so it is essentially a functional. By R of h is expected value of L y 

comma h X, where expectation with respect to P x y. So, that is that is the expectation 

taken this like a Rieman still this integral. But anyway this is essentially a expectation 

integral with respect to the distribution P x y. So, R is called the risk function right. So, R 

of h is called the risk of h and R is called the risk function. What is risk? Risk is 

expectation of loss, where the expectation is with respect to P x y.  

So, the samples are given drawn with respect to P x y and I measure goodness of h, with 

the average loss h will suffer on samples drawn according to P x y, because risk is 



 
 

expectation of loss, where expectation with respect to the same distribution P x y. So, if 

we have A h with low R h that is a better classifier, right? Because on the average on 

similar samples it suffers low loss. So, this is what we are going to use to define the goal 

of learning. So, the goal of learning is to find A h that minimizes risk. So, the goal is find 

the minimizer of the risk function, okay? 
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So, let us formulize this. Let us denote by h star. The arg, the overall script h find the 

minimizing h to R h. So, thus arg mean h belonging to h R h. So, h star is nothing but the 

global minimizer of risk. R h star is the global minimum of risk. So, h star is the global 

minimizer of risk and we define the goal of learning as finding h star, the global 

minimizer of risk. In a given learning problem, where you are given x y and A and the 

loss function and P x y is arbitrary, h star may not be unique. There may be many 

different h star all of which achieve the global minimum.  

But it really does not matter. For us risk is what we want to minimize. So, any h star that 

minimize the risk is same and we are going to compare different classifiers only in terms 

of the risk value that they have and hence, whether or not h star is unique does not 

concern us, right? h star may be unique may not be unique. But the goal of learning is to 

find a global minimizer of risk. So, risk minimization is a very, very general strategy 

adopted by almost all machine learning algorithms. Everything that we considered so far, 



 
 

all our linear classifier learning algorithms are essentially risk minimization algorithms 

right under a particular loss function.  

Many other algorithm that we consider later on in the course can all be viewed in this 

general framework of risk minimization. But minimizing risk is not a easy problem, 

because we have no knowledge of P x y and R of h is expectation of L y comma h x with 

respect to the distribution P x y. And since we do not have P x y, given A h, I cannot 

calculate R of h. So, how do how can I minimize R? Minimization of R directly is not 

feasible because I cannot even calculate R h given A h, because R definition of R h 

involves an expectation integral with respect to P x y and I have no knowledge of P x y. 
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So, what do I do? As you have already seen briefly in the beginning of the course, we 

define another function which I am calling empirical risk function Where we call it R hat 

of n. If you recall our notation from the estimation part of this course when we consider 

various as a parameter estimation. A hat denotes an estimate of some quantity. So, I do 

not know R so I am estimating R. So, this is R hat, and the subscript of an estimator 

denotes the sample size. Because I am estimating with n examples, n is the subscript that 

is why we call this function R hat of n, which also assigns a real number to every h and 

that number is simply 1 by n summation i is equal to 1 to n. L of y i h of X i, where x i y 

i, i is equal to 1 to n is the sample set, right?  



 
 

So, R hat n is nothing but the sample mean estimate of the risk. Actual risk is the 

expectation of L y comma h X. If I cannot calculate this expectation, but I have iid 

samples y i h x i. Then I can approximate this expectation by its sample mean, right? 

That is what we are doing. This is the sample mean estimator of risk obtained from an 

IID samples. That is why is called R hat. Say the idea is that sample mean is a good 

estimator. So, R hat and H would be close to R h. So, because I cannot minimize R I will 

minimize R hat n. 
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So, let the global minimizer of R hat n be h hat star n. This is quite a mouthful. The 

reason why we chose what might look like a strange notation of the following. What is 

your goal? h star, we do not know h star, we want to estimate h star. So, the estimator for 

h star will be h hat star, right? A hat always denotes estimate. So, this is estimating h star 

and n is the sample size. So, h hat star n is the estimator for h star based on n samples 

and that is nothing but the global minimizer of the empirical risk or hat n. Now, given a 

particular h because these samples are there and I know the loss function, I can always 

calculate this, right? Let us let us remember that. 
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The loss function is known to us. Hence, given A h we can calculate R hat n of h, which 

means in principle we can always find h hat star n by optimising R hat n. Of course, we 

the it depends on what the loss function is that is. The summation in the empirical risk 

minimization may be simple to minimize, may be complicatedly minimize we do not 

know the parameterization for h. How complicated different h functions are. But all that 

apart given any h, I can calculate R hat n h. The expression is there.  

Hence, in principle we might be able to find h hat star n by optimizing, right? So, this is 

a very generic strategy followed by all algorithms. We essentially want to do risk 

minimization. But we cannot do risk minimization. So, we do empirical risk 

minimization. That is we are approximating h star by h hat star n. This is the strategy 

used by all machine learning algorithm or at least most of the machine learning 

algorithms, okay? 
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So, the question is if I did this is h hat star n a good approximate of h star? Right, this is 

called the question of consistency of the empirical risk minimization. I actually want to 

minimize risk. I cannot so I am minimizing the empirical risk. So, I am asking is this 

consistent? If I find the minimizer of empirical risk; is that a good approximation to the 

minimizer of the true risk? Is h hat star n good approximate of h for large n of n, right? 

This is the question we want to ask. We already know this question is not trivial, even in 

the simple situation when we have PAC and a target concept. 

We have exhibited concept classes where this h hat star n is not a good approximator of h 

star. So, the issue is we we are going to develop some ways of addressing the issue or at 

least understanding when h hat star n would be a good approximator of h star. So, before 

we go there we can now sum up the whole idea of empirical risk minimization as saying 

that any learning problem has two parts. The first part is an optimization part. That is 

find h hat star n.  

So, once I once i i start with the loss function I choose a loss function I specify a loss 

function, then I can calculate given the samples I can calculate the empirical risk. Now, 

that is a optimization problem one needs clever algorithms, the optimization problem 

might be very complex. We have to find efficient ways of dealing with it. So, that is one 

half of the learning problem. Find the minimizer of the empirical risk. The second half of 

the learning problem is the statistical part.  



 
 

Now, to minimize R hat n, I would have to decide what is the range of h, what is the 

domain of R hat n? That is, over what class of functions h am I optimizing R hat n. Now, 

while I can choose it to make the optimization problem simpler, I should also pay 

attention to so that I chose it, so that it is it becomes a good approximate of h star. That is 

the statistical part. Right now, we are we are asking the statistical question. How can you 

say for what kind of h’s can you see h R star n will be good approximated to h star? 
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Before we go there, let us look at a few example loss functions. We only looked at 0 1 

loss earlier. We will look at a few more example of loss functions. The loss function is 

chosen by us, right? It is part of this specification as a learning problem. So, we can 

choose class functions for whatever reasons. The loss function is essentially intended to 

capture how we would like to evaluate performance of our classifiers, right? So, a loss 

function tells you know how we we rate h x versus y. When y is what a what I should 

have said but I said h x, right? So, it is our specification of how to evaluate performance, 

okay? 
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So, we run through a few loss functions lets go back to the zero one loss function. Let me 

consider only the two class classification problem though it can be done from multiclass 

also as we know. So, take y is equal to 0 1 and in this case we take A is equal to y. So, 

the class of classifiers over which you are searching are actually classifiers. They are 

binary valued functions on x that is what taking A is equal to y means. 

Now, the 0 1 loss function is defined by given any y and h x L of y comma h X, is the 

indicator function of y not equal to h X. That is, if y is not equal to h X that is 1 if y is 

equal to h x that is equal to 0. That is what I of A is indicator of A means the event 

occurs then its value is 1, otherwise value is 0. So, L y comma h X is 1 if y is not equal 

to h X is equal to 0 otherwise, okay? 
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So, that is the 0 1 loss function, because risk is expectation of loss. If I want to find risk 

of h, this is expectation of this. This is a binary random variable, so its expectation is 

nothing but the probability that takes value 1. So, R of h is probability y, is not equal to h 

X that is when this random variable the indicator will take 1. So, R h is nothing but 

probability of y is not equal to h X. So, risk is nothing but the probability of 

misclassification. 

So, h star minimizes probability of misclassification. So, if I choose 0 1 loss function and 

search over a class of classifiers, that only because we have taken A is equal to y. Our 

goal of learning is a function h star or a classifier h star that minimizes problem 

misclassification. So, that is a very nice very desirable goal. For example, that is what we 

did for a Bayes classifier, right? h star minimizes probability of misclassification. If I 

choose 0 1 loss function. 
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Now, in defining this so far we assumed that we were searching over class of binary 

valued functions we have taken A to be y, right? We do not have to hat is the beauty of 

our formalism. We can extend this for example, to take discriminant function learning. 

What do we do? We take A is equal to R. Instead of taking A is equal to 0 1 we take A is 

equal to R. Now each h is a function that maps X to real line so is a discriminant 

function. 

So, we are searching over the family of discriminant functions. Now, we can define the 0 

1 loss as L of y comma h X is indicator of y not equal to sgn of h X. So, even though we 

are learning our h X, the loss depends on only on y n sgn of h X. So, we will define L on 

y cross A that is 0 1 cross real line but given A y and h X, the loss value is 1 if y is not 

equal to sgn of h X, is 0 otherwise, right? This will allow me to extend the 0 1 loss to 

loss function even to the case of learning discriminant functions. 
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There are a few other interesting things that we can do here. First either in this or in the 

earlier case where we assume h X itself is binary, so I can write y is not equal to h X. 

Essentially if I classify correctly the loss is 0 if I classify incorrectly the loss is 1. 
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One is of course arbitrary right i instead of 1 I can take 10, it makes no difference. So, 

having any fixed misclassification costs is essentially same as 0 1 loss, right? We have 

already seen that the two is even when we take A is equal to R. Even when we consider 

discriminant function learning, this 0 1 loss compares only sign of h x with y. The 



 
 

magnitude of h x has no effect on the loss, right? This is very important property of the 0 

1 loss function. It only depends on correctness or otherwise of the classification you can 

do by using the function h, right? Because it only compares sign of h x with y which for 

example means, sometimes I classify h x correctly with a high confidence, does not give 

me any extra brownie points, right? 

I classify correctly or not is all that 0 1 loss function can. While at this point it may not 

be clear whether it is good or bad. It turns out that this makes 0 1 loss function more 

robust to noise in classification labels. So, even if or sometimes some of the labels given 

are wrong by by mistakenly given it by training set. Minimizing empirical risk are risk 

under 0 1 loss function gives me some robustness in noise. We currently would not 

consider it may be later on in the course if if occasion arises I will show you why. 
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So, 0 1 loss is intuitively appealing it under 0 1 loss the the best function h star is 1 that 

minimizes probability of misclassification. So, it is intuitively appealing. But minimizing 

empirical risk under zero one loss function is a hard problem. Firstly 0 1 loss function is 

non differentiable and hence empirical risk function is also non differentiable. So, 

optimizing a non differential function is that much more complicated and the empirical 

risk minimization the 0 1 loss often turns out to be a non convex problem.  

We will see it shortly a little while give you some basic idea of this non convex it is a 

loss functions later on. So, because a non convex optimization problem, the optimization 



 
 

is always a little more complicated and there are many other loss functions which are 

used to make the optimization problem easier, okay? 
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So, look at just a couple of them there are others which we will through the course later 

on. One is one that you already know though we may not have explicitly emphasized the 

loss function aspect of it. It is called the squared error loss function defined by L y 

comma h X is y minus h X whole square, right? As is easy to see the linear least squares 

method is essentially empirical risk minimization squared error loss function. What are 

those minimizing i is equal to 1 to n, y i minus h X i whole square.  

So, that is nothing but the empirical risk except for the 1 by n factor as we said when we 

considered linear least squares method that 1 by n factor makes no difference. So, the 

linear least squares method we considered, linear least squares classification regression 

all of those are essentially empirical risk minimization with square error loss function. 

Because for a two class classification problem as we have seen we can take y as 0 1 or 

plus 1 minus 1.  

We take A is equal to R, right, where where we we have considered h of X which is a f n 

f n function w transpose x plus w naught. So, we have taken A to be R. So, each h is a 

discriminant function as we have seen this kind of empirical risk minimization is a 

feasible only under new framework not under the PAC framework, right? Because we 

take A to be R here or the functions for which we are searching are all real valued 



 
 

functions. Of course, we can also use squared error loos for regression in which case we 

take y to be real line. 
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Another interesting scenario in under squared error loss is you take y to be 0 1 and A to 

be the interval 0 comma 1. Then what happens each h is a function taking values in 0 1, 

so you can interpret it as a posterior probability function, right? Given x why the 

posterior probability of class one for x. Now, we know that under squared error loss the 

minimizer or the expectation of this square of error is the, is the conditional expectation 

and hence is the posterior probability of function. 

We have already seen it when we considered the linear least squares as a minimizer of 

the expectation of this squared error is the posterior probability function, right? Now, we 

are searching over, if I take A to be 0 1 then we are searching over all possible posterior 

probability functions. And hence, risk minimization now we will look for a function in H 

which is a good approximator for the posterior probability function, right? Something 

like the logistic regression. 
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Empirical risk minimization under squared error is a convex optimization turns out to be 

convex optimization problem for linear models that we have already seen. The linear 

least squares a convex optimization problem. This squared error loss is also a very often 

used in many learning algorithm. For example, much in neural network Bayes classifiers 

learning is empirical risk minimization under squared error loss. 
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It is another loss function I called it soft margin loss or hinge loss. We will come across 

this when we do what are known as support vector machines, we will briefly consider 



 
 

that in the entire three classes. So, for here we take y to be plus 1 minus 1 and A as R, so 

each of my h is a real valued function and loss of y comma h X is given as max of 0 

comma 1 minus y times h X. Essentially, because I take sign of h X to be the 

classification and I am taking y to be plus 1 minus 1. If y into h X is positive right, then 

my classification is correct and y into h X is negative, my classification is wrong. So, if y 

into h X is greater than 0 then classification is correct.  

But even if y into h X is greater than 0, I may still suffer some loss. Till y into h X 

reaches 1, the loss is not 0. y h X greater than 1 the loss is 0, y h X less than 1 the loss is 

not 0. Of course, y h X less than 0 also loss is not 0, but y h X is greater than 0 is this 

classification is correct. This also is an interesting loss function and results in a convex 

optimization problem for empirical risk minimization. 
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We considered three different loss functions, two of them we have already seen earlier 

and one which we have not seen earlier. And we can look at the other two loss functions 

like many others that we come across later on. As convex approximations of the 0 1 loss 

function, right? So, look at this what we what we will do is, we take y to be plus 1 minus 

1 for a two class problem and write all loss functions as functions of a single variable 

which is denoted by y into h X, because even we in general take A is equal to R so h X is 

are real valued function. 



 
 

But because you are using sign of h X as a classifier. If y into h X is positive then y into 

h X are the same sign is negative y into h X have different sign. So, y into h X as a 

variable denotes both correctness of classification and any magnitude that you’re talking 

about. So, you can think we can rewrite all loss functions, function of a single variable y 

into h X. 
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If I write that for the 0 1 loss L y into h X is 1, if y times h x is negative and 0 otherwise. 

If it is negative then classification is it correct? So, loss is 1. If it is positive the 

classification is correct, so loss is 0. This squared error loss can all almost also be written 

as 1 minus y into h X whole square. If y is plus 1 then this is anyway true. If y is minus 1 

then originally y minus h X whole square is minus 1 minus h X whole square, which is 

same as 1 plus h X whole square which is same as 1 minus y h X whole square. So, 

square error loss can also be written like this and this soft margin or hinge loss is anyway 

written as a function of y times h X. Now, because all three three functions are function 

of one variable we can plot them, right? 
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So, that is the step function is the 0 1 loss this line right. It see my hinge loss is 1 minus 

x. So, for x less than one it grows like this. x that y into h X greater than 1, it is 0. So, did 

not mark the axis here but on the x axis I am plotting y into h X and y axis I am plotting 

L y comma h X, right? So, that is the hinge loss and this parabola is the familiar squared 

error loss. And we are looking at, if I look at this 0 1 loss function, this is non convex. 

Because if I take a point there and a point here and join them. So, for a convex function 

if I join any two point points on the curve the entire curve between them is below the 

straight line. 

But here if I take a point here and I take a point then join them right, part of the curve is 

above the line part of the curve is below the line so this 0 1 loss function is non convex. 

So, you can think of the the hinge loss or the squared error loss as kind of approximating 

this 0 1 loss function so to say but convexifying it, right? So, for example the hinge loss 

tries to come up till here and then push it like that so that it becomes convex. So, all the 

other loss functions all the other two loss functions here can be thought of as trying to 

find a convex approximation to the 0 1 loss function. And essentially that is why 

minimizing empirical risk under these loss functions is much easier than under the 0 1 

loss function. 
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These are used for classification mostly what we have seen though these squared error 

loss is also is for regression there are also other loss functions which are used in modern 

regression. For regression also you can use squared error loss but, it is very sensitive to 

data errors. In squared error loss, the loss is y minus suppose I am I am fitting a straight 

line if I have got four points, three of them are closed to a straight line but fourth one is 

very far away.  

Now, if I take the intuitively of a straight line because the fourth one is far away and I 

take square of the distance. The risk for it which is the sum of all the squared errors will 

be very large. On the other hand if I move the line towards the out layer then may be all 

the errors will become intermediate so the square of the errors might be much smaller. 

So, the squared error loss becomes very sensitive to data errors such as out layers. There 

are loss functions which are better from the from such robustness point of view. 
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Just for completeness here are two. A simple way to make squared error more robust to 

out layers is instead of taking square you take absolute value. Absolute value does not 

grow as fast as square that is the reason why it is a little less sensitive to out layers. But 

obviously optimizing absolute value is a harder problem than optimizing square, okay? 

This is non differentiable. There is another loss function that we will once again consider 

when we look at a same kind of methods for regression. It is called the epsilon 

insensitive loss.  

Essentially is once again like the hinge loss. I predict h X as the target y is the true target 

y minus h X absolute value is the error. If the error is less than epsilon, then I suffer 0 

loss, otherwise I suffer a linearly growing loss, right? So, this is called an epsilon 

insensitive loss which also has some interesting robustness properties and also makes the 

optimization problem resulting empirical risk minimization problem a convex 

optimization problem. 
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So, as we said there are many different loss functions one can think of. Many of them 

also make the empirical risk minimization problem efficiently solvable. That is the 

reason why we chose them. By the choice of loss function can efficiently tackle the 

optimization part of learning, right? But let us get back we will see many algorithms for 

this later on anyway. So, let us get back to what we started with the statistical part of the 

learning problem, right? The consistency of empirical risk minimization. 
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So, our objective is to find h star. Let us let us once again briefly review the issue of 

consistency. Our objective is to find h star the global minimizer of risk. We do not know 

how to minimize R, we do not even know how to calculate R h for any given h. So, we 

mean by the empirical risk R hat n instead of R, right? Because we know how to 

calculate R hat and we know how to minimize it. So, because I cannot minimize R I will 

minimize R hat n, and hence I find h hat star n. So, we for our for our approach to work 

we want h R star n to be close to h star.  

And, we already know what close means by our experience PAC learning. Close only 

means in terms of their classification accuracies on new samples and that is given by a 

risk. So, what we are interested in is? Is the risk of h hat star n same as risk of h star. 

Risk of h star of course, h star is a unknown but fixed function. So, R of h star is some 

constant but what I am learning is h hat star n. So, I am asking is the true risk which I 

cannot calculate but, is the true risk of h hat star n does it converge to h star? The 

convergence is as n tends to infinity. 

Of course, like in the case of PAC learning we know h hat star n is random, because it 

depends on the random sample, right? So, because of that R h hat star n is a sequence of 

random variable. So, we have to define in what sense this convergence is and like in the 

PAC case we take convergence to be in probability. But essentially the question is does 

the risk of the true risk of the minimizer of the empirical risk does it converge to the 

global minimum of true risk 
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That is what consistence of empirical risk minimization about. What is the reason why 

we think empirical risk minimization works? Sample mean is a good estimator and 

empirical risk is simply sample mean estimator of true risk. So, for any given h. R hat n h 

converges to R h if n is large. So, for every h whether I calculate R hat n h or R h it 

should not make much of a difference, right? 

This is the law of large numbers. Because we only want convergence probability is weak 

law of large numbers. Weak law of large numbers says that the sample mean converges 

to the expectation of the random variable. So, for any h, R hat n h as n grows will 

become very close to R of h. Because the true risk of any hypothesis can be 

approximated by its empirical risk like this. It stands to reason that, the if I minimize this 

it should be as minimising this. But, this convergence does not mean that R of h hat star 

n converges to R h star. It only says R hat n of h converges to R of h that is the same h. 

Here, I am not worried about R hat n.  

But I am asking R of some other sequence of random variable h hat star n. Does that 

converge to R of h star? So, a priory there is no reason why is the law of large numbers 

should imply this, right? Our reason intuitive reason for preferring empirical risk 

minimization is law of large numbers in our mind. We know that for sufficiently large 

sample R hat n of h will be close to R of h and hence it is all right minimized empirical 

risk. But we also know that this convergence says nothing about whether R of h hat star 



 
 

n converges to R of h star. So, what we are interested in is that the risk of the minimizer 

of empirical risk, that the true risk of the minimizer of empirical risk. Does it converges 

to the global minimum of true risk? 
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Let us consider the familiar scenario. The examples we have seen in last class to 

appreciate this a little more. Let us take A and y to be zero one. Let us suppose we use 

zero one loss function and example, let us assume that the examples are actually 

generated by drawing them from x using a P x and then classifying using a particular 

function, let us call it h delta and H. In general I want P x y but this only means that I am 

taking P x y to be P x into P y given x and P y given x is degenerated distribution. As we 

have already seen doing this is within our framework.  

So, suppose examples are drawn according to some P x on x and classified using a h 

delta. Now, I am giving 0 1 loss function, 0 1 loss function’s risk is probability of 

misclassification and every example is of course classified according to h delta, right? 

So, the global minimum of true risk is 0 and one of the elements of h is that achieve this 

global minimize h delta. Of course, there might be others as we said but we settled on R 

of h delta is 0. So, and global minimum of risk is 0. So, we will be happy learning any h, 

such that R of h any h hat star n such that R of h hat star n ultimately goes to zero as n 

tends to infinity. That is what we want to do in this scenario. Let us ask is that feasible? 



 
 

Because of this case, my risk is the expectation with respect to P x y but P x y is 

essentially only P x is random. 
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So, my risk for under 0 1 loss function, so it only tell ask me risk of any h is the P x 

probability of h delta h delta. As we have already seen if we take P x y to be actually P x 

and P y given as a degenerate then our new framework is same as PAC framework. So, 

the risk under 0 1 loss function of any h is same as P x of h delta h h delta. That is, this 

scenario is roughly same as what not roughly actually same as what we considered under 

the PAC framework. 

Now, under 0 1 loss the global minimum of empirical risk is also zero. Because, h delta 

is in h, I am searching over h there might be others. But, certainly I still that gives me 

zero value for empirical risk under any samples. So, the global minimum of empirical 

risk is also 0. Of course, for any given n there may be many h other than h delta with R 

hat n of h is zero. Now, what is my optimization algorithm to do? There are many, many 

h’s so I have to choose any one. So, my optimization algorithm chooses some general 

rule to output such a hypothesis, right? Like for example, the smallest h as we have 

considered in our example last time. 
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So now, we are close we are same as our previous example. Say if I take h to be 2 power 

x, then this is same as the example we have considered earlier. And hence we know that 

h hat star n delta h delta P x of probability of this will not go to 0 with n, right? That is 

what we showed last time in the PAC example. Thus in this scenario my minimize of the 

empirical risk the two risk of the minimize of the empirical risk will not converge to the 

global minimum of R h, right?  

Of course, there is law of large numbers still holds, even in this case even if I take h 

equal to two power x law of larger numbers holds for any specific h, R hat n is still 

converges h to R of h. But that is not good enough for this to happen, right? So, we know 

that simply because law of large numbers guarantees that sample mean converges to 

population mean. 
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It does not mean that the risk of the minimize of the empirical risk converges to the 

global minimum of risk. And as we saw in from our PAC example, it depends on the 

choice of h. If we choose 1 h, it happens we choose another h it does not happen. Hence, 

the statistical question is for what h is empirical risk minimization consistent? Consistent 

means given any epsilon delta greater than 0 exists a n, so that R of h hat star n minus R 

of h. This difference be greater than epsilon has probability less than delta. So this is the 

question of empirical consistency or empirical risk minimization. In the next class, we 

will see, how can we answer this in a sound statistical sense?  

Thank you. 

 


