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Lecture - 20 

Learning and Generalization; PAC learning framework 

Welcome to this next lecture in the course on pattern recognition. Last class, we have 

been, we have just started discussing the theoretical issues of how does one address the 

generalization abilities of a learning algorithm. In general, how does one talk about 

learning from examples has been done correctly, is there a notion of correctness of a 

learning algorithm? 
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So, this class, we look at these issues in a formal sense and introduced first the concept 

of what is called probably approximately correct learning. So, let us start with what we 

said last time about learning and generalization. So, we have been discussing this issue 

of learning and generalization of classifiers. Of course, the, the issue is same for 

classifiers as well as learning regression functions. Basically, we learn a classifier or a 

function using training examples. 

So, given training examples X i and y i, the idea is to learn a general rule call it a 

classifier, call it a function that would predict y which could be called the target or the 

output, given the input that is X, X can be called instance the input. So, given a new 



instance of the pattern or input for a function, you want to predict the target output of the 

class label. So, this is the general learning example, given the training examples I want to 

learn such a rule. 
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So, the question we want to address in a next few classes is how does one formally 

define the goal of learning? Is there a notion that a learning algorithm is correctly 

learning or incorrectly learning? Any learning algorithm essentially takes training data as 

the input and outputs a classifier or a function. So, a learning algorithm can be thought of 

as a black box whose input is a set of training samples whose output is a function a 

classifier or a regression function, but essentially the output is a function. 

As we have seen so far for this what is the algorithm do it searches over some chosen 

family of functions and finds one that optimizes some chosen criterion function. This is 

the algorithm chosen for example, all our linear classification learning algorithms for 

example, say linear least squares it searches over all functions of the form w transpose X 

plus b f X is equal to w transpose X plus b, over this class of functions it searches to find 

a function that minimizes the, so called sum of squared errors on the training examples. 

So, essentially any learning algorithm searches over some chosen family of functions and 

outputs a function based on some criterion function that is optimized. So, the criterion 

function of course, is arbitrary and we want to know whether this is the way of defining. 

And if you chose a different criterion function will the will the correctness of learning 



change, but such as it is. So, we want to for the next few classes only look at learning 

algorithms like this. We will ultimately try that all up with risk minimization that we 

have considered earlier. But for now let us say a learning algorithm which searches over 

some family of functions script f, it takes is as input the training data and outputs some 

function. 
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Now, we want to say how do i formally define correctness of learning that is the, that is 

the task for this class. And we are going to do it to start with in a in a simpler setting. 

Now, before we get into the actual formalism I like to first make you appreciate that 

there can be many different formalism simply only looking at one. So, we will just look 

at the problem in a bit generality to start with. So, as we discussed last time a simple 

example is curve fitting given points X i y i on real line, you want to fit a curve y is equal 

to f x. This is of course, least squares is the only algorithm we done so far. So, in that 

sense everybody knows least square curve fitting, so one simple function learning 

problem is curve fitting.  

So, given training data X i y i we want to learn an f such that y can be approximated with 

f of x. Now, we already saw both while we were doing the least squares algorithm and 

hence regularized least squares. And also in the last class that the data error meaning the 

error between f of X i and y i that is if I take a particular function f the error on the 

training data which is f X i minus y i by that itself is not a good measure of how good a 



function f is we have seen. For example, if I got n points and if it a nth degree 

polynomial I can get 0 data error, but that does not mean that nth degree polynomial is 

the best fit. 

(Refer Slide Time: 06:18) 

 

Now, this is the basic notion of how do we decide? Are we learning correctly? Do we 

have enough examples for the particular learning problem that we have? Is this learning 

problem more complex than some other learning problem and so on so forth? But the 

basic I all this comes because just minimizing data error is not good enough, because that 

is not, what we are interested in we are actually interested in how you perform on new 

unseen data. As I said there are many different ways of formalizing this. And what we 

will do is before we get to this specific formalism that we will do in detail. I will just 

look at one other thing very intuitively just to give you an idea that there are different 

ways of addressing this question. 

So, one very interesting generic approach is, what is called minimum description length 

principle called MDL, what is minimum description length principle? Here we do not 

worry about whether we are generalizing well or not we simply say I have got training 

data X i y i I am fitting a function f so that I want so say y hat y i hat is f of X i I am only 

bother about the training data. Even then can I say whether the function is a good fit for 

the given data or not. 

So for that what we do is we pretend that what we actually want to do is to send the X i y 



i over some communication channel. Now, we want to send X i y i over some 

communication channel, what can we do? We have to send 2 n numbers using some 

number of bits. We can, we can arbitrarily fix some precision in the numbers X i y i they 

want to send that will define the number of bits. Of course, it depends on the range of 

values y I you have, but X i and y i have, but such as it is for a given level of precision 

we can fix some number of bits that we need to send. 

So, one way we can send these numbers for a channel is simply send the 2 n numbers X i 

and y i, because this is straight forward thing or what we can do is we can send all the X 

i's then we send a fitted function f and then instead of sending y i's we send y i minus f X 

i. So, we first send the function f and instead of sending X i and y i we send X i and y i 

minus f X i. For example, in the best case suppose function exactly fits then we do not 

have to send 0 we, we will we need only say one bit for learning 0. 
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So, we are sending only X i we are saving all the bits that we would have used for 

sending y i, but of course, we do not know how many bits we have we have already used 

up in sending f. So, one way we can send X i y i, otherwise we can send X i the function 

f and the errors y i minus f X i. Why would this be an interesting idea? If the fit is good y 

i minus f X i would have small range, because it was small range we will be able to send 

them using smaller number of bits compared to sending all y i, you know that that is 

straight forward. 



Of course, this saving in bits is not coming free, we can send y i minus f X i only if we 

already send f, because at the receiver given X i if I want to create y i. I have to first 

calculate f X i and add it to y i minus f X I, so that I can get y I. So, while we may save 

lot of bits in sending y i minus f X i we have to also consider the cost of sending f. So, if 

f is very complex then what we save in bits by sending the errors instead of y I, it may 

not offset, it is more it may be it may be offset by the bits that need to send the 

description f. 

So if I can fit a simple function which is a good fit then sending f would not cost too 

much in terms of bits And I am saving lot of bits in sending y i minus f X instead of y I, 

on the other hand if f is complex then even if the fit was good and I am saving bits by 

sending y i minus f X i I am losing bits in sending f. So, one way I can rate different f is 

to say what is the total number of bits that I need to send the data using different f? The f 

that allows me to send the data with the least number of bits could be called the best f 

that is what is that is why it is called the minimum description length principle we want 

to describe the data using least number of bits. 
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So, either we can describe by simply giving X i and y i or describe the function f and 

then X i and y i minus f X i. So, this kind of balances the data error and model 

complexity in natural way as you seen with the complex model, you may get low data 

error, but the, because of the model complexity that may not be the choice. We looked at 



the regularized least squares as an example for this, so MDL, the minimum description 

principle is another way to balance the data on model complexity. To be a little more 

specific, suppose we are fitting polynomial functions X i and y i and on real line. So, we 

are fitting y as a equal to f X is a polynomial function. So, if I am fitting a dth degree 

polynomial it has d plus 1 coefficients. 

So, sending f means sending another d plus 1 numbers, so what does that means? I can 

either send 2 n numbers X i y i or I can send n numbers X i that is X i is common. So, let 

us not worry about X I, so either I can send n numbers y i or i send d plus 1 numbers of 

course, these have to be send with good precision. And then the send the n numbers y i 

minus f X I, if the fit is good i save lot of bits in y i minus f X i. So, even if I am sending 

d plus 1 numbers for f overall I may get, but this will also immediately tell me that 

getting a good fit using high degree polynomial will not pay. 

For example, under MDL if I used a dth degree polynomial to get 0 errors I, I do not use 

any bits in sending y i minus f X i, but instead of sending n numbers y i I am sending n 

plus 1 coefficients for the nth degree polynomial. So, getting a good fit using a high 

degree polynomial will not pay and the disc minimum description principle naturally 

takes care of, naturally takes care of balancing the data error on the model complexity. 

Essentially, this is an idea of you know the basic idea that everybody would like to say 

simple models are preferred there is something called Occam’s razor that some of you 

might have heard of which is generally stated by the pitty saying that things should be 

simple but not simpler. 

So, essentially given lot of data you want a model to explain it a simple model that 

explains it is always better than a complex model that explains it, so essentially want to 

put simple model. So, minimum description principle kind of captures is over comes 

rather, but in this kind of description length we are only looking at the training data. We 

are asking whether f is a good fit for this specific data at hand, we are not asking at all 

about whether it will fit new data there is no statistics here. 

Of course, there can be statistical model build around minimum description principle, we 

would not do it, we will we will consider slightly different statistical model which is also 

related to this. But we consider MDL for two reasons; one is this is another interesting 

way of looking at data error verses model complexity trade off 2 is that this issue of what 



is correct? What is the best fit? The definition of what is a best fit is, is not is not 

something unique. 
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Here is a another very nice interesting way of asking which is a good function fit we 

would not consider MDL anymore it is just being intuitively described just to let you 

know that there are other ways of doing it, What we are going to do is we will 

concentrate on a particular and a different statistical approach, once again to address the 

issue of correctness of learning where this is statistical in the sense we are explicitly 

going to ask whether the learned function generalizes well. 

So, we are bothered about how it does over all the patterns not just the once in the 

training set. Now, intuitively again one can always learn the correct relationship between 

X i and y i, if you are given sufficient number of representative examples I have put both 

sufficient and representative in codes its intuitive saying if I have given large number of 

representative examples. So I should be able to learn correctly, if I have solved a large 

number of good representative integration problems in class 12 then I should be able to 

crack any integration problem that comes in the exam. So, our learning certainly depends 

both on having enough number of examples and enough number of good examples that 

is what I mean by representative. So, if I all the examples are that I solve are very simple 

then maybe I have I do not learn the concept well. The second thing that we should not 

remember is that how many examples is sufficient of course, depends on the family of 



classifiers from which over which you are searching. For example, if I am even when I 

am searching say linear classifiers if I am searching for linear classifier over R 2 I need 

to only learn 3 parameters a hyper plane in R 2 is specified by 3 numbers or we can even 

parametrize the 2 numbers. 

But if I am learning it in a 100 dimensional space I need to learn of the order of 100 

parameters. So, if I have to learn more parameters intuitively I would need more 

examples. Simply if I am learning non-linear classifiers I may need many more examples 

than learning linear classifiers. So intuitively once again we would suspect that how 

many examples is sufficient depends on how complex is the class of classifiers over 

which you are trying to learn.  

So, the formalism we are going to present has to capture all these issues So, going to start 

with of course, we will expand we will extended it later, but to get out ideas clear. We 

will start with a simple formalism where in the training example there is no noise and 

where the goal of learning is very well defined. Historically this is the first formalism 

that attempted to study complexity of learning from a computer science point too, but 

from this statistical learning theory point of view there are other formalism that were 

predating, today, both these kinds of things are have come together. So, we will we will 

first start with this formalism. 
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So, in formalism we will say a learning problem is defined by giving the following, you 



given some set I will call it script X which we called the input space. For most problems 

X will be some d-dimensional real Euclidian space, because you looking at all real 

valued features are functions defined over real Euclidian spaces. So, X is essentially a 

feature space for us, but anyway if the learning problem we will say the input space is 

the script X. Then we have an output space for this formalism we will consider only the 

classification problem. So, the output space is 0 1 of course, output space could be R, but  

now we will concentrate only on the classification problem. 

So, output space is denoted by script y and for us is the set containing only 0 1. So, this is 

the set of class labels then we say were given a concept space; concept space denoted by 

script C is a subset of 2 power X. If you if you recall one of the earlier classes, we 

considered this notation 2 power script X is the power set of script X that is 2 power X is 

the set of all possible subsets of X.  

So, essentially we are given some particular class of subsets of X which we will call the 

concept space, some particular class of subsets of X which we will call the concept 

space. Why, because that denotes a family of classifiers, why does they denote a family 

of classifiers? If I take any C belonging to script C that will be a subset of X, because it 

is a subset of X i can also think of it as a function that maps X to 0 1 where the function 

is C of X is 1, if and only if that X is in the subset C. A, a caution about notation 

whenever you are considering any subset of any set we can always represent that subset 

also as a function like this, this is called the characteristic function of the subset. 

So we are going to use the same symbol C to denote the function as well as a subset that 

is mixed in this part of the sentence see we are saying C of X here So, C is a function 

instead of saying X belongs to C here C is a set. So, essentially any C there is a subset of 

X can be represented by its characteristic function which we also denote by the a same 

symbol C where on any given X from script X C of X takes value 1, if that X is in the 

subset C. So, in that sense any subset any class of subsets of X can be thought of as a 

particular family of classifiers. For example, if you think of linear classifiers they are 

define by hyperplanes, a hyperplane can also be viewed as giving you a subset on which 

on the positive side of the hyperplane, so those are the half spaces. 

So I can think of half spaces as the class of subsets of X that I am working on or I can 

think of hyperplanes as the class of classifiers I am working on. So, any case C denotes 



the family of classifiers that we will be working with then; obviously, the, the, the 

problem is a learning problem. So, we have a set of examples, so as usual we will 

represent the set of examples S as X i y i there are n examples. We assume X i's are 

drawn i i d according to some distribution P x on X the distribution can be arbitrary, we 

may not even know it. 

So, the examples are drawn like this and each y i is obtained as C star X i So, there is 

some particular element C star belonging to this class C which we call the target concept. 

And all my examples are classified exactly according to C star so C star is like a god 

given classifier. So, there is noise in the example given an X i there is a god given 

classification for X i which is given by C star X i. So, we are given this is i i d examples 

X i along with their class label which is obtained from a target concept C star. 
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So, my task now is to given these examples searching over C can I learn some classifier 

which is a good approximation to C star. So, a few comments on the formalism we are 

considering a 2 class case that is clear, because we are taking Y is equal to 0 1 and that is 

why we are able to represent any classifier also as a subset of X. So, every classifier is 

the function from X to 0 1 and hence it is also a subset of X. 

So that is why C is a family of classifiers, we essentially calling this a concept space, 

because we can think of this as learning some concept from example learning the 

concept of when integration by a parts is useful. So, I will give you some examples 



where it is useful some examples where it is not useful can you learn general rules of 

where it is useful or may be more simple and more colorful example let us say I have a 

son 4 5 years old I, I every day I take him on the terrace of my house and as cars passed 

by on the road I tell him that is a Maruti car, this is a Ford car whatever let us say error is 

a Maruti car and this is not a Maruti car. 

Now, can he learn to recognize of course, kids of that age have remarkably nice memory 

for shapes. So, generally within a few days they learn the car names easily so I may be 

classifying the examples where reading what model it is on the car. But the kid may be 

learning it using his own shape descriptors, but any case that is the kind of thing. So, 

here my examples comes randomly I do not know what distribution I just stand on my 

terrace and whatever car passes by that is my example I show to the child and from these 

examples we are learning. 

So, you can think of it as that is why you we often think of this as a concept learning 

from examples the learning algorithm essentially is. So, coming back to the formalism 

now forget about the examples. Coming back to the formalism, the learning algorithm 

knows X; obviously, knows Y knows the class of C, because that is over which it is set it 

does not know C star, it is only given examples I had learn C star. So, the environment 

may through a, some example one learning problem is the environment pick some C star 

from C. And those examples are the learning algorithm and the learning algorithm has to 

learn that particular C star. Today may be teaching my son to recognize makes of cars, 

tomorrow may be teaching makes of bikes. 
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So, no matter what it is once I identify a class C the environment throws examples at me 

which are classifier acting to some C star picked up from C and I have to learn that. So I 

essentially have to learn the target concept from examples. So, let us continue with the 

comments we do not know the distribution P x, we are not assuming any knowledge of P 

X, P x can be arbitrary we, we may have no knowledge of P x. And no matter what is the 

distribution is we should still learn I cannot order the distribution of how Maruti and non 

Maruti cars comes on my road whichever way the nature orders them that is how I have 

to learn.  

However, we are making examples i i d ensures that we get representative samples from 

whatever distribution we are expected to learn, we assumed i i d so that examples are 

independent. So, for example, if I if we think of a teacher teaching you math’s concept of 

how to integrate by parts, we do not allow the teacher to cheat you by solving simple 

examples in class and giving difficult examples in the exam. 

So, examples are randomly drawn from all the problems in the text book in a 

independent manner. So, they will be simple one, they will be complicated one, so 

everything comes. So, by making examples i i d we can kind of ensure representative 

examples are same. We are trying to teach a concept through examples that come from 

arbitrary distribution since we are taken y i to be C star X i in this problem there is no 

scope for noise in this formalism and assuming C star belongs to C means that ideally we 



can learn the target concept. Because searching over C saying that I should I should 

properly approximate C star is reasonable, because the target concept exist in my bag. 
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Now, before we go further let us ask why do I need this particular family of classifiers I 

can for examples take C to be 2 power X, what does that mean? It means that I am 

searching over every possible classifier 2 class classifier. If I take C to be 2 power X it 

simply means that I am searching over all possible 2 class classifiers. So, no matter what 

the target concept is I would always be able to learn there is no restrictions.  

Obviously, this looks too ambitious, as we shall see later on even theoretically it is not 

viable if you take C is equal to 2 power X except in the special case where X is a finite 

set. You will never be able to learn well, but any way we can take C is equal to 2 power 

X where the idea is that we choose a particular C based on some knowledge we have 

about the problem not because of the kind of learning algorithm, we have maybe I have 

an algorithm that can only work with certain C. 

So, the best I can do is to set over that C and hope that the target concept is in that or I 

have some extra knowledge about the problem, because of which I can take a particular 

C even though I do not know C star. For example, the second guess occurs when we 

choose linear classifiers we know that linear separabilities very hard, we know that there 

many situation where even the best linear classifier may not be good enough. But still 

because the algorithms are simple and you know they have nice structure, we may still 



want to learn linear classifiers. 
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So, one example is instead of taking 2 power X we take set of 4 half spaces and learn the 

family of linear classifiers this is because we have a good learning algorithm. Here is 

another example where we may choose C based on some knowledge we have once again 

to make it a little colorful. We will continue this example for all the theoretical 

development, we have in this class. So, let us say we want to learn the concept of 

medium build persons based on 2 features height and weight, because it is a simple R 2 

classification problem, the ideal medium build is just to give it you know some flavor. 
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So, X is R 2 y 0 1 is a 2 class problem and we would be given some examples of course, 

examples have no errors drawn from some arbitrary distribution. So, for example, my 

examples could be like this there are there are 2 axes there are some point which are all 

positive examples, one class examples. All those red stars are the other class examples, 

because it is medium build essentially in the middle of the height weight range is what 

we will think of medium built any extremes are not medium built. 
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So, for example, these could be one set of examples for our concept. We have given this 



what can we say about C, for example, we will say that if somebody is medium built at a 

particular height and weight under the same weight. And another height also we will call 

somebody medium built then at that weight in between all the heights also he should be 

medium built. So, one way in which we can approximate medium built is to say that the 

class C should be axis parallel rectangles. 
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So, my god given concept can be that they, they are some weight height ranges if the 

height weight falls inside that Then we will call it medium built outside we call it not 

medium built. So, we can think that the unknown C star would be some rectangle whose 

sides are parallel to the coordinate axis. So, we will call it axis parallel rectangle, so we 

can choose C to be set of all axis parallel rectangles, once we choose C to be set of all 

axis parallel rectangles assuming that C star belongs to C means that the god given 

classifier is also an axis parallel rectangles. So, we are assuming that all our examples 

come classifier with respect to one particular axis parallel rectangle. We do not know 

which particular axis parallel rectangle that is what we have to learn. 
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Now, we will keep the example aside, we will first develop the theory of defining goal of 

learning and then we will come back to the example. So, the particular kind of formalism 

we are considering is called probably approximately correct learning PAC learning for 

short PAC, we will we will we will define it shortly not that each C in C can be viewed 

either as a subset of X or a binary valued function as I said. And we will simultaneously 

be using both notions of a element of the concept class. 

Let us say C subscript n denotes the concept or the classifier output by the learning 

algorithm after it processes n i i d example we have seen a learning algorithm with a 

black box who takes samples and outputs a function from its class of function, so script 

C is your class of functions or classifiers. So, after seeing n i i d examples what it 

outputs? Let us denote it by C of n C subscript of n for correctness of the learning 

algorithm, we want C n to become close to C star as n becomes large, because now we 

know examples, all examples have classified according to C star we have a very good 

notion of what is correctness. So, we want C n to become close to C star as n becomes 

large by close to C star, we do not mean the subset C n should become same as the subset 

C star. The closeness is in terms of classifying samples drawn from X according to the 

distribution. 
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So, C n and C star are closed if both of them as classifiers are equally good, actually a 

sets where the identical or not is not of particular interest to us So, let us use all this 

intuition to define whole of learning now. So, given that I have output C n let us first 

define what we call by error of C n, how badly does C n do? So we will define error C n 

at the P x probability P x a distribution remember, so P x a distribution over the space 

input space script X which means for every subset of X. It assigns some probability. So, 

so error of a classifier C n a classifier C n is a subset of X error of this concept or 

classifier C n. It is defined as the probability assign by the P x distribution to the subset 

of X which is C n delta C star where delta represents the so called symmetric difference 

between 2 sets. 

So, C n delta C star is C n minus C star union C star minus C n C n minus C star is set of 

points in C n, but not in C star. And this is set of points in C star but not in C n So, C n 

delta C star consist of the set of all points in X which are in C n and not in C star or in C 

star not in C n. Now C n and C star are subsets are also classifiers, so if a point is inside 

the set it, it is it is given as a positive class outside we have given it as a negative class. 

So, this essentially those are in C n, but not in C star then C n would say one for their 

class where C star would say 0. Similarly, those in C star, but not in C n C star would say 

1 for that class C n would say 0 for that class. So, the symmetric difference C n delta C 

star essentially gives us the set of all points on which the classification of C n and C star 

will differ . 
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So, this P x probability of C n delta C star is same as a probability of the set of all X on 

which C n X is not equal to C star X, this is essentially what you want. If this is 0 then 

we for, for all our purposes C n and C star are same, now even if the subset C n and C 

stars are different this probability could be 0, because the distribution P x is arbitrary. We 

know nothing of the distribution P x they might be subsets of X for which P x value 0. 

So, if C n and C star differ by a subset of X whose P x probability 0 then the error would 

also be 0. So, error C n is essentially is P x probability of C n delta C star which is same 

as the probability that C n and C star would differ on classifier. So, this is actually the 

generalization error we define it, because there is the notion of the correct concept. So, 

this is the generalization error of the classifier C n the probability that a randomly drawn 

X would be wrongly classified I can say wrongly classified because C star X is god 

given correct classification for it. 
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So that is what we define error of C n to be. So, error of C n is the probability that on a 

random sample drawn according to P x the classification of C n and C star differ. So, 

what does, what we want out of the algorithm as we see more and more examples we 

want error of C n to become 0 then C n becomes essentially same as C star and that tells 

us that our learning is fine. So, we should define our goal of learning as, as error C n 

going to 0 as n tends to infinity. Before we can define this, we should remember that 

error C n even though it is defined as a probability is itself a random variable, why 

because C n is a random variable C n is a function of X 1 X 2 X n. So, because C n is a 

random variable which is a function of the random variables X 1 to X n error C n will be 

a random variable. 
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So, when we say error C n converges to 0 we should properly define the sense in which 

error C n converges as some of you may know when we are considering sequence as 

random variables there are multiple ways of defining convergence. So, keeping this in 

mind; this is how we will we are going to define correctness. We say learning algorithm 

probably, approximately, correctly learns a concept class C. If given any epsilon delta 

which are strictly positive there exists a number n less than infinity such that probability 

that error C n is greater than epsilon is less then delta for all n greater than n. So, this part 

simply means that probability error C n greater than epsilon goes to 0 as n tends to 

infinity. 

So, for those of you, who are familiar with modes of convergence of random variables 

this is convergence in probability that we are saying error C n converges to 0 in 

probability. It really does not matter if you do not know what convergence and 

probability means we, we do not need that in this course otherwise, so that is why I have 

explicitly put it here. So, this definition is good enough this definition is actually 

definition of convergence and probability. So, given any epsilon delta greater than 0 

there exist a n such that probability error C n greater than epsilon is less then delta. 

So, no matter how small delta you give me and how small epsilon you give me I can 

always find a N such that the probability that the concept I output after seeing an 

examples has error more than epsilon is less than delta. This should happen no matter 



what P x is no matter what C star is I am only know class C m I am I am there to learn 

any, any C star belonging to C as long as you give me examples. So, no matter what P x 

is no matter what C star is the algorithm should ensure this that is when we say the 

algorithm can probably approximately correctly learn the concept class C i i in shortly I 

will explain these adjectives in the definition. First what is this probability with respect 

to probability respect to what distribution this probability? What is the random variable 

inside here C n? C n is a function of X 1 to X n. 

So, this probability is with respect to the distribution of n tuples of i i d samples, because 

C n is a function on n i i d samples. So, this probability is essentially the N fold product 

probability of P x, because these, these examples are drawn i i d. So, this probability with 

respect to the distribution of N tuples of i i d samples drawn according to P x on X P x is 

arbitrary, but the testing and training distributions are the same. We are giving samples 

with respect to P x and we are assessing you on error C n error C n can be 0 as you 

already said even if C n is not equal to C star, as long as under P x C n and C star as C n 

delta C star is 0 as 0 probability mass. 

So, while P x is arbitrary the fairness in the in the in the formalism comes, because I am 

giving you training examples drawn i i d according to P x. And I am defining correctness 

also with respect to the P x probability of where you make errors. So, for example, if 

there is a space in X where P x probability 0 subset of X i where P x probability is 0. 

Then not being able to learn how to classify those x’s, you are not penalized for because 

you will never ever see those examples. So, you are not expected to learn or more 

colorfully let us say in the town in which I live or let us say I am trying to teach my son 

to distinguish between Maruti cars and ambassador cars. And let us say in the town I I 

live all Maruti cars are non white and all ambassadors are white. 

So you have seen many examples and if my son learn thought that color is what 

determines Maruti versus Ambassador I cannot blame him that is essentially what this 

means, because errors C n is respect to the P x distribution. So, I am giving you training 

samples of P x distribution and I am rating you once again based on how you do on a 

random sample drawn with respect to the same P x. 
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So, for example, if I learnt what a medium build persons in India are that that notion may 

not carry over to medium built persons. Let us say in northern Europe, because there 

generally people are much more hefty, but the, the algorithm cannot be penalize that is 

what is mean by even though I am saying that this should hold for any distribution. It is 

still fair to the algorithm, because both training and testing are done on the same 

distribution. So, essentially an algorithm PAC learns if probability error C n greater than 

epsilon is less than delta for sufficiently large n and P x and of course, any C star. Why 

does the name error C n less than epsilon means C n is an approximately correct 

classifier, because it does not make more than epsilon errors. 

So, what this says is the classifier output by the algorithm after seeing n random 

examples is approximately correct with a large probability, it is probability of being not 

approximately correct is small or it is probability of being approximately correct is. So, I 

can write the same thing as probability error C n less than equal to 1 minus delta is 

greater than 1 minus epsilon greater than equal 1 minus delta. 
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So, essentially what you are saying is that I learn an approximately correct classifier with 

a high probability that is where that is why it is called probably, approximately correct 

learning, the epsilon delta are often called the accuracy and confidence parameters. So, I 

am learning to an accuracy of epsilon and with a confidence delta. The idea is that no 

matter what accuracy and confidence you give me I should be able to tell you an n, so 

that if you give me that many examples I can learn to that accuracy and confidence. Let 

us go back to the example of learning that medium built persons and think of a simple 

algorithm strategy and ask is that a PAC learning algorithm. 

So, X is R 2 now I have I have to have learning algorithm this, this is 3 d. So, I do not 

have to worry about how I am implementing the algorithm where there is a real computer 

algorithm or not I am just looking at a strategy for the algorithm, it is it knows the class 

C and it has to stretch over C. So, this is what the algorithm does after seeing n examples 

the algorithm outputs a classifier that correctly classifies all the example, it changes into 

it, it is back C looks for some C which correctly classifies all the examples. 

Now, because C star is in C and C star classifies all examples correctly, at any given time 

no matter how many examples you have seen they will always be at least one classifier 

in my bag which correctly classifies all the examples. So, I should I should always be 

able to find a classifier which correctly classifies all examples though C star correctly 

classifies all the examples, there is no guarantee that given any finite subset of examples 



that is all I can see in a learning algorithm they may be other classifiers within C which 

also classify this finite examples correctly. 

So, there can be more than one C in script C that is consistent with all by consistent we 

mean it classifies all the examples correctly. So, more than one C what should my 

algorithm do it is still should still have a simple rule of what to do this is an algorithm all 

this say. So, what it does is it outputs the smallest such set C, because each classifier is a 

subset of X i can have a notional smallest set C. 
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So, if there is more than one C that is consistent with examples I output the smallest 

subset how do I define small, if there is a finite subset of C in my, so finite subset of X in 

my bag and if that finite subset is consistent then I am comparing finite subsets. So, 

smallest is in terms of number of points for finite sets. So, if I am looking at an infinite 

set and a finite set finite set is smaller than the infinite set, if I am looking a 2 finite sets; 

the one which has small number of points is on the other hand if I am comparing 2 

infinite sets they are subsets of R 2. 

So, we will say there is in terms of areas, because there is problems of if suppose one set 

is aligned what is its area, it does not matter for us this is simple example we will never 

encounter that. So, essentially the algorithms strategy is very simple output, any element 

of your C find an element of yours of your concept class that correctly classifies all the 

examples. If more than once such elements exists, find the smallest, smallest is in terms 



of number of points. If there are finite sets in terms of area, if there are infinite subsets of 

R 2 we look at 2 different concept classes and both use the same strategy and find out 

what the algorithm does. So, for C 1 we take the set of all axis parallel rectangles, we 

have as already seen that might be a nice thing, because we know this C star is an axis 

parallel rectangle. 

Of course, this C 1 is still uncountably infinite that number of elements in the C 1 is 

uncountably infinite, because given any 2 real real numbers one above the other in R 2 I 

can draw an axis parallel rectangle with those 2 as the as 2 vertices. So, the number of 

axis parallel rectangle is still uncountably infinite, but C 1 is contains only set of axis 

parallel rectangle, no other subset of R 2 is involve. We will take C 2 to be 2 power X 

that is C 2 is the set of all possible classifiers. The idea is we are going to show that if I 

learn with this strategy, this strategy looks very simple the strategy is same I am just 

trying to look at the simplest element in my concept class that is consisting with all 

examples looks a very nice strategy. Now, not I am not bother about how I can 

implement for various concept classes, but forget that. 
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It looks a very nice strategy and what more can I do I am I I am and I was told there is no 

noise, so might as I look for a classifier that classifies all examples correctly. If there is 

more than one such thing I can find in my bag I am giving you the simplest one, but the 

same strategy when the bag is different can make a difference between being able to 



learn well to not being able to learn well that is what we are going to show. Of course, 

we assume as earlier that C star, the god given classifier is an axis parallel rectangle and 

C star belongs to both C 1 and C 2, because C 1 is the set of all axis parallel rectangles C 

star will be in C 1 C 2 is set of all possible subsets of R 2. So, once again C star will be 

in C 2, all our examples are classified according to C star. So, hence given any X y it is 

positives if it is inside the rectangle C star negative if it is outside. 
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So, let us recall this is our sample this is the C star which we do not know. So, when I get 



examples I get points randomly sampled according to P x, if a point falls inside this it 

will come with a positive of one label, if it falls outside it will comes to a negative or 0 

label. So, first consider the, our learning strategy with the concept class C 1, so what 

does it do after seeing n examples? It is looking for a a smallest element in C that is 

consistent with all examples. Now, all elements in C at infinite sets, so it is looking for 

the axis parallel rectangle with smallest area that is consistent with all examples. 
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So, what will that be? It will be axis parallel rectangle that encloses all positive examples 

seen so far see I have seen this positive examples. So, all of them have to be inside the 

rectangle by inside, we will define on the rectangle also. 
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So I am looking at all possible axis parallel rectangles which contain these points and 

among them I am looking at the smallest one namely the smallest area, so that will be the 

smallest axis parallel rectangle that encloses the positive examples consider output of 

algorithm would be this. So, the smallest C consistent with all examples would be the 

smallest axis parallel rectangle enclosing all the positive examples seen so far. That 

means under the strategy of the learning algorithm for all n C n would always be inside C 

star. Because all the examples have to be also inside C star, because C star is the correct 

thing and C n is the smallest such enclosing rectangle. So, C n would be always inside C 



star. 
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Now, let us show that this is a PAC learning algorithm whenever an example is classified 

as positive by C n. It would also be classified positive by C star as we just now seen C n 

will always be inside C star, hence the points of input space X where C n makes errors 

would be the annular region between the 2 rectangles. So, this is what my algorithm will 

learn the smallest axis parallel rectangle, this is the god given rectangle. So, only for 

points that falling in the annular region the classificational anything falling inside C n is 

also inside C star. So, the 2 classifiers 2 classification likely anything that is outside C 

star, once again both C n and C star will classify as negative. 
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So, the only place where C n and C star will differ is this annular region between the 2 

rectangles. So, since C n is also an axis parallel rectangle which is inside C star the C n 

delta C star, because one of them is subset of others. So, C n delta C star will be only C 

star minus C n that is this annular region. So, error C n is the P x probability of this 

annular region. Note that we are not really bothered about the area of this annular region. 

We are only interested in the probability mass of this region under P x that is what error 

C n is the idea can be anything. Given any epsilon, what we have to show do is the 

bound the probability that error C n is greater than epsilon that is what we have to show 

for probability approximately correct learning. 
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The error will be greater than epsilon only with the probability mass of the annular 

region is greater than epsilon. So, when does this event of error C n greater than epsilon 

occur for a, the, the probability mass of this annular region is greater than epsilon means 

when none of the examples seen happen to be in the annular region. Why would that 

much annular region come in the first place? Because all the examples that I have seen 

happen to come either inside C n or outside C star, no examples fell in the annular 

region. Suppose, an example fell in the annular region by my strategy of finding the 

smallest if is fell in the annular region, it will be the positive example by my strategy of 



smallest rectangle enclosing all the positive examples my C n would be slightly bigger 

and the annular region will shrink. 
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So, the even that I make some error is linked to none of the examples seen happens to be 

in the annular region why otherwise the rectangle learnt by our algorithm would have 

been closer to C star. So, hence the probability of the event error C n greater than epsilon 

error C n greater than epsilon is event, because C n is a random variable. So, the 

probability of the event error C n greater than epsilon is same as the probability that 



when n i i d examples are drawn according to P x, none of them happened to come from 

a subset of X that has probability of at least epsilon. 

So I have seen n examples, but none of them fell in the annular region and we are saying 

annular region is at least epsilon probability. So, the probability that the annular region 

will have at least epsilon probability mass is same as when I drawn n i i d examples 

according to P x not even one of them came from a particular subset of X that has a 

probability mass of at least epsilon. That is all examples came from a subset of 

probability at most 1 minus epsilon. What is the probability of this happening if I have 

drawn n examples? All of them come from a subset with probability mass 1 minus 

epsilon is 1 minus epsilon to the power n. 
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So, the probability of this happening is at most 1 minus epsilon to the power n hence 

what can we say probability error C n greater then epsilon is bounded above by 1 minus 

epsilon to the power n. Now, the rest is done, we know as n tends to infinity 1 minus 

epsilon to the power n goes to 0 for any epsilon greater than 0. So, I can always find a n 

capital N such that 1 minus epsilon to the power n is less then delta for all n greater than 

capital N. Specifically if I want n I can put n here and solve for it that means n should be 

greater than or equal to l n delta by l n 1 minus epsilon. So, these many examples so I 

can get a bound on examples by the time I seen these many examples, my probability of 

making an error more than epsilon is less then delta. 
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So, for this n we have probability error C n greater than epsilon is less then delta for all n 

greater than n no matter what C star is and that shows that the algorithm PAC learns the 

concept class. Now, let us go back to the other one, let us say we work with C 2 is equal 

to 2 power X here we are searching over all possible 2 class classifiers. So, obviously 

we, we do not expect the algorithm to learn anything, we are learning over every possible 

thing. It is very difficult to learn that is because there is too much flexibility in the bag of 

classifiers over which you are searching, let us show this formally in this class now. 
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So, for the second one when I am taking my concept class to be 2 power X, what will be 

C n? After seeing n examples, what is the smallest subset that is consistent with all 

examples? Because every possible subset of X is in my bag after seeing n examples the 

smallest C element of C 2 that is consistent with all examples is simply the set finite set 

consisting of all the positive examples seen so far that is the smallest set if I say any of 

this. If X is any of these points is positive otherwise it is negative that is consistent with 

all examples. 

So, this algorithm simply remembers all positive example, because I am taking this 

smallest set in my bag C 2 that is consistent through all examples the smallest set is 

nothing. But the set of all positive examples seen so far this happen here only, because 

every possible finite set is also in our concept class in the earlier, it could not happen 

because our concept class contained only axis parallel rectangles. So, I could not give 

this as the smallest set, but here, because every possible subset is there I will never learn 

anything more than remembering the set of positive examples. 
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So, this; obviously, does not PAC learn, so C n delta C star would be what once again C 

n is a subset of C star, because C n is the positive set of positive examples. So, it is only 

C star minus C n that is C star minus some finite number of points from it. So, if I take 

some finite number point makes no difference. For example, P x is a continuous 

distribution error C n is P x C n delta C star which is same as P x C star, because C star 



minus some finite number of points. So, which is still be P x C star which means if I take 

any epsilon that is less than P x C star probability error C n is greater than epsilon is one 

for all n no matter how large n is. 

Hence this algorithm does not PAC learn I hope you can appreciate the example my 

learning strategy is same I am just looking in my bag to find a classifier that is consistent 

with all examples and it is the smallest among all such consistent classifier. But with the 

same strategy depending on whether I am searching on a nice bag or a too flexible a bag 

at one end I I I I can PAC learn other end I cannot. 
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So, example clearly illustrate the difficulty of learning from examples the bag of 

classifiers consist too large. So, normally all of us know that we need sufficient number 

of examples representative examples and so on. But we do not we are not so conscious 

that it also depends on the bag in which I search it as a matter of fact in with this 2 power 

X as it is easy to see from our proof. No matter how many examples you give me I still 

cannot learn the concept, so is not just having sufficient number of examples I should 

also be searching over a bag that is not too flexible that is not true fuse. Of course, this 

largeness between C 1 and C 2 is not in the terms of in terms of number of elements in 

these 2 concept classes after all both C 1 and C 2 contain uncountably infinite number of 

points. 
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We would later on define a proper quantitative measure to say when we can say one 

concept class is more complex than the other. But now, we can say this following every 

axis parallel rectangle can be specified by four quantities. If you give me the left bottom 

vertex and the top vertex, those are four real numbers a axis parallel rectangle is uniquely 

defined which means it can be parameterized by four parameters, whereas I cannot 

finitely parameterize the set of all possible outset of R 2. In that sense the axis parallel 

rectangle say much simpler concept class than the other also of course, given that I only 

need these 4 numbers by finding mean next max X mean by max y among all positive 

examples I can very easily calculate the, the smallest axis parallel rectangle and it is very 

efficient. 
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So, the concept of PAC learning is interesting, because you know it allows us to define 

properly what the correctness of learning algorithm. It allows us to bound the number of 

examples tells you the relative complexities of different learning problems. However it 

deals with very ideal learning situations, we have a god given classifier then perfectly 

classifier noise free. So, this is then, so that we get our teeth into the problem. So, next 

class, we will try to extend this formalism, so that we can look at more, more realistic 

learning situations. Thank you. 


