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Lecture - 19 

Linear Discriminant functions for Multi-Class  

Case; Multi-Class Logistic Regression 

Hello and welcome to this next lecture on the course and pattern recognition. So, we 

looked at linear models for classification regression that is what we have currently been 

considering. 
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We are looking at learning of linear classifiers and linear regression models and we 

looked at various methods we looked at perceptron, we looked at linear least squares 

various variations, there of linear least squares with regularization term, then logistic 

regression, fisher linear discriminant whole set of methods of learning linear classifiers 

and linear regression functions we have considered, and the...  

So, far we have mostly concentrated on the two class problem; that is when we presented 

algorithms for classification, all the algorithms are only for two class classification 

problem. Similarly, when we discuss linear regression like least squares, we only 

considered the case when the target values or real value that means you are only learning 

a real-valued function over some arbitrary three dimensional space. So, we looked at 



 
 

only real valued functions in case of regression, and two class problems in case of 

classification.  

Towards the end of last class we briefly saw how we can generalize this easily two 

multiple classes in the classification case, and vector-valued functions in the regression 

case. So, we will start with that again this class, we will briefly review how the 

generalization goes? Then we look at the generalization of logistic regression, which is 

somewhat little more complicated than simply generalizing least square methods for 

multiclass classification or vector-valued regression. 
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So, to start with, we saw in the last class that learning a vector-valued function using 

least squares approach is a very straight forward extension. What does learning a vector 

valued function means? That the the target values themselves are vectors. So, it means 

that we are given training data X i y i as usual n training data where X i, is in some R d, 

as usual, but now y i itself is a vector. Let us say is a m vector it is an R m, so they are m 

values. 

So, let us say y i has components y i, 1 y i m and we want to learn linear models for each 

of them. So, what does that mean? We have each component of y will be predicted by 

linear model, which means we need to learn m vectors W j and m scalars b j such that the 

j th output or j th target y j, can be predicted as W j transpose X plus b j. So, in when 



 
 

viewed like this it is simply a a question of solving m number of linear least square 

regression problems separately.  

Because the W j and b j that are involved in predicting the j th component of the output 

have nothing to do with the W’s and b’s in predicting any other component of the targets. 

So, even when the target is vector-valued essentially each component of the target value 

y has to be predicted using the linear model each of the linear models will have its own 

w and b. So, it is essentially simply solving m number of least square regression 

problems.  

Of course, we can put the whole thing into a vector matrix notation, but except for 

notational complexity it does not give us any insight. So, the the substance of this which 

was seen already last class is that generalising linear regression using least squares 

approach to vector-valued functions is absolutely straight forward. You just simply 

learning instead of one W and b learning m number of W’s and b’s, right? Each will 

have their own targets. 
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In a similar way we can extend linear least square approach to multiclass classification 

also. What does this mean? To go back to how we started last class for multiclass 

classification. In the beginning of the course we mentioned that essentially the two class 

problem is the fundamental problem, if we can solve the two class problem, we can 

easily solve multiclass problem at least in principle.  



 
 

What is the in principle mean that we can have many two class classifiers to solve a 

multiclass problem. as as I mentioned there are essentially two approaches, which may 

be called one versus rest or one versus one. What is one versus rest means? Suppose, I 

got classes C 1 C 2 C K, so I learn a two class classifier which classifies C 1 or not C 1. 

Similarly, C 2 or not C 2, so on so I will have K number of two class classifiers I give the 

(( )) once I learn them. So, for each of them I know how to make the training samples 

given the original training samples and once I learn all the classifiers given a new pattern 

I will ask is it C 1 or not C 1 C 2 or not C 2.  

Hopefully, if only one of them says yes then that is the class that can be given. In the one 

versus one approach I am learning two class problems as C 1 versus C 2 C 1 versus C 3, 

C 1 versus C 4. So, on the main reason for considering one versus one as opposed to one 

versus rest is the issues of sufficiency of training samples suppose you have ten classes 

each with 100 training samples. So, totally you have 1000 samples when you do one 

versus rest each of those classification problems will have 100 samples of one class and 

900 samples of the other class because it is C 1 versus not C 1 and so on. 
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So, the sample sets are heavily unbalanced the training data which makes learning a little 

harder as opposed to that one versus one approach will always have balanced roughly 

balanced training data set. So, it is a little easier in terms of stability of the classifier 

learning algorithms these are very often used many standard packages of multiclass 



 
 

classification. Use one of the two approaches, but however in at least in the linear class 

classification case there are better methods than this. This is because neither of these 

approaches is wholly satisfactory to tackle a multiclass problem that also we have seen 

last class.  
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What happens is that, this kind of classifiers always has an undefined regions in the 

feature space intuitively. If I learn C 1 versus not C 1 and C 2 versus not 2, I give a new 

X to C 1 versus not C 1 classifier it is a C 1 and I give the same X to C 2 versus not C 2 

classifier it says C 2.Then should I take C 1 or should I take C 2, that that is the issue. So, 

in in particular so if I have this hyper plane I land for C 1 versus not C 1 this hyper plane 

errant for C 2 versus not C 2. What happens here right, these points because these are on 

one side of this side of C 2 as well as this side of C 1. I think it is not clear.  

So, there will always be regions in the feature space where the classification is not 

defined. Because ultimately the classifier has to be a function of the feature space this is 

not fully satisfactory. Same thing happens when we do C i versus C j. I have C classes 

here C one versus C 2, C 1 versus C 3 and C 1 versus C 2 depending on how this, how 

what are kind of hyper planes are learned is always possible.  

To have region in the feature space, where C 1 versus C 2 classifier may say C 1 C 3 

versus C 1 classifier may say C 3 and C 2 versus C 3 classifier may say C 2. So, I cannot 

even take majority vote, so they would be such undefined regions in the feature space, so 



 
 

in principle both one versus rest as well as one versus one are not completely satisfactory 

solutions to the multiclass problem. 
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We have seen last class that one way of generalising linear discriminant function is to 

have for a K class problem to have K discriminant functions. So, the ideas will have K 

functions call them g s, each of them is a linear function g s of X is W s transpose X plus 

b s, s goes from 1 to K. Then how do I use this K functions for classification? So given a 

new X I will ask which of the g’s has the highest value. So, I will assign X to class C j, if 

g j of x is greater than g s of X for all s of course, is greater than equal to... So, they may 

be more than 1 j that satisfies this, right? So, may be g 1 X and g 2 X of the same value. 

They have they are better than all the other values then should I put it in 1 or 2.  

Now, this is not as difficult a problem, because we can have some arbitrary way of 

breaking ties. For example, we will say that if more than 1 j g j satisfies this I put it in the 

class with least index. Now, while the complete correctness may be I am not at least this 

is a proper function, so as long as we have a simple rule for breaking ties, having K 

functions like this. We will completely specify a linear classifier in the multiclass case. 

You may recall that this is exactly how we generalize the Bayes classifier to multiclass 

case. It also had k such discriminant functions and you put X into that class whose 

function has the highest value in X. 
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Now, how do I learn this, K functions as we seen briefly in the last class we can learn 

this K functions simply by doing a vector-valued regression. So, to learn the K class K K 

K class classifier we need to learn the K functions g s each is a linear function, so the 

way we do it is to make the class label itself as a vector. Instead of making class label 

take values 1 to K. We will make the class label take K dimensional vector values, so 

that class 1 will mean 1 0 0 0. Class 2 will mean 0 1 0 0 0 and so on.  

We have already encountered this kind of representation while we were doing estimation 

of densities. So, a similar kind of representation we will use, so if X i, is in class C j then 

the corresponding class label y i would be a K vector with the j th component 1 and all 

others 0. Then the learning the K function is same as a linear regression with vector-

valued targets right now using our earlier method of doing regression with vector valued 

targets. We can simply run least squares to learn the K class classifier. So, this is say this 

is one method of doing linear discriminant analysis for the multiclass case, so we learn 

this K function using least squares by essentially making our targets which are class 

labels into vectors.  
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Now, let us move on the other algorithms that we can say, so this this what we have said 

so far generalizes linear least square method both have multiclass classification as well 

as vector-valued function regression. Now, let us look at the remaining ones, we consider 

logistic regression we considered fisher linear discriminant and so on. So, let us look at 

logistic regression how to generalize it to multiple cases. So, let us just recall what is the 

main idea of logistic regression?  

Logistic regression essentially uses the linear least squares, but instead of using a simple 

linear model a W transpose X it uses h of X transpose X. So, the idea is that you 

approximate the posterior probability recall that we are using q’s as the symbols of 

posterior probability. So, q and X is the posterior probability of class one, so we want to 

represent q 1 X as h of W transpose X plus W naught for some W and W naught that is 

what we learn. Ultimately, where h is the logistic function h of a, is 1 by 1 plus 

exponential minus a.  

You see this logistic function of course we can have a small parameter that multiplies, 

say we can have 1 by 1 plus exponential minus eta a and eta determines the slope at 0, 

but essentially the logistic function as we see in last class if a is large positive is close to 

1 a is large negative is close to 0. So, essentially it is a kind of a continuous 

approximation to the step function, so basically step function is what we want, and we 

using the continuous approximation. 
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So, in the logistic regression the idea for the two class case the idea is to find a W on W 

naught to minimize your usual criterion function of least squares where instead of taking 

the target as a linear function W transpose W naught. We are taking to be h of W 

transpose W naught, h is monotonous continuous differentiable. Hence, using l m s 

algorithm we can easily learn this. We take the targets to be 0 and 1 and as we see in a 

while while studying l m s algorithm the least square approach is easily generalizable to 

h of W transpose X i plus W naught as the model function as long as h is nice 

monotonous differentiable. 

So, essentially on this function, we do a gradient descent to learn the optimal W 1 W 

naught having learn W 1 W naught we simply use h of X transpose, W star plus W 

naught as the posterior probability of class 1 for a given feature vector X. That is how we 

implement the classifier. So, this is the basic idea of logistic regression, so let us let us 

try to extract the essence of this idea. 

So, what is it that you are using? What is it? What part of it is specific to 2 class. Let us 

see the way we look at that h of W transpose X f is w naught is not quite clear, how I can 

make this? How I can easily generalize this into multiple classes? So, how to get a field 

for, how I can generalize it to multiple classes? Let us ask exactly how am I using the 

two class restriction or two class fact in this formulation? So, the motivation, so what is 

that we are doing in the logistic regression; we are approximating the posterior 



 
 

probability by this logistic function. Now, why is it a good idea to why why do we think 

we can do it? 
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The reason we can think we can do it is that, I can always write the posterior probability 

in a two class case as f 1 X p 1 by f 0 x p 0 plus f 1 X p 1 this is simply by by Bayes rule 

q 1 X is probability class is 1 given X. So, I can use Bayes rule to say the density of X 

given class 1 into probability class 1 by the normalising factor. Now, this I can write like 

this essentially what I am saying is you you multiply, you divide both numerator and 

denominator by f 1 p 1, so it becomes 1 by 1 plus f 0 p 0 by f 1 p 1. 

Now that I can write like this 1 by 1 plus exponential X i where X i is given by this, so I 

can always write any posterior probability two class case as 1 by 1 plus exponential 

minus X i because the only question is can I write X i to be X i is of course. A function 

of X function of the feature vector X, because X i is given by this is this function feature 

of vector X will it be linear. In the class of densities where a linear approximation to this 

function is nice, we can use logistic regression.  

So, that is the basic motivation for using logistic regression in the two class case. So, for 

the multiclass case what we do is we will write the Bayes rule for the posterior 

probability for any class like this there will be more than two terms (( )) now. Then 

derive a appropriate function or the logistic function or some other function by the right 

way to approximate. So, before we go go there, let us while this motivation is clear from 



 
 

Bayes rule. It may not still be quite clear where the two class fact is used. So, let us 

understand this. 
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In the two class case essentially what what is that we want to know we want to know 

which of f 1 p 1 and f 2 p f 0 p 0 is greater. Given an X if you want to actually implement 

the ideal Bayes classifier, but for 0 1 loss function. The idea is that we calculate f 1 p f 1 

p 1 and f 1 X p 0, this is a proportional to the corresponding posterior probabilities. 

Hence, whichever of these 2 is greater, we can put it in that class of course. In the in the 

in in the logistic regression, we have somehow approximating some proper function of 

these as a linear function, because we can only learn linear functions. 

So, this is done by looking at... So, if I want to know which of these two is greater, I can 

take the ratio take the log, so whichever 1 is greater so if the numerator is greater the log 

will have positive sign if the denominator is greater the log will have negative sign. So, 

whichever is greater can be ascertained by taking sign of this. But sign of this is a 

discontinuous function we do not want to work with discontinuous functions. Hence we 

use the logistic function. Essentially we want sign of l n of this, we we are saying the l n 

of this can be approximated using a linear function. For example, if f f 1 and f 0 are 

Gaussian with the equal covariance matrices. 

So, if I can approximate l n f 1 X p 0 X f 0 p 1 by f 0 p 0 by a linear function. Now I 

want sign of this now that that means I have to learn a discontinuous function because I 



 
 

cannot learn would not like to learn discontinuous function. I am essentially squishing it 

using the logistic function, so logistic function is a kind of continuous analogue for 

finding this for finding sign of this. So, now in the multiclass case what you have to learn 

there are now two of them, if there are only two of them, I can take the ratio and log 

because there are more than two of them.  

We want to find with the maximum of some K numbers f i X p i f f 0 X p i say f 1 X p 1 

f 2 X p 2 and so on. Calculate all the K numbers and then ask which of these K numbers 

is large. So, we essentially if I have to find maximum of this K numbers to decide which 

class to put it essentially. So, which means we need a function maximum also is a non 

smooth function not differentiable. So, we essentially need some smooth function to 

approximate the maximum computation that is essentially what we need to generalize the 

logistic regression to multiclass case. 
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So, let us let us look at a a a suitable function for this, so once again for the multiclass 

case let us start with the Bayes rule. So, if I want the posterior probability of class j. I can 

write it as f j X p j by summation f s X p s summation over s as I said because multiple 

class there is a denominator has more terms as many terms as their classes. We will write 

this as exponential a j by summation over s exponential a s where a s is given by l n of f s 

X p s. So, essentially if a s is l n of this exponential l n will cancel each other. So, this is 

same, so the posterior probability.  



 
 

Now, has a form like this l n written as 1 by 1 plus exponential instead of that it has 

exponential a j by summation over s exponential a s and once again what we want to say 

is is, a linear approximation for a j’s a j’s of course are functions of X is a linear 

approximation for a j’s is as far as the classification is concerned. So, the idea is once 

again we want to approximate each a s by W s transpose X plus W s naught it turns out 

to be... For example, if all class conditional densities are normal with equal covariance 

matrices.  

What happens is when you take this l n if it is normal. Then I get a quadratic term and a 

linear term in X right the quadratic term will will all be X transpose sigma X that sigma 

is not class specific, so that will come out as a common factor in all these things. It will 

cancel, right? Hence, I can approximate the posterior probability with a function of this 

form where each a has a form like this. 

So, this is one case where this approximation is exact now, many other cases also the 

approximation may be nice, so once again like in the two class case least square equation 

the idea is we approximate each of these a s’s by f in function W s transpose X plus W s 

naught and you essentially use a method which is motivated by the fact that the posterior 

probability can be expressed as a function like this. So, let us go to the details now, so 

once again to to tie it up with what I said in the previous slide that we want to look at 

maximum.  

If I somehow learnt all the W’s right and given an X, I can calculate all the a s’s the basic 

idea is which a s is maximum. Because I need to compare different q j’s, because I need 

to compute different q j’s and fit the fit the maximum of them. Because the denominator 

is same essentially given many such a s’s, we need to find the maximum. That is why I 

said what we need is some smooth approximation to the maximum. 
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So, let us define this function, let us say this is a function g that maps R k to R k, K is 

the... This is the K dimensional real space to itself where K is the number of classes. So, 

g is a vector-valued function, so let us say components of g are g one g K, so if, is there 

any point in R K. Then we write g of K as g 1 a g 2 a g K a. They transpose because all 

our vectors are column vectors and for each j we define g j by this function exponential a 

j by summation of exponential a s. 
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So, a j’s are components of a a is because g is domain is R K a is an R K, so a has 

components in a 1 to a K. So, this is the g function we define from what we said in the 

previous slide this g function is a is a good approximation for the posterior probability in 

multiclass case. The posterior probability has a similar structure. 

(Refer Slide Time: 24:38) 

 

So, this function this g function I am defining is a good approximation of the posterior 

probability function this g function is known as the softmax function. As I said, our idea 

is we need a smooth function, which essentially picks maximum of a given certain 

numbers idea is that if I, suppose a 1 is the maximum of all the a’s. Then if I if I divide 

all the numerators and denominators in g j by exponentially 1. 

So, for g 1 it will be 1 by 1 plus some terms all of them will be less than 0, because the 

exponential small numbers, so exponential negative numbers. Because it will be 

exponential say a 2 by a 1 there is a exponential a 2 minus a 1 a 1 is greater than a 2, so 

its exponential negative. So, we can assume that there will be closed to 0 so g 1 of such a 

a would be 1. All other g’s will be closer to 0. So, the idea is that if a j is the maximum 

of the components of a then g g of a would be closer to 1. Then all the other j’s and all 

the other components a j will be closer to 0 rather than 1, right?  

Of course, we can put a constant multiplied to all the a j’s to accentuate this differences. 

But essentially this function roughly picks maximum of a 1 a 2 a K. Because if a j is the 

maximum of them the corresponding g j of a will be closer to 1 or g s of a for all other s 



 
 

will be closer to 0. So, this is a kind of a nice smooth approximation to the maximum 

function. That is why it is called the softmax function. So, the idea is now to use the 

softmax function for learning the classifier. 
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So, now we will write for each s a s as W s transpose X plus W s naught and we learn all 

the W s’s and W s naughts. See earlier I have W transpose X plus W naught, but now I 

have more than one such factor, so each vector has a subscript. So, W s is a vector and 

now my scalar the Bayes term has to 2 surfaces. Because earlier we are calling it W 

naught, So I called it now W s naught as we already seen enough number of times all 

such f n functions can be once again written simply as W transpose X. We use 

augmented feature vector. So, essentially we will call it W tilde and X tilde and write W 

X tilde transpose X tilde.  

But as we have been doing so far in this course, we we mentally assume that we are done 

augmentation and use the same symbols. So, might as well write a s h W s transpose X. 

So, each W s is a vector. Now augmented with an extra complement of W s 0 now, let us 

capital W be a matrix whose columns are W s, right? Now, let us say we learned this W. 

We will we will we in a couple of minutes we will see how to learn this W, but suppose 

we learned the w, so what is its use for us now if we give me nu X I calculate g of W 

transpose X what is W transpose X W is a matrix.  



 
 

Now, whose columns are W s? So, W transpose X will be a vector whose first 

component will be w one transpose X second component will be W 2 transpose X so on. 

So, we are essentially we we are getting the a s’s, so this will be the, that we seen earlier. 

So, W transpose X will be the whose components are a s’s. So, g of a will be what will 

be a k vector again. and it essentially picks the maximum of all the W transpose W s 

transpose X’s. So, we calculate j of W transpose X. Then put X in the class c j if the j th 

component of j W transpose X is the highest, right? Ideally if X is in c j.  

We want g j of W transpose X to be 1 and all other components to be 0. That is how we 

want g 2 be, but in in practice we will put X in c j if g j of W transpose X is greater than 

g s of W transpose X for all other s, but the fact that this g is softmax. Hence, this what 

we want from our W tells us how we can formulate our objective function. Essentially 

the W that is good for us is that if if X is a class 1 pattern then g 1 of W transpose X 

should be 1 and all other should be 0 if X is a class j pattern. Then g j of W transpose X 

should be 1 and all other should be 0.  

So, this is simple for us now I can think of it as a vector-valued regression. So, give me a 

training pattern X i and let us say its corresponding class label is y i. Now, I represent y I 

as a vector as usual 1 in its class, so if I give that as the target essentially I vector-valued 

function where if X is in class j. Then the j th component of this vector-valued function 

should be 1 all other should be 0 right that is my time data. 
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So, this is now how we can formulate a least squares approach for learning W, we will 

learn w to minimize g of W transpose X i minus y i whole square, right? where X i and y 

i are our training data. So, X i is an R power d as earlier and y i is now a K vector whose 

components are y i 1 y i k each of the components is in 0 or 1. They sum to 1, right? So, 

that means only one component is 1 all others are 0. So, the comprehend that is 1 tells 

me what is the class label of X. Now g is also a vector and essentially if X i is the j-th 

class sample then in this y i the j th component will be 1 all others will be 0. 

So, I am essentially want I essentially want g of W transpose X i to be close to the vector 

0 0 0 1 in the j th position 0 0 0. The that is why this is a good thing to minimize I did not 

put half we can put half we do not have to put half I have been putting half, so that when 

the differentiate the 2 will go away, but really that makes no difference. Another thing I 

wanted to notice is earlier we just simply writing you know g of W transpose X minus y 

whole square. Now we cannot do that because they are vector-valued functions, so g of 

W transpose X i is a vector y i is a vector that is why I put a norm on X z. So, is the norm 

square so this is what we want to minimize (( )).  

So, let us look at more closely how we are going to minimize this function. So, this is our 

function right we want to minimize over the training data. So, given an X i my my model 

will say j of W transpose X i as its vector-valued class label its true vector-valued class 

label should be y i. So, I am take the difference between these 2 because they are vectors 

the difference is the norms norm. 
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So, because I want to minimize the squares of the errors I am taking the squares of the 

norms. Now, we will take the usual Euclidean norm by by expanding this norm we can 

simplify our j of W as follows. Outer summation still remains i is equal to 1 to n the 

inner 1 this norm or recall that both g of W transpose X i and y i are K vectors i. So, I 

can write the inner...  

I can write the norm as in inner summation s equal to 1 to K g s of W transpose X i 

minus y i s whole square. Now, I know what g s of W transpose X i is, so let us expand 

that so g s of W transpose X i is exponential W transpose X i plus summation over J 

exponential W J transpose X i minus y i whole square. So, J of course, I wrote J of W J is 

a function of all the W s s. That is why I wrote it as J of W, so this is the explicit function 

now we want to minimize this, it does not quite look like the earlier logistic.  

Very nice form some h of W transpose X plus W naught minus y whole square, but it 

still I have I have to learn K vectors. This is the relationship I can certainly differentiate J 

of W with respect to each of these W s s and then find the W to minimize this. So, for 

example, we can use l m s algorithm to find W that minimizes J l m s algorithm as you 

know is nothing, but a variant descent on this J. So, I need to find derivatives with 

respect to the component of W. For example, I can find gradient with respect to each of 

the W s s.  



 
 

Then move with the direction of the decreasing gradients. So, in principle this is the 

multiclass logistic regression algorithm the just 1 of course, this can be done now. There 

is nothing left except that the expression is little complicated. The the gradient descent 

optimization might be a little complicated, but this completely solves your logistic 

relation problem for multiple classes. 
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But having said that this is often computationally a little complicated, why is this a little 

complicated? This is what we want to minimize. The the main problem with this 

optimization is that learning of different W s s are not decoupled. See earlier even though 

say in the least squares case of learning vector-valued functions even though I am 

learning many vectors W s, each has its own targets and the learning different W s s are 

completely decoupled. So, it is just a question of running say K or m number of different 

simple linear least square regressions, but now it is not that as this function has all the W 

s s mixed inside. 

So, specifically what does that mean? If I want to take variant of J with respect to a 

particular W J it involves all the other W s s, because of this normalising term because of 

this term if I want gain with respect to W, say W 1. Then the s is equal to 1 1 term is 

what comes here, but this denominator will be there not only that all the other terms in 

this summation will have W 1 in the denominator. So, you have to take derivative with 

respect to that, so it will be horrendously complicated expression for the derivative. 



 
 

So, unlike the the case of vector value regression using simple linear least squares 

learning of the different W s s. In the case of multiclass logistic regression are not 

decoupled this can make it computationally more difficult, because it can become 

computationally difficult one. Sometimes does some approximations of course, when 

you do approximations you are not you are no longer exactly minimizing the function 

that you should be minimizing.  

But often these approximations are good enough the approximation is based on the 

observation that basically this problem the problem that gradient of J with respect to any 

1 W J involves all the other W’s or other W vectors comes because of only this 

denominator term. In the original posterior probability model the denominator term is 

essentially a normalising constant. So, the idea is that instead of using all the other w’s 

here can I use a a simple normalising constant here, so that is the basic idea of the 

approximation. 
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So, how do I run the approximation? So, I rewrite g f as this. So, this of course depends 

on all the other W s i instead of explicitly saying it depends on all the other W s i simply 

say is some term that depends on the index i. Because this corresponds to the i th data 

sample I call it some Z i, thus how I wrote it now? I I pretend that Z i’s are constants. 

They are dependent on i, but otherwise there are not dependent W’s, then if I pretend like 



 
 

that. Then if I take the gradient of this with respect to W 1 only that s is equal to 1 term 

in this in this summation continues. 

Similarly, if I want gradient with respect to W 2 only X is equal to 2 term in this inner 

summation (( )). So, once again all my W’s will get decoupled to use the above objective 

function as I said to do gradient descent on J, what does that mean? If I use l m s 

algorithm on this then gradient with respect to different W s s are completely decoupled. 

So, you can now run this as if I am doing different m number of different individual 

function learning problems. But there is not quite true because this Z, I have to be proper 

normalising constants. 

So, what 1 does is the following you you have currently some values of W’s use that to 

calculate the current Z i. Once you calculate Z i you pretend that Z i does not depend on 

W anymore. Then calculate gradients now gradients become very simple terms and use 

the each of the gradients of W s s for a particular s use the gradient of J with respect to W 

s to find that new value of W s new gradient descent individual. Each of the W s and 

after each iteration you recompute Z i using the new current values of W s. This way is 

not completely decoupled because iterations have to run in in step. So, after each after 

doing one gradient descent on for each of the W’s I use all their values to recompute the 

Z i’s.  

But still the gradient computation is much much simpler compared to earlier one, where 

each of the terms in this inner summation contribution gradient. Now only 1 time 

contributes the gradient. So, computation of gradient becomes simple and recomputing Z 

i after every iteration is a small extra computation cost way. So, often this approximation 

gives you lot of computational advantages. So, when one uses logistic regression with 

multiple classes. We either take this and do the brute force gradient descent on this using 

the full gradient or we use this approximation and keep the computing Z i is often this is 

computationally simpler. 
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So, we can sum up. So, we have seen the generalization of logistic regression multiple 

classes it is a little more complicated than generalizing least square regression (( )). 

Classification is simple least squares regression classification, but the basic idea as we 

have is instead of using logistic function in the posterior probability modelling, we are 

using a softmax function, which is also quite straight forward essentially a logistic 

function is used as the as a continuous approximation to the function of sign of l n 

posterior probability of a of class 1 by posterior probability of class 0. 

In the multiclass case I need to find the maximum of all the posterior probabilities, so I 

have to use some continuous some smooth analog of the max function that is the softmax 

function. So, once we see this connection essentially is notationally complex, but the 

basic idea of generalization is the same because of this complexity of course, is not 

completely decoupled. But as we seen using that approximation we can partially 

decouple it, so this gives us the multiclass logistic regression. 
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Now, what about fisher linear discriminant that also can be generalized to multiple 

classes, so once again, let us ask what is the basic idea? In the 2 class fisher linear 

discriminant the 2 class case what we are doing we are interested in finding a direction a 

particular vector W a single direction can be thought of as a one dimensional subspace. 

So, saying it a two class case, we want to find a one dimensional subspace onto which 

we want to project the data which is the one dimensional subspace.  

We want to take the idea is to take that subspace where after projecting the data the 

means of the 2 classes have maximum separation relative to their variances that is the 

basic idea. So, you want to find at particular one dimensional subspace this is the 2 class 

problem. I want to find a particular one dimensional subspace where there is a proper 

separation. This proper separation is formula is as you as you may recall using that 

within class covariance within class scatter matrix between class scatter matrix. 
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So, in principle generalizing fisher linear discriminant to multiple classes would mean 

what for a K class case we want to find a K minuses in the 2 class case we are finding a 1 

dimensional subspace. So, in the K class case we want to find a K minus one 

dimensional subspace onto which you want to project the data. So, that is fair enough so 

its once again essentially I am thinking the fisher linear discriminant think of y as W 

transpose X plus plus some v that that W gives me the one dimensional subspace. Now, 

this y will be a K minus 1 dimensional subspace the the issue is now in the 1 dimensional 

space finding the separation is quite straight forward.  

How to rate differential 1 dimensional subspaces in terms of where the data of the 2 class 

are well separated? So, we have to do a little more work on suitably generalizing the, so 

called within class and between class scatter matrices. So, that we can find once again 

appropriate objective function the details are complicated and at least for this course we 

will omit them. It is there in the reference textbooks that were given in the beginning of 

the course, but the basic idea is just this.  

We we find a appropriate K minus 1 dimensional subspace on which we project the data. 

So, this kind of completes our discussion of all linear classifiers, we have considered 

various methods of learning linear classifiers. Linear regression models and we have 

considered all the algorithms in great detail. Also seen how they can be generalized to 

the vector case in the regression and the multiclass case for classification. 
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So, what have we done, so far we have we looked at some specific cases of linear 

learning classifiers given the training data with we looked at 2 major things, so far one is 

the optimal Bayes classifier and how to estimate class conditional densities for 

implementing Bayes classifier? That is one way of, but of course Bayes classifier can 

also be viewed as a discriminant function as you already seen. So, we can think of that 

also as a discriminant function.  

The only difference is it may not be linear, but if we can estimate class conditional 

densities, we can implement the Bayes classifier standard discriminant function. The 

other major chunk we looked at is various methods to learn linear classifiers. We looked 

at perceptron least squares l m s logistic regression fisher linear discriminant which I 

called f l d here. So, all these once again you know various ways of learning linear 

models for classification regression.  

Now, now what we will do is we take a look at we take a more generalized look at the 

problem of learning classifiers. Now, that we at least got some algorithms we seen how 

the learning goes in practice what what the algorithms do on? So, on you can actually 

step back and ask what is common to these algorithms. Then look at some issues of 

whether we are learning the right classifier? Is there such a notion at the right classifier? 

How do we know what we learnt is correct? Issues like that. 
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In the in the very beginning of the course we talked about generalization. We we we 

looked at the problem of designing classifiers as essentially one of learning from 

examples say we started with learning from examples at the basic issue. So, given 

training data, so we are given say in the classification 2 class classification case we are 

given feature vectors of class 1 feature vectors of class 2. We are essentially be asked to 

say what is common to all the feature vectors of class 1 and distinct from feature vector 

of class 2. There are various ways of representing this distinction.  

Say for example, linear discriminant functions is one one way of saying is what is 

common to all feature vectors of class 1 is that if I use this W and W naught, then W 

times further expression W naught is greater than 0. If X is in class in 1 class less than 0 

of X in other class. So, essentially given the examples, we want to learn some general 

principles by looking at the examples, so that is what we have been doing, given training 

data we want to find an appropriate classifier. We have some algorithms for finding 

classifiers of certain structures.  

Now, what do all the classifiers amount to amount to searching over a family. Some 

family of functions to find one that minimizes error for, example our linear classification 

learning algorithms all they looking at a particular restricted class of classifiers they have 

restricted family of classifier namely linear classifiers. So, among all linear classifier that 



 
 

means among all W comma W naught are all all vectors W lest say augmented all 

vectors W. So, each W represents a classifier.  

So, all vectors W is a family of classifiers we are asking among all vectors W, which 

gives me some minimum error over the training set. Error is how we define so far we 

only looked at squared error, so to say, but does not matter we are we are we are looking 

for one classifier over a family of classifiers that minimizes the error over training set. 

For example, in linear least squares we are searching over the family of linear classifiers 

for minimizing square of the error. 
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As, we also discussed earlier performance on training set is not the real issue after for 

training set. We already know the class labels, so predicting the correct class labels and 

training set is not the issue is like solving an example problems in your maths course 

just. So, that you are testing yourself as you understand or not and one hope said by 

solving all the example problems well you you would do well in the test. So, in the same 

way, what the learnt classifier should do is to perform well on new data.  

How do we know the classifier performs? Well on new data this as we considered earlier 

is the issue of generalization does the learnt classifier generalize. Well you have seen lot 

of examples by looking at the examples have a generalized well, so that I learnt the 

general principle, so that now I can classify any new pattern. So, what we are going to do 

next is look at this in a more formal sense, which provides us you know some way of 



 
 

asking some formal questions about generalization and in the process give you some idea 

of what is called statistical learning theory. Our our treatment on statistical learning 

theory has to be (( )) simplistic because we are not assuming too much mathematical 

background for this course, but we will look at the the the formal statistical learning 

theory. 
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Let us quickly look before we go there the formalism will start next class, but before we 

go there let us just try to get some intuitive idea of what we are looking at in practice of 

course. We can always assess the generalization by looking at errors on a separate set 

just like the way we look at whether students learned well or not by giving a test. After 

the classifiers learnt we can give extra data, which is called the test set. That data also 

has labels, so I can calculate errors, so I just run the classifier and the test set and ask 

whether it does well. 

Since, the test set is not used for training error on the test data could be a good measure 

of the performance of the learnt classifier this means that of course, we should have more 

data. We cannot use all the data we have for training and you know if we let away some 

data may be we do not have enough data for training. We will come to all these issues 

later on we will consider these also later in the course. So, the specific issues of practice 

we will consider later how one actually assesses in practice given classifier?  



 
 

But right now our focus will be now more theoretical analysis of how to say whether a 

learning algorithm would generalize well or not given any data. Can I say this algorithm 

would generalize well and that algorithm may not generalize well and so on so forth. 
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So, to ask what this means let us let us take the every simple example of regression. Let 

us say we have 1 dimensional data X i y i both x X and y are in on real line. This is the 

standard least square curve fitting problem, which all of us have solved in class 12. We 

are giving points X and y and you want to find a good function relationship y is equal to 

f of X. We want to learn a function, so that we can predict y as f of X. Simplest 

regression problem we can use least squares for this. Basically of course, we have to 

have some particular form for f. 
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So, let us say we choose a polynomial function we do not know what m, but we choose a 

polynomial function w 0 w 1 X W 2 X square W m X m. As we have seen earlier, this is 

this easily fits into linear least squares. Linear least squares does not (( )) mean that the 

function is linear is only linear in parameters. So, already seen when we did least squares 

regression did this exactly fits into linear least square problems, so the question is what 

m. Should we choose we were already asked this question at an algorithmic level. We 

said that obviously we do not know what m to choose and all just, because because if we 

choose a very large m we may artificially think we are getting low data error. 

So, we will introduce the regularization, which can be viewed as a Bayesian approach to 

estimation, but that is an algorithmic thing. We said we take both data error and some 

regularization term and there is a regularization constant. So these algorithmic issues are 

important and ultimately that is how we are going to control generalization. But first our 

focus is theoretically understanding, why we need such a regularization? So, essentially 

one way of thinking of it is what m should I choose. 
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Can our data error tell us what m is proper of course, we already know it cannot, but let 

us let us say what it means? Suppose I have 2 m’s m 1 m prime that I get less error for m 

prime compared to m does not necessarily mean m prime degree polynomial is better 

than is a better fit. Suppose, you have given me the data I fit a straight line to the data. 

Let us say at for the best fit straight line I get my squared error as some 2.16. Some 

number, then let us say I fit a quadratic now obviously quadratic possibly may fit better. 

So, let us say I got 2.09 as the error for the best fit quadratic, does it mean that the 

quadratic is a better fit than linear?  

If you think 2.09 is too close to 2.16, let us say for quadratic I get 1.98 is it better is 1.94 

better. How do I decide? Can I say that looking at the errors is quadratic better than. Now 

in in its simplicity of course, this cannot be answered because we know if I have got n 

points and I fitted a n th degree polynomial. I will get 0 error. But obviously nobody 

would think of fitted saying the n th degree for polynomial is best fit for n points is like 

saying given 2 points I I can conclude that the relationship is linear or we cannot? 

So, how do we address this issue more theoretically if at a particular m. We get very low 

data error can we say it is good obviously not as we just now seen if I fit a n th degree 

polynomial I get 0 error no nothing can be lowered than that. But that is not good, I can 

ask the other way how many examples I should have for me to believe that for low data 

error are? Means they will be low test error. For example, if I am fitting a straight line to 



 
 

100 points and if I got point naught naught 1 error I can be I can I have fairly good 

confident that straight is the right thing. But if I got the same thing with only 2 or 4 

points I do not know whether I got the right straight line. 

So, one way of asking this is if I am fitting a particular kind of function how many 

examples should I need before I can believe my data error, so that is that is certainly 1 

important question to ask. We know that say for example, if I want to fit 100 degree 

polynomial I intuitive no I need more points. Then I want to put third degree polynomial, 

but can I formalize this for a particular class of models that I want to fit? How many 

examples do would I need for me to have confidence in my data error? We also know 

that suppose I say set your all possible polynomial.  

Then no matter how much data I have? I can never get anywhere if I do not fix m, but I 

say you said of course, now we do not know how to do that we only know least square 

algorithm. So, we can know it only if m is fixed, but let us say I have a learning 

algorithm which can search over whatever I want then if I say search over all possible 

polynomials. Then obviously no matter how much data I have I would never get a good 

fit. Because I always over fit I will always if I have n points I will always fit the n th 

degree polynomial because my bag of classifiers has polynomials of all degrees.  

So, we know intuitively that we will never learn anything. If we do not restrict the class 

of models over which if can we formalize this can we make this notion more precise. 

When something learnable is, when is something not learnable, but there are many ways 

of handling this there are things called minimum description, length principle Vapnik 

Chervonenkis theory. So, on so what I am going to do is starting next class.  

We will have a brief review of this in a in a in a in a intuitive form first and then we will 

only look at the, so called Vapnik Chervonenkis theory of statistical learning. That is the 

only formalism we will consider, which at least let us understand what model complexity 

mean? Why model complexity m comes where the regularization issues come up? It will 

also give you some idea of how many examples are sufficient for us to believe our data 

error. So, that is going to be our plan for the next few lectures.  

Thank you. 

 


