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Lecture - 2 

Overview of Pattern Classifiers 

Hello, welcome to this next lecture in Pattern Recognition. We will just briefly recall 

what has been done in the previous lecture, we have we as I said we consider pattern 

recognition as the two step process, featured measurement extraction, slash 

classification. First, there is a there are two steps; first, from the pattern you measure 

some features, so each pattern gets converted to feature vector, and then, there is the 

classification step, the classifier takes feature vectors and maps them to class labels. And 

as I just said, this course is about mostly designing classifiers, feature extraction is very 

much problem dependent and hence, there are not too many general techniques. But 

classifier design is what we would mostly be concentrating on and any classifier is 

something, that maps feature vectors to class labels. 
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As I said, function learning or the regression problem is a closely related problem to 

pattern recognition and will be considering both of them together. In both cases, the main 

information we have, as we seen last time is a training set of examples where, given as 

set of examples, pattern belonging to class 0, pattern unpattern belonging to class 1. Such 

as, I have got many a’s and many b’s, and I need to learn a class for distinguished a and 



b. So, the main information we have for the design, is a training set of examples and both 

for classified learning as well as regression or function learning, we need to learn from 

the training set of examples. 
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In we have decided that, we will be following the statistical approached pattern 

recognition, so called statistical pattern recognition, the characterizing feature of it is 

that, we model the variations of feature values through probability distributions. So, a 

feature vector belonging to a class, now becomes a random variable or which takes 

different values with different probabilities. That is what, is meant by variations in 

feature values, is captured through probability distributions. 

So, each of the feature vectors, so each of the features themselves will be contains 

random variables and the feature vector will be a vector of continuous random variables. 

As we seen, one immediate result of using the statistical viewpoint is that, we can define 

optimal right, we have looked at for example Bayes classifier, which says put the pattern 

in the in the class with highest posterior probability. Posterior probability, the probability 

that class is i, given the feature vector and we have mentioned that, the Bayes classifier is 

optimal in the sense that, it minimizes probability of misclassification. In this lecture we 

will we will show that the Bayes classified is indeed optimal. 
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Let just briefly recall our notation, this script x denotes features space, the space of all 

possible feature vectors. Usually, if you have n dimensional feature vector that is, n 

features usually, the features space is R n, the undiminished real nucleance space, y is the 

set of class labels will be some finite set. From most of the course, we will be 

considering binary classification, in which case y is 0 1, X is the feature vector, as n 

components x 1 to x n. I have put a transpose on the expanded feature vector, because all 

vectors are column vectors. Hence, a classifier is a function that maps the feature space 

to class labels, this is for every feature vector, there is a class label, in in for for this class 

or class labels are only two is a binary classification problem, so class labels can it be 

either 0 or 1. 
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We also introduce to the idea of class conditional densities and so on. So to recall f 0 and 

f 1 are the class conditional densities for class 0 and class 1, both are densities over the 

features space, p i is the prior probability, the probability that y of x equal to i, as I 

mentioned last time y of x denotes the random variable denoting the class of the feature 

vector X. Similarly, q i’s are the posterior probability that, the probability that y of x is i 

conditioned on x, for a given x or the probability this class is i, those are the posterior 

probabilities. 
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Still recalling our notation, we as we have mentioned last time, Bayes theorem is given 

there we can get one conditional density in terms of other conditional density. Applying 

to our current case, it is a tells you that, q i x is f i x p i by z where, f i is class conditional 

and p i is prior probability, q i’s are the posterior probabilities; where, Z is the 

normalizing constant, which simply f 0 p 0 plus f 1 p 1. 
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So, now, let us stay at Bayes classifier again, Bayes classifier is the function, which 

given an x assigns 0, if q 0 x is greater than q 1 x otherwise, assigns 1. As I said, Bayes 

classifier puts a feature vector X into the class, whose posterior probability is higher, q 0 

is the posterior for class 0. So, if q 0 is higher than q 1, I put X in class 0, so that is the 

classifier, I put b a subscript and h to say, is a Bayes classifier. From our Bayes theorem, 

we know that checking q 0 greater than q 1 is same as checking p 0 f 0 greater than p 1 f 

1. So, all we need here, class conditional densities and prior probabilities, and we are 

going to show, that the Bayes classifier minimizes probability of error in classification. 
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As go through with these simple proof, as we know, each classifier h maps this the 

features space x to the set of class labels that is, 0 comma 1. So, for a given h, given a 

classifier, define R i of h at the set of all x, for which h x is equals to i that is, for 

example, R subscript 0 of h is the set of all feature vectors, that get mapped on to class 0 

by classifier h. So, R 0 h is the set of feature vectors, which will be put in class 0 by a 

classifier h similarly, R 1 or the set of feature vector that are put in class 1 by a classifier 

h., as we defined last time, let F of h denote the probability of error for the classifier h. 
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Now, we can derive an expression for F of h, when will we make an error if the classifier 

says class 1, while it is actually class 0 or vice versa. So, F of h is the probability, that X 

actually belongs to the region R one h where, the classifier would say class 1 and also X 

belongs to class 0 or disjointly X belongs to R 0 h and X belongs to C 1. Because, R 1 

and R 0 disjoin sets, these two events are disjoined and the probability gets added. Now, 

we can always write probability a a and b as probability a given b into probability b. 

So, here I can write this as probability X belongs to R 1 h, conditioned on X belonging to 

C 0 multiplied by a probability X belongs to C 0 and probability x belongs to C 0 is the 

prior probability p 0. So, now, F of h becomes p 0 times probability X belongs to R 1 h 

condition X belongs to C 0 plus p 1 times probability X belongs to R 0 h, condition X 

belongs to C 1. 

Now, we know that, condition on X belonging to C 0, the random variable X has density 

f 0 similarly, conditioned on X belonging to C 1,  the random variable is density f 1. So, I 

can write both these probabilities as integration of the corresponding density functions or 

appropriate regions, so this becomes the value of F h. Now, in this expression there is 

something, that is very important to note R 0 h and R 1 h are mutually disjoint and they 

add up to the whole space. 

Because, given a h, every X is either put in the space R 0 or put in the space R 1, for all 

X in R 1, the integral adds f 0 into p 0. And for every x, in R 0, the integral adds p 1 into 

f 1, which means for any classifier, the other integral is such that, at every X, we either 

add a p 0 f 0 or p 1 f 1. So, we actually integrate for the entire space either p 0 f 0 or p 1 f 

1 at each X. 

At which X we put p 0 f 0 in the integral and at which X we put p 1 f 1, depends on 

whether that X is in the region R 0 or R 1. And all that the classifier can do is to change 

these regions, it it can only decide, at which points p 0 f 0 has count in the integral and at 

which points, p 1 f 1 is count in the integral, the classifier can only change the regions R 

0 or R 1. 
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Now, let us look at, what the Bayes classifier regions are, when a Bayes classifier puts a 

pattern in R 0, if p 0 f 0 is greater than p 1 f 1 and puts it in R 1, if p 1 f 1 is greater than 

p 0 f 0. So, using the previous expression for the Bayes classifier, the probability of error 

of the Bayes classifier becomes integral of p 0 f 0 on R 1 plus integral of p 1 f 1 on R 0. 

But the R 1 and R 0 are such that in the region R 1, p 0 f 0 is less than p 1 f 1 and in the 

region R 0, p 1 f 1 is less than p 0 f 0, which means this integral is integral over the entire 

feature space of minimum between p 0 f 0 and p 1 f 1. 

Since for every classifier h , F of h is integral where, at each X, we have to put either p 0 

f 0 or p 1 f 1 and both of them are positive quantities, and Bayes classifier at each X, 

picks the minimum of them, no classifier can do better than this. So, Bayes classifier is 

optimal in the sense, is probability of error is less than that of any other classifier that is, 

given the knowledge of the probability densities, no other classifier can perform better. 

Let us say, very strong result the classifier is very intuitive, if we put it in the class, 

which has highest posterior probability that automatically minimizes probability of error. 
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So, one way of looking at this is suppose the left curve is p 0 f 0 and right curve is p 1 f 

1, say essentially at any given X, this is a one dimensional features space, though the x 

axis is the feature space. So, given any X, that is the value of p 0 f 0 there and that is the 

value of p 1 f 1, whichever is higher, I put it in that class. So, that line denotes the 

optimal Bayes threshold, to the left of this line, the put on the on this class, right of that 

line, they have put on that class and the shaded regions are the error. 

The error comes from a the area under this curve is the probability that feature vector of 

this class will have value outside this line and similarly, area on this side is that a feature 

vector of this class, will have it is value on this side right. So, as you can see, any 

classifier has to essentially put a threshold suppose, I put a threshold somewhere else one 

can see that, the error integral has increased that is, exactly the proof that you have done. 
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So, Bayes classifier is of course, optimal to minimize the probability of error but, how 

does one implement the Bayes classifier, to implement the Bayes classifier, we need the 

posterior probabilities. That have those are not available to us, as I said the only 

information we have, is the training set of examples now, how do I get the posterior 

probabilities. As you already seen, we is enough, if we have the class conditional 

densities and the prior probabilities because, checking whether q 0 is greater than q 1 is 

same as checking where, the p 0 f 0 is greater than p 1 f 1. 

Now, these class conditional densities and prior probabilities can be estimated from the 

training set of examples and there are different techniques of estimating this class 

conditional densities, which we will consider later on in the course. And then, one can 

implement a Bayes classifier with the estimated quantities, one small caveat is that, the 

Bayes classifier is optimal, if I exactly know the posterior probabilities. 

But if I am implementing the Bayes classifier with estimated posterior probabilities 

obviously, the optimality no longer holds because, there may be others in estimation. 

And hence, my classifier is not truly the Bayes classifier but however, it is, that is the 

best we can do. So, we will estimate the class conditional densities and prior 

probabilities from the training set of examples and implement the Bayes classifier. We 

will of course, look at the techniques for estimating and also many  other details about 

the Bayes classifier, as the course progresses. 
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But Bayes classifier minimizes probability of error that is what we said, of two flows that 

it giving a class label which is wrong, is minimum amount all possible classifiers. But, 

there are two kinds of errors in classification, we can classify a class 0 pattern as a class 

1 pattern or a class 1 pattern as a class 0 pattern. These are variously called as false 

positives or false negatives, type one error or type two error, false alarm, missed 

detection and so on. 

Essentially, some of this terminology comes from second world war, during the second 

world war time is, when this Bayes generation theory was actually developed. And the 

important classification problem to be solved is, they are these radars to detect fighter air 

craft enemy, air craft. So, based on the radar signal reflection that we got, somebody has 

to make a decision, whether what we have is a enemy air craft coming into bomb or there 

is no enemy air craft. 

So, if those are class 0 and class 1, if I make an error, there can two kinds of errors, one 

is when I there is an enemy air craft, I actually think there is no enemy air craft or when 

there is no enemy air craft where, just a flying bird or something, I  may think that is an 

enemy air craft. There are two kinds of errors and; obviously, the cause of these errors 

are very different right, a false alarm that is, thinking that something is an enemy air craft 

is only so much of inconvenience for people. 



Because, I may sound an alarm or everybody goes into bomb shelters and other hand, I 

miss detection when there is actually an enemy air craft. But, I do not think that, there is 

one can be a very, very fact like that, many people may die or similar things happen in 

biometric recognitions. Suppose, I have I have an identity authentication system, you 

give your finger print to authenticate a customer. If he is genuine customer but, the 

system says he is not genuine, there is only a phone call from an angry customer. 

On the other hand, a non-genuine customer gives his finger print and the system wrongly 

takes him to be genuine customer, that can be real loss to the system. So, in general, the 

cause of errors may be different and we may want to trade one type of error with other. 

We may not be bothered about minimizing probability of error but may we may want to 

minimize the cost of the error well, that can also be done. 
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It is done by, what is called loss functions. So, earlier we have been rating classifiers 

based on their probability of error but, a more general method to assign a rating or a 

figure of merit to a classifier is, what is called a loss function. A loss function is a 

function, whose domain is y cross y, y as you you may remember, is the set of class 

labels. That is, given any pair of class labels, it assigns a positive real number, l is a 

function from y cross y to R plus, R plus is the positive real line. 

So, given any pair of class labels, it assigns a positive number to it, the idea is that, on a 

given X, y X the random variable denotes the true class of X, h of X denotes the class 



labels that a classifier h will give. So, l of h X comma y X denotes the loss suffered by a 

classifier h and pattern X, the classifier would call over h of X whereas, it should have 

called out y of X. So, the loss function measures the discrepancy between h X and y X, 

the cost of the discrepancy between h X and y X. 

So, the idea is that, I choose a loss function so that, l of h X comma y X denotes, in in in 

some units, the actual loss I suffered by h in a pattern x in the sense that, h would have 

called h of X whereas, the it should have called y of X. Now, we can define our figure of 

merit F, which assigns a number to each classifier h, as expected value of l of h X comma 

y X. This expectation is of course, with respect to the underlying distributions of X and 

certain expectation of the loss function is called the risk function. So, many classification 

algorithms actually choose a convenient loss function and then, try to minimize their 

risk, risk is the expectation of loss. 
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So, let us take some examples something called the zero one loss function, defined by l 

of a b is 0, if a equal to b 1, otherwise. That is, l has two arguments, one is about the 

classifier sets, other is about the two classes, if those are same, there is no cost otherwise, 

the cost is 1, irrespective of each error is made, so is like earlier thing. So, what will be 

the expectation of l l is a zero one random variable. 

So, it is expectation is same as probability, that takes value 1, as probability h x is not 

equal to y X, which is same as the probability of error we defined earlier. So, what we 



did earlier can also be done through loss functions if we think of, what is called a zero 

one loss function. 
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But loss function can be more general that is to say, even though, loss and correct 

decision is 0, loss and incorrect decision need not have to be equal. In the zero one loss 

function, the loss and the incorrect decision is same, whenever a is not equal to b, the 

loss is same. But we can in general, have L of 0 1 not equal to L of 1 0, L of 0 1 is, when 

I say 0 and two class is 1 versus when I say 1 whereas, two class is 0. Now, the F h, 

which is the expectation of loss, which is the risk, is the expected cost of 

misclassification right. Essential, the relative values of L 0 1 and L 1 0 determine, how 

we can trade one kind of error with another kind of error. 
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As it turns out, we will drive this later in the course, as it turns out the Bayes classifier in 

this case will be, it it is once again based on the ratio of the posterior probabilities. 

Earlier, if the ratio is greater than 1, we are putting in class 0 but, now the ratio has to be 

greater than some threshold, which is given by L 0 1 by L 1 0. Just to intuitively get a 

field for it, if L 0 1 is equal to L 1 0, that the two kinds of errors of the same cost then, it 

is same as the old Bayes classifier. 

On the other hand suppose, L 0 1 is 3 times L 1 0 what does that mean, L 0 1 is, I say 0 

whereas, the two class is 1, so wrongly classifying something into 0 is thrice as costly as 

wrongly classifying something into 1. That means, before I classify something into 0, I 

better be very, very careful because, wrongly calling 0 is 3 times as expensive and hence, 

what does the Bayes classifier say, if that is the case, is not enough if q 0 is greater than q 

1. 

The posterior probability as 0 is greater than posterior probability of 1, that is not 

enough, posterior probability of 0 should be 3 times more than, 3 times the posterior 

probability 1, for me to take the risk and call class 0. So, that is essentially, what the 

Bayes classifier represent, we will show later on formally that, this transfer to the Bayes 

classifier that minimizes risk. And once again for the criteria of minimizing risk, Bayes 

classifier is optimal, that also we will show later on. 
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So, Bayes classifier is indeed a very good classifier, it can minimize risk for any kind of 

loss function and that is that is that is, the best we can ask for but, the it is real problem is 

that, it needs knowledge of class conditional densities and prior probabilities. If I know 

them of course, I can do nothing better but, if I do not know them, they have to be 

estimated, the estimation has it is problems. 

Firstly, it may be computationally very expensive, as we shall see or it may be not 

feasible sometimes because, the underlying densities are not very nice or no, there might 

be other reasons, why I may not want to estimate the class conditional densities. Of 

course, then, I cant implement, also if I implement the Bayes classifier with estimated 

densities because, address in estimation it may, may no longer be optimal. 

So, considering all this, implementation wise I will go for Bayes classifier, only if I have 

sufficient faith in the estimated class conditional densities. Otherwise, what do I do, there 

are many other methods of obtaining classifiers. So, for the rest of this class, we will at 

least quickly review a few of them, many of them we will we will look at more details 

later on in the course. 
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So, one other method, which is very simple and often performs well is, what is called a 

nearest neighbor classifier. What is the nearest neighbor classifier? Which store the 

training example, the feature vectors from the training set, as prototypes. We can choose 

some of them or we can choose the whole training set but, anyway we take the training 

examples, store them and call them prototypes. The thing to remember it that because, 

the training set for each each prototype, we know the actual class label because, we have 

the training set. 

Now, we are ready to classify, given a new pattern, we find the prototype X prime that is 

closest to the new pattern X and then, classify X into the same class as X prime. That is, 

now you give me a new pattern X to classify within my prototypes as h for X prime that 

is closest to X. Now, because x prime is a prototype, I know the class label of X prime, I 

give the same class label to X, later I have sufficiently many prototypes, anyone lying 

close to a particular prototype should have the same class label as the prototype. 
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A slight variation is, what is called a k nearest neighbor rule, so instead of finding 1 

closest prototype, I may find 5 closest prototypes and then, take a majority rule. In a two 

class case, if I find 5 closest prototypes, 3 or more of them are in one class, so I will 

chose that class for X. It is it is kind of, if a patterns happens to be near the class 

boundary instead of, taking one nearest prototype, taking a few more and taking the 

majority decision generally, gives you less errors, this is called a k nearest neighbor rule. 

Generally you take k to be the k to be an odd integer, small odd integer 3 or 5 or 7, the 

two main issues in designing a nearest neighbor classifier. We have to decide, what we 

want to chose at prototypes, do you want to choose the whole of the training set as 

prototypes or if you want to choose a subset, which subset should we chose and what do 

you mean by closest right, what distance is the most appropriate distance. 

But given that, we can solve these two issues, this is a very simple classifier to design 

and operate it, really there is nothing I need to , except to store the prototypes. And the 

classification rule is also very simple, I just need to find the find a prototype that is 

closest to the new pattern and classify it into the same class. The actual performance, 

how much of time and memory you need, depends on the number of prototypes, how 

complex is the distance function and so on. 
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Selection of prototypes, how do I select, how many to select, there are the few 

techniques we may come back and discuss it, a little while later. Essentially, we will like 

to make sure that, there are enough prototypes at all all parts of the feature space. So, 

wherever I get a new pattern, I have some prototype that is closest and of the same class 

to the new new pattern. What about the distance function, one can of course, choose the 

Eucledean distance because, all our feature vectors are real real vectors. 

So, I can use Eucledean distance as the distance, the only problem with the Eucledean 

distance is, it is very sensitive to the actual numerical range. If different features take 

values in different ranges, the ones, which are numerically higher will dominate. 

Suppose, there are two features, one feature take values between 100 and 200, another 

feature takes values between 0.1 and 0.2, no matter how much a difference the 0.1 0.2 

feature, the first feature always dominates. 

So, we can always normalize with respect to variation of individual feature values, so I 

can choose additional functions where, the i th term in Eucledean distance is weighted by 

1 by sigma i where, sigma i is the estimated variance of the i th feature. Given all the 

examples, I can find the estimated variance of the i th feature and I can use that so that, 

you know, I understand a difference between X i and X i prime, relative to it is standard 

deviation. A slightly better thing is to actually make this distance dependent not only just 

variances of individual features but, the entire covariance matrix. So, I can make the 



distance function as x minus X transpose X prime transpose sigma inverse X minus X 

prime where, sigma is the estimated covariance matrix and this is called the Mahalanobis 

distance, often used in economics. 

(Refer Slide Time: 25:27) 

  

We will come back to this later on, what can we say about the nearest neighbor classifier, 

how does it perform, it of course, uses no statistical information. It is a very simple 

intuitive classifier but, one can show that, asymptotically that is, add the number of 

examples that the number of prototypes approaches infinity. If we assume that the 

prototypes are independently drawn then, the error made by nearest neighbor rule is 

never more than twice that of the Bayes error. 

Where the probability of error by Bayes error is 0.1 then, nearest neighbor rule never 

makes more than 0.2 probability of error that is, if Bayes rule can be 90 percent correct, 

nearest neighbor rule is guaranteed to be at least 80 percent correct. So, this is quite 

interesting because, instead of, doing all the costly estimation implementing the Bayes 

classifier, I can simply implement the nearest neighbor classifier. 

If with the given feature vectors, my Bayes rule can give me very good performance let 

us say, error by the Bayes classifier is only 5 percent then, at worst my nearest neighbor 

might give me 10 percent the error, which might be tolerable. But, nearest suppose, the 

pattern recognition problem is very complicated and Bayes rule can give you only 80 



percent accuracy then, unfortunately nearest neighbor may give you at less than 60 

percent accuracy. 

But, that apart, this is very interesting issue that even though, we do not chose by statistic 

information, we can still bound the error of the nearest neighbor by twice the Bayes 

error. It is also related to certain, what are called non-parametric methods of estimating 

class conditional densities, we will discuss that later. By this point, I will simply mention 

that because of, it is simplicity and because of, it is some guarantees and performance, 

nearest neighbor classifier is often the the benchmark for any classifier design. 

That is, I I should not go for a complicated classifier, unless I am at least getting 

sufficient improvement on nearest neighbor classifier. So, given any problem on the 

chosen feature vector, I should first implement the nearest neighbor classifier, that tells 

me the minimum performance I can get without doing any work. So, if I am designing a 

complicated involved classifier, there should be some reason so, nearest neighbor 

performance by the nearest neighbor classifier is often uses the bench mark to say, 

whether you know my my specially designed classifier is doing well or not, well Bayes 

and nearest neighbor classifiers are not the only classifiers. 
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There are many other approaches to classifier design, we will consider another approach 

in this introductory class, it is called the discriminant function based approach. So, the 

structure of this classifier is the following, as you know a classifier is a function, that 



maps every feature vector to 1 or 0, we are only considering two class case here. So, I 

choose a classifier structure as, h of X is 1, if some other function g of x is greater than 0, 

0 otherwise. 

That function g is called a discriminant function of course, I have to design the 

discriminant function and a classifier that uses this structure is called a discriminant 

function based classifier. Because, if I choose g of x to be q 1 x minus q 0 x then, this is 

the Bayes classifier, if q 1 x minus q 0 x is greater than 0 then, I put in class 1 otherwise, 

I put in class 0. 

So, that is same as the Bayes classifier so, Bayes classifier is also a discriminant function 

Bayes classifier but, the discriminant function is obtained using the posterior probability. 

But, the interesting thing about the discriminant function classifiers is, I can choose any 

other discriminant function too right. The idea is, I will try to tweak a proper 

discriminant function instead of, worrying about actually estimating the class conditional 

densities. So, the idea is instead of, assuming some functional form for the class 

conditional densities and estimating them, we can assume the functional form for g and 

directly learn the needed classifier. 
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Generally, a discriminant function would have some or would be specified by a some 

parameter so that, I can tweak the discriminant function. So, let us say, g W comma X 

instead of, g of X is the discriminant function where, W is the parameter vector and let us 



say, that capital N, number of parameters. So, here is one example discriminant function, 

I can take the number of parameters or the discriminant function to be 1 more than the 

diameter of the feature vector and the discriminant function is simply w i summation i is 

equal to 1 to n, w i x i plus W naught. 

There is a weigh each feature component with some weight w i and then, add a threshold 

and if this sum is greater than 0, I have put in one class, less than 0, I have put in the 

other class. Where, w 0 to w n are the parameters, x 1 to x n are the features right such a 

such a classifier is called a linear discriminant function based classifier. This is linear 

because, it is linear in the components of the feature vector or in parameters, linear 

discriminant functions are another important class of classifiers. 
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Let just go a little bit deeper into it, a linear discriminant function based classifier, as we 

just seen in the previous slide is given by this. Very often, we may not want to see this, 

extra constant term may look, as if this is not really a linear function but, we can easily 

get rid of the extra constant term. We take a new feature vector, which is same as the old 

feature vector x 1, x 2, x n but, it has one extra component, which is permanently set to 1 

right. 

Take this as the new feature vector, is often called the augmented feature vector, if w 0 to 

w n is the parameter vector then, my classifier is nothing but, I take then, I can write this 

w 0 is w 0 into 1, which is same as w 0 into x 0. So, the entire thing is now, simply a dot 



product between two vectors so, I find w transpose x and the sign of the w transpose x is 

what, determines the classification. This kind of a classifier is one of the earliest 

classifiers design in 1950’s is called a Perceptron. We will come back to Perceptron later 

on and we will also find out, how one fixes w or how one learns w from the training 

examples. 
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In considering linear discriminant function, there is one concept that is very important 

given a training set X i y i. So, that is set of pattern x i along with class labels y i we say, 

this training set is linearly separable, if there exists some w star. So that, x i transpose w 

star is greater than 0, if y i is 1 that is, X i comes from class 1, less than 0 if X i comes 

from class 0. Of course, the labels 0 and 1 are arbitrary, which I call class 0, and which I 

call 1 is arbitrary. 

So, essentially, if there exists a w such that, X i transpose w star greater than zero means 

one class, less than 0 means another class. If such a w star exists then, we call the the set, 

a linearly separable set, any w star that satisfies this is called a separating hyperplane and 

it is easy to see, if there exists one separating hyperplane, there exists infinitely many, 

what does this mean. 
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In a geometrically, a w can be, let us look at a figure so, basically what we have, is a line 

often the line passes through origin, even other than it is all right. So, w transpose X i 

plus a threshold greater than 0, one class less than 0 another class simply means, that in 

the features space between the two classes, I can put a line. Such that, all patterns of one 

class are on one side of the line, all patterns of the other class are on the other side of the 

line right. 

Thus what this means, recall that, X is an augmented feature vector right so, essentially 

X transpose w is given by w i X i plus w naught so, there is the line and as you can see, 

there is one line, that can separate the two types of patterns of the two classes. Then, the I 

can draw many other lines, there will be actually as a matter of fact, a whole cone of 

lines and any line passing through this cone would be a separating hyperplane right. So, 

whenever a training set is linearly separable, there exists infinitely many separating 

hyperplanes so, a linear discriminant function will certainly work, if the training set or let 

us say, the pattern classes themselves are linearly separable. 
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Now, how do I learn linear discriminant functions, we need to learn the optimal w from 

the training samples, perceptron learning algorithm is one of the earliest algorithms for 

learning linear discriminant functions. It finds a separating hyperplane, if the training set 

is linearly separable but, the sad thing about this algorithm is that, if the given set is not 

linearly separable, the algorithm cannot come out and says is not linearly separable, it is 

just going to an infinite loop. 

So, if I know, the if I suspect I have good confidence that a training set is linearly 

separable then, perceptron is say very good algorithm to use. We will we will study 

Perceptron algorithm, it is convergence proof and you know, many other interesting 

aspects of Perceptron later on. But, in general, when we we may or may not know, 

whether training set is really separable, we can also use the risk minimization approach 

to learning linear discriminant functions, how do I. What do you mean by you this risk 

minimization approach, just like what we did in the risk minimizing Bayes classifier, you 

choose a convenient loss function and then, define expectation as a loss function as risk 

and find a linear discriminant function that minimizes the risk right. 
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So, let us look a a little more into this so, the idea is, I want to minimize some criterion 

function so, to minimize what is the criterion function, the criterion function should 

evaluate different choices of discriminant functions and each choice of discriminant 

function is choice of a particular parameter vector W. So, ultimately, I am asking, can I 

write a criterion function, that can evaluate different W. We can always use the old 

function, if am using a linear discriminant function with w as the prime parameter vector 

let us say, h of w comma x as we given a layer is the classifier. 

So, L of h of W comma X comma y x is the loss suffered on h on a pattern X, if you 

choose this parameter vector W so, take it is expectation and that is the risk for W. So, 

now, what you want to do is, to find a W that minimizes this expectation now, how do I 

minimize the F. Given a particular W, if I want to calculate F of W, I need to evaluate this 

expectation and to evaluate this expectation, we need the underlying probability 

distributions well. If have the underlying probability distributions of course, I can use the 

Bayes classifier so, what do I do, how do I evaluate how do I evaluate this. The idea is 

that, here F is expectation of some function and as you , if you want to find mean of 

some random variable, a good approximation is the sample mean. So, if I have training 

examples, I can find the sample mean of this same function on the training examples and 

that, I can use as an approximation to W approximation to this F W. 
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So, let us call such a function, F hat of W so, F hat of W is L of h W comma X i comma y 

i summed over 1 to l and divided by 1 by l, as you can see F is expectation of this l, l of x 

so, to say. So, if I want sample mean, it is l of X i summed over i divided by the number 

of samples. That is what, F hat is right, I sum the loss over the samples X i y i and divide 

out the numbers of samples so, this is the sample mean estimated for F hat. 
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So, we would expect that , F hat is a good approximation to F, why a law of large 

numbers right, we know, if there is sufficiently many samples and samples are 



independent then, sample mean is a good approximation to the population. Sample mean 

as a matter of fact, convergence to the true expected value that is, the law of large 

numbers so, F hat is a good approximation to F. So, we can minimize F hat instead of, 

minimizing F because, F hat can be calculated given the training set, I can calculate F 

hat. 
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So, let us let us understand this again, F hat measures the error of classifier on the 

training samples only because, it is a obtained as a sample mean. F of course, is obtained 

as a expectation so, it measures error on the full population so, what we are saying is 

that, why do we use F hat. We can calculate F because, we may not know the underlying 

probability distributions so, we are calculating F hat, which can be calculated. 

So, our our gut feeling is that, if there are sufficiently many representative training 

samples, if the sample is large and they are independent then, the sample mean should be 

a good approximation to population mean. So, F hat would be a good approximation to F 

and hence, I am minimizing F hat should be good enough. Because, there are few deeper 

issues involved here, issues that concerned, what is called statistical learning theory, we 

will we will deal with that later on. 
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So, this is what, we want to minimize to learn my linear discriminant function, how do I 

minimize this, there is still a problem. We can ask special algorithms such as Perceptron 

algorithm, which can find a W that such that, F hat W, 0 that will of course, be minimum. 

Because, we know loss function values are all positive so, for any given W, F hat W is 

always greater than or equal to 0. So, if I can find one W, for which F hat W is 0 then, 

that is the minimum so, there can be some special algorithms, which try to find that. But, 

in general, we have to use a standard optimization techniques, standard or otherwise 

some optimization technique now, we can always use an optimization technique. 
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There is still a problem, this is F hat and let us recall that, the classifier h is the sign of W 

transpose X, if W transpose X is greater than 0 is one class, less than 0 another class 

which means, h is a discontinuous function right. And we still have not decided, what 

loss function to use but, if we use zero one loss function then, loss function is also 

discontinuous. 

Now, irrespective of that loss function discontinuous or not, if h is discontinuous then, F 

hat is discontinuous, if L is discontinuous F hat is discontinuous which means, we cannot 

use any standard of optimizational algorithms for minimizing this. Because, we cannot 

even differentiate F hat well, we can cater on to this problem by changing both our h and 

L so that, they become differentiable. 
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We redefine h so that, instead of, taking value 0 on one only, we see h takes values in the 

interval 0 1 so, for example, earlier we said h of W X is the sign of W transpose X. Now, 

it is saying, sign of W transpose X we say, h W X is 1 by 1 plus exponential minus W 

transpose X. 
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How does this function look, if I plot W transpose X on the x axis, 1 by 1 plus 

exponential minus W transpose X has this kind of form. As you can see, W transpose X 

is a little positive, it is close to 1, if there little negative is close to 0. But, the nice thing 

is, it is nicely differentiable as a matter of fact, in the definition of the function, we can 

add a small parameter inside the exponent and based on the value of that parameter, I can 

make this function as cheap as I want. 

So, this is kind of a continuous approximation, with this tough function that the sign 

function. Now, when I use this h, if h is if the output of h is greater than 0.5, I can put in 

this class, less than 0.5, I can put in this class. So, by changing h, from sign of W 

transpose X to this, we have made h differentiable. Such a h is called a sigmoid function 

so, we we solved one problem namely non differentiability of h. 



(Refer Slide Time: 41:44) 

 

We can similarly, solve the non differentiability of L where, is to taking a zero one loss 

function, we can take a squared error loss function. So, we take L a b to be a minus b, 

which is called the square error loss function, which is also very popular in pattern 

recognition. Now, F hat W will be 1 by l summation h of W W comma X i minus y of X i 

whole square. So, this now because, h is differentiable and this square function is 

differentiable, one can differentiate so, for example, one can use gradient decent to 

optimize this right and such an algorithm is called the LMS algorithm, we will we will 

look at LMS algorithm later on. 
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So, there is a efficient algorithm for learning linear discriminant functions, we would be 

discussing some of this techniques for learning linear discriminant functions later in the 

course. So, essentially we have considered three approaches so far, the Bayes classifier, 

the nearest neighbor classifier, the linear discriminant function Bayes classifier well. 

There are few more but, let us just look at a summary of Bayes, the linear discriminant 

function based classifier. 

Classifiers can take us, there are efficient algorithms for learning linear discriminant 

functions and essentially, a discriminant function based classifier is more general all 

right. We just said, it a depends on discriminant function so, you can also use non-linear 

discriminant functions, the idea of minimizing F hat using a squared error loss function, 

works even for non-linear discriminant functions. 
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Now, but, non-linear is not so straight forward, the the method we got of minimizing F 

hat W to find linear discriminant function is a generally efficient method. So, in general, 

learning linear models is efficient but, a linear discriminant function may not always be 

sufficient. Linear separability may be restrictive condition even, if I minimize the risk, 

the risk of the best linear classifier may still be a poor fit right. 

Now, if I want to learn non-linear discriminant functions, how do I go about it, in this 

course or even in the fields, there are there are there the few general approaches to 

learning non-linear classifiers. So, I will I will briefly tell you three approaches for 



learning non-linear classifiers, each of them to be viewed as a stylize read, this this is 

still an interacting lecture so, we are we we are just surveying the field. So, at this level 

of detail I will I will just give you three possible viewpoints, on how one tackles non-

linear functions, non-linear discriminant functions. 
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One is what, can be calling neural network idea see, a linear discriminant function I 

know how to parameterize, W transpose X plus W naught. So, in a similar way, I have to 

find a good parameterized class of non-linear discriminant functions, one good class of 

such non-linear discriminant functions is, what goes in the name multilayer feed forward 

neural networks. 

The basic idea is the following, each of these circles here, are essentially linear 

discriminant functions so, I give my give the pattern to many linear discriminant 

functions and I keep taking the outputs of linear discriminant functions and combine 

them to through linear discriminant functions. So, it is a kind of function composition 

approach to finding non-linear functions using non-linear functions, are built up through 

composition of simple linear functions on those sigmoid functions, that we talked about. 

Multilayer feed forward networks are a particular class like that and it is useful for 

learning non-linear classifiers and in this course, we will be considering this as one 

approach to non-linear classification. 
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And another idea is, if the linear discriminant function does not work in the entire space, 

I can ask, can I cut the feature space in a different regions so that, within each region a 

linear linear classifier would work, here is an example right. So, the the shaded region is 

one class, the other region is another class so, a single line cannot separate one class 

from other but, if I can put two lines so that, for example, in one half of the feature space 

I can use one line, in the other half of the feature space I can use the other line. 

So, one way of doing this is that, I first cut the feature space with respect to one line let 

us say, I cut it with respect to a line like that, that is what I call H 1 then, I am asking that 

the feature vector fall in this side or that side. Depending on which side it falls, I can 

once again say, I I can use two different linear discriminant functions to classify. So, 

instead of classifying the pattern in one step, I will use multiple linear discriminant 

functions right. This is like cutting the feature space into different regions and within the 

each region, using a linear discriminant function. Such tree based models are possible for 

both classification as well as function learning right, time permitting to us end of this 

course, we will look at a few base of learning such tree base classifiers. 
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What is the third approach? A third approach is what may be called an SVM approach, 

SVM stands for support vector machines, this is today possibly the best way to learn 

non-linear classifiers. The idea is very simple, you map X, the feature vector non-linearly 

into high dimensional space and then, learn a linear discriminant function there. What 

does that mean suppose, the feature vectors are two components x 1, x 2 suppose, there is 

a function phi, that maps R 2 to R 5 given by Z, is phi of X is a is now a, I am sorry phi 

should have been six, it is a six component vector given by 1, x 1, x 2, x 1 square, x 2 

square, x 1 x 2. Now, if I think of a linear discriminant function a 0 plus a 1 x 1 plus, a 

think of a non-linear discriminant function a 0 plus a 1 x 1 plus a 2 x 2 plus a 3 x 1 

square plus a 4 x 2 square plus a 5 x 1 x 2. That is, the linear discriminant function in the 

Z space right, in the in terms of components of Z, this is linear right. 
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What does that mean say, for example, in the original feature space x y space, everything 

inside the circle is one class, outside the circle is another class. Now, this essentially non-

linear because, no linear function in x can separate the two classes but, if I change my 

axis so that, I have x 1 square, x 2 square, x 1 x 2 as my axis. Then, in the new space, all 

the points inside the circle will come on one side, all points outside the circle will come 

on the other side and a hyperplane can separate them right. So, this is the basic idea of 

SVM you you you map X non-linearly into a high dimensional space and try a linear 

discriminant function there right. That is the basic of SVM idea right so, there is a these 

are the three ideas, that we use to learn non-linear classifiers right. 
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So, let us summarize our discussion so far, the Bayes classifier minimizes risk under any 

general loss function, given the knowledge of class conditional densities no other 

classifier can do better than this. We have seen the optimality of Bayes classifier in the 

simple case of minimizing probability of error, we will also prove it under minimizing 

general disc function but any case, Bayes classifier minimize risk under any general loss 

function. It is main problem is that, the it it needs the knowledge of class conditional 

densities, how do I get class conditional densities to implement Bayes classifier, I can 

estimate the class conditional densities from the training set of examples. 
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There are various estimation techniques, we will look at each of them in this course and 

see see,, how we can estimate the class conditional densities, what are the errors in 

estimation and so on, that is one one kind of approaches to classifier result. But, as you 

said, there approaches other than the Bayes classifier, nearest neighbor classifier is 

another approach to classifier design, nearest neighbor classifier is very simple. 

It simply says, find a prototype that is closest to the given pattern and put the pattern in 

the same class at the nearest neighbor, a variant is k-NN instead of finding one closest 

neighbor, you find k closest neighbours and put the classifier in the in the in the class of 

the majority class. So, either nearest neighbor k-NN is the very simple classifier to 

implement and as we have seen, it say it has surprisingly effective classifier. 

In in many situations, nearest neighbor classifier gives to sufficient performance and you 

do not need to go for any more advanced classifiers and in any case, even on a many 

complicated problem a nearest neighbor classifier is always implemented. Because, that 

gives you some base line performance that you can always rely on right so, nearest 

neighbor classifiers is one other approach. And the issues there are how do I chose the 

prototypes, how do I decide on the distance metric and so on. 

But, given certain choices for these issues, a nearest neighbor method is the simple and 

very effective classifier. When we consider certain techniques density estimation, we will 

come back to the nearest neighbor classifier, explore it is relationship with Bayes 

classifier and and revisit the issue of, how to bound the probability of the nearest 

neighbor classifier by the Bayes classifier error. 

Another method for classifier design is based on, what are called discriminant functions, 

what are the discriminant function based classifier do, it uses a function g and the 

classifier simply say, h of x is 1 if the g of x is greater than 0, is 0 otherwise. And such a 

g called a discriminant function and g may have a parameter vector and now, learning a 

classifier, is essentially learning the parameter vector of the discriminant function. We 

have seen one example namely, linear discriminant functions, as one example of 

discriminant functions. 
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I have also said that, we can use this same risk minimization approach, with which we 

have shown the optimality of Bayes classifier, for learning linear discriminant functions 

also. So, even though to to use risk minimization approach, we may not be able to use 

zero one loss function, we have to use squared error loss function. Learning discriminant 

functions using squared error loss function and minimizing the risk, is a very very 

standard approach to learning linear models that is why, many linear model learning 

linear models go under linear least squares learning approaches. 

So, both for learning classifiers as well as regression functions, we often use a linear 

model, use a squared error loss function and minimize risk. Of course, we cannot 

calculate risk as I said because, we do not have the underlying probability distributions. 

But, we can always approximate the expectation by the sample mean and hence, obtain 

the affract function, which is often called the empirical risk function, which is nothing 

but, the sample mean of the expectation. And because, this sample mean can be 

evaluated on the on the samples, we can always minimize the sample mean. 

So, minimize the squared error is one method of learning linear models, we will we will 

discuss some methods of learning linear models. Specifically, we look at Perceptron 

algorithm, we will look at LMS algorithm, we will look at what is called logistic 

regression and so on. So, we will discuss some methods for learning linear models, what 



is also good to know at this point is that, learning many of the non-linear models can also 

utilize the same approach. 

Risk minimization approach that is, we chose a suitable loss function, very often squared 

error loss function and minimize the the affract function that is the empirical risk to find 

the best parameter vector. So, both for learning linear models and also for learning some 

of the non-linear models, we will often use minimizing risk, using a suitable risk 

function. As we said, the linear classifiers may not be able to deliver the performance 

needed and we have seen at least three approaches. 

We will certainly explore both the neural network and SVM approach for learning non-

linear classifiers, both of them have some specialized algorithms as well as risk 

minimization algorithms so, we look at them also as risk minimization methods. So, this 

kind of completes the overview of the course, from next next lecture, we will start again 

at the Bayes classifier and go into the details of design of Bayes classifier.  

Thank you. 


