
Pattern Recognition 

Prof. P. S. Sastry 

Department of Electronics and Communication Engineering 

Indian Institute of Science, Bangalore 

 

Lecture - 18 

Fisher Linear Discriminant 

Hello and welcome to this next talk in the course and pattern technician. We have been 

considering linear classifiers for last so many lectures. Specifically, in the last few 

lectures we have been looking at the linear least squares approach both for classification 

and regression. Least square approach minimizes some of square of errors and we seen 

how we can use that to learn linear models and will continue with that now. 
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So, the least square method is based on the criterion of minimizing mean squared error. 

And we see how we can derive linear least squares algorithm for classifiers for learning 

regression functions. And we also looked at logistic regression of learning classifiers. 

There is one other approach to learn linear classifier which we very briefly mentioned at 

the end of the last class and that is the fisher linear discriminant while, least squares is 

also a good way of learning linear models and is a very very standard way. Fish linear 

discriminant actually somewhat predates the least squares approach, it is a very 

interesting approach to learning a linear classifiers. And today we will be looking at 

fisher linear discriminant as a method for constructing linear classifiers.  
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Any linear discriminant function base classifiers essentially, given a feature vector X; it 

decides that X belongs to class 1 if, W transpose X plus w naught greater than 0 for some 

given W and w naught. If W transpose X plus w naught is greater than 0 is one class less 

than 0 another class. that is a That is what a linear classifier linear discriminant function 

bayes classifiers is about. Now, because W is a vector, we can take it as a direction in the 

r d, the appropriate space. Then, W transpose X is nothing but the projected value of X 

onto the direction W. So, if I think of this inequality W transpose greater than minus w 

naught and if it is a good classifier. What it means is, if I take any X that belongs to class 

1 and projected it onto W, the projected value, W transpose X is greater than minus w 

naught. And on the other hand, if I take any X in class C 0 and project it on to the 

direction W then, the projected value W transpose X less then minus w naught. 

So, essentially what a linear discriminant function is doing is looking for a direction W. 

Such that, if I project the features vectors on to the direction then, along that direction the 

2 class are well separated. On that direction there will be some threshold in this case 

minus w naught, some point along that direction. Such that, the projected versions of all 

features vectors are 1 class will be on one side of this threshold whereas, the projected 

versions are all the features vectors are the other class will be on the other side of this 

threshold along the direction W. so, we can think of the best W for a linear classifier to 

be a direction along which the 2 classes are separated. So, we are looking for a particular 

direction feature space. Such that, if you project all the vectors onto the directions, all the 



feature vectors onto direction, I get a very good separation between the feature vectors of 

the 2 classes. 
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So, the idea is that we project the data along the direction W. And separation between 

points of different classes in the projected data is a good way to rate how good W is. So, 

now to learn a good W I can take different W’s, project the data onto these W’s, and I am 

asking which W is there which will maximize the separations between the classes. This 

is the basic idea fisher linear discriminant.  
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Before we go into the mathematically details let us look at a simple example. Let us say 

this is the 2-class problem: Reds are 1 class and blues are another class. If I project all 

data for example, onto the X axis, the reds and blues get inter mingled in X axis. 

Similarly, if I project it on to the y axis also they get inter mingled. 
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But, we can easily find a direction namely, this line. If I project the data along this line, 

as you can see; if I recode my 2 dimensional features vectors as 1 dimensional feature 

vectors by projecting them along this direction. Then, all 1-class patterns are one side 

and all other class patterns are other side. The actual separating hypo plane is 

perpendicular to this direction. So, If I think of W as this direction; obviously, W is 

perpendicular is the normal to the separating hypo plane. So, that will be separating hypo 

plane. So, I can think of finding the best W as finding a direction along which you have 

to project the data so that all the feature vectors have 1 class in the projected space or 

well separated from the feature vectors of the other class. So, fisher linear discriminant is 

a way of formalizing this notion of finding the best direction to project so that the 2 

classes get well separated.  
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So, what does fisher linear discriminant do? We want to find a direction W, such that the 

training data the 2 classes are well separated if projected onto this direction. So, to do 

this off course we have to find a way of formalizing this notion of what you mean by 

well separated. So, essentially we need to have a figure of merit some some number that 

I can assign to W. So, I want some j of W which assigns a number to a W to figure of 

merit. Such that, the number tells me how well projection on that W will result in proper 

separation.  
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So, will do that, we will formalize this by first considering a 2-class case. So, let us get a 

notion right first as we been looking at our data is always X i, y I, this is our training 

data, we have n samples. X i are the feature vectors there in r d and y i is the class label. 

We are considering 2-class. So, let us assume y i 0 and 1. And this, 2 classes we will 

denote by C 0 and C 1. 

So, what it means is when y i is 0 then, I can say X i belongs to C 0 and when y i is 1, I 

can say X i belongs to C 1.Let us say, out of the n samples, n 0 training samples are in 

class 0 that is C 0 and n 1 training samples from class C 1. Obviously, n is equals to n 0 

plus n 1. For given any W, let z i denote W transpose X i. So, z i are the projected data 

along any direction W. So, z i are the one dimensional data that we get after projection. 

This is our notation.  
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Let us say M 0 and M 1 denotes the means of the data from 2 classes. So, that essentially 

sample means so, M 0 is simply the mean of all X i that are in class 0 and there in M 0. 

So, 1 by M 0 summation X i, X i belonging to C 0 will give me the sample mean of the 

class 0 data vectors. Similarly, 1 by M 1 summation X i belongs to C 1 gives me the 

sample mean of class 1.  

So, the corresponding means of the projected data, would be what? If I project X i onto 

W, I get W transpose X i. So, if I take mean of W transpose of X i will be same as W 

transpose M 0. So, on the projected data let us denote the mean by small m 0. So, the 



mean small m 0 will be W transpose capital M 0 and small M 1 will be W transpose 

capital M 1. So, these are the means of the projected data when data is projected onto 

direction W.  
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So, if I want good separation, what I mean is the difference between M 0 and M 1 should 

be large. So, we can say M 0 minus M 1 or M 1 minus M 0 is really does not matter 

gives us a good idea of the separation between the samples of 2 classes when the data is 

projected on to the direction W. So, we can say a good direction W is one which 

maximizes the separation. So, we may want W that maximizes M 0 minus M 1 whole 

square because that gives me large separation. But, there are 2 caveats here; just 

maximizing M 0 minus M 1 is not a good idea. Why? What is M 0 minus M 1? W 

transpose capital M 0 minus W transposes capital M 1 whole square. So, is W transpose 

capital M 0 minus capital M 1 whole square.  

So, just by scaling W, I can increase this difference but, that is meaningless. A scale 

factor, a positive scale factor makes no difference to the linear classifier. So, first we 

have to find some function that is scale independent. But, more importantly what is good 

separation; depends on how much data spread is there. We are only looking at the 

distance between the means as we already seen we can consent bayes classifiers normal 

class conditional densities. Essentially, the difference between the mean relative to the 

variances is what tells us whether the classes are well separated or not. So, to look at the 



distance between the means M 0 minus M 1 in relative to the variances of the 2 classes. 

So, that is how we have to formulate our objective function W.  
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So, let us first calculate that is something like variance. As define as 0 square to be W 

transpose X i minus m 0 whole square. W transpose X i is the projected data that is z i. 

This is summation or X i belongs to C 0, for all X i in C 0 the mean of the projected data 

is m 0. So, W transpose X i minus m 0 whole square, sum dot X i belongs to C 0, is like 

the variance of the projected data of class C 0. Say like because I dint put 1 by m 0, I 

could have put 1 by m 0 but, we did not. So, this essentially just accept for a multiplicate, 

for a constant multiplicate factor; these essentially variance of the projected data from 

class C 0.  

Similarly, if I define s 1 square to be summation or X i belongs to C 1 W transpose X i 

minus m 1 whole square because m 1 is the mean of the projected data of class 1. This is 

accept for multiplicative factor if the variances is the projected data in the for class 1. So, 

what we want? We want large separation between m 0 and m 1 relatively to the 

variances. That is our objective. So, I can formulate this as a objective function for W as 

follows.  
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So, we say we want to maximize J of W, with J of W defined as m 1 minus m 0 whole 

square by s 0 square plus s 1 square. So, we want large separation m 1 minus m 0 whole 

square, relative to the variances s 0 square plus s 1 square. By the way even though this 

equation looks as if there is no W at the right hand side, you know all m 0, m 1, s 0, s 1 

everything depends on W; s 0, s 1 square dependent on W.  

Right; s 0, s 1 square dependent on my m 0 depends on W. So, this is a function of W. 

So, we want to maximize the difference between the means in the projected space 

relative to the variances. This off course is also scale independent that is not really 

evident right now but, will see it by rewriting this in a more convenient form. To rewrite 

this in a more convenient form; let us start with a numerator.  

What is m 1 minus m 0 whole square? m 1 is W transpose capital M 1 minus W 

transpose capital M 0 whole square. This I can write as W transpose into M 1 minus M 0 

the whole square. So, because W transpose M 1 minus M 0 is a vector, I can always 

write it as W transpose M 1 minus M 0 into M 1 minus M 0 transpose W. So, m 1 minus 

m 0 whole square can be written as W transpose M 1 minus M 0, M 1 minus M 0 

transpose W. M 1 is M 1 and M 0 are the means of the data, if data is r d these are d 

vectors. Recall that our notation is all vectors are column vectors. So, m 1 minus m 0 is a 

d by 1 vector, M 1 minus M 0 transpose is a 1 by d vector. So, this is a matrix. So, this 

often called the outer product matrix for any 2 vectors.  
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So, I can write; m 1 minus m 0 whole square as W transpose some matrix into W. So, I 

can write m 1 minus m 0 whole square as W transpose, thus called the matrix S subscript 

B. So, W transpose S B W. Whereas, B is M 1 minus M 0, M 1 minus M 0 transpose. As 

I said this is a d by 1 vector, this is a 1 by d vector so, this is a d by d matrix. Given any 

vector x x x transpose is called a outer product. An outer product is always a symmetric 

matrix. Also, I hope all of you remember that the outer product is a rank 1 matrix 

because all columns are multiple by the columns. So, is a rank 1 matrix.  

So, such a matrix is d, this is a d by d matrix because our features vectors are on d. This 

matrix S B is often called between classes scatter matrix. So, I can write m 1 minus m 0 

whole square as a quadratic form involving the matrix S B which is the between class 

scatter matrix which is defined by this. In the similar way, I can write s 0 square and s 1 

square also as quadratic forms.  
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So, let us try to do that now. s 0 square by definition is W transpose X i minus small m 0 

whole square. We know small m 0 is W transpose capital M 0. So, s 0 square is W 

transpose X i minus M 0 whole square summed over X i will learn to C 0. So, I can take 

or I can rewrite this as: W transpose into X i minus M 0 whole square. Now, once again 

just like what we did for earlier, I can write what is inside this summation in terms of 

outer products. So, I can write this as W transpose X i minus M 0 into X i minus M 0 

transpose W. Now, the summation is over X I. So, W can come out of this summation. 

So, if I pull W out of this summation, I get W transpose summation X i belongs to C 0, X 

i minus M 0, X i minus M 0 transpose W. 

See, M 0 is the mean of all X i in class 0. So, if I did do this and divided by 1 by M 0; if 

you remember this is the maximum likely hood estimate for the co variance matrix. This 

is the m l estimate for the coefficient matrix of class 0. So, I can write s 0 square as W 

transpose X i minus into C 0, X i minus M 0, X i minus M 0 transpose W. This matrix 

off course is not at the coefficient matrix, if the coefficient matrix X i accepts for a 

multiplicative factor because I need 1 by M 0 to make it an estimate of the coefficient 

matrix. If I do the same thing for s 1, the only difference will be the summation will be C 

1 and M 0 will become M 1. 
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So, similarly s 1 square will become W transpose the same matrix but, summation C 1 X 

i minus M 1 X i minus M 1 transpose W. Which now means, I can write s 0 square plus s 

1 square as W transpose S w W. Where, S w is another symmetric matrix given by this 

sum of this 2 matrixes X belongs to C 0, X i minus M 0, X i minus M 0 transpose plus X 

belongs to C 1, X i minus M 1, X i minus M 1 transpose. So, this matrix, this S w is also 

the d by d matrix is called within class scatter matrix. Essentially, the first term here is 

propositional to the coefficient matrix of the first class of class C 0 and second term is 

propositional to the coefficient matrix of the class C 1 by matrix we mean the sample 

mean estimate of the coefficient matrix. So, S w is called the within class scatter matrix. 

So, we can write s 0 square plus s 1 square as a quadratic form on S w, M 1 minus M 0 

whole square at the quadratic form on S B.  
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So, now J of W becomes W transpose S B W by W transpose S w W is a ratio of 2 

quadratic forms. So, first thing to note so, basically this is the same J as earlier. So, we 

just read it on a originally J W is M 1 minus M 0 whole square by s 0 square by s 1 

square because both the numerator and denominator can be written as quadratic forms on 

some matrixes we written them like that. So, this is the J that we want to maximize. 

Now, is very clear that is not effect by scaling. If W replaced by k W, the k will be 

cancelled from both numerator and denominator.  

So, this W is not affected by, this J W is not effect by scaling of W as it should be. And it 

is easy enough to calculate, given the data I know how to calculate S B, I know how to 

calculate S w. So, I can calculate both the matrixes and hence given any W, I can 

calculate J W. And narration, this is very nice optimization problem. Essentially, you 

want given 2 matrixes as S w, you want to find a vector capital W which maximizes the 

ratio of quadratic forms. Maximizes ratio of quadratic forms say every standard 

optimization problem and we can solve it generally easily enough.  
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So, let us see how to do that. So, this is what we want to maximize. So, if you want to 

maximize, we differentiate or find the gradient and equate to 0. So, if I differentiate with 

respect to W and equate to 0, what will I get? I can first do, 1 by W transpose S w W into 

derivate of the numerator that will give me 2 times S B W plus the numerator W 

transpose S B W into derivative of 1 by W transpose S w W, I can write it as minus 1 by 

W transpose S w W whole square into the derivate of the S w W which is 2 S w W. 

So, just by differentiating this and equating 0, I got this. In this, this is a quadratic form, 

this is denominator so, it is a scalar; this a quadratic form, that is a as a scalar; this is a 

quadratic form; that is a scalar. So, I have 1 vector here S B W, another vector here S w 

W. So, it is some constant to the vector S B W minus some constant vector S w W is 

equals to 0 that means, this vector and this vector are in the same direction because 

constant times 1 is the other. So, what this implies is that, the vector S B W is in the 

same direction as respective. So, the W that maximizes J is such that the matrix S B 

times W is a vector in same direction of the matrix S w times W.  
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Thus, any maximize of J has to satisfy S w W is some constant times S B W. Where, 

lambda is the constant. This is reminiscent of the Eigen value problem. In Eigen value 

problem you get a X is equals to lambda X. So, some matrix into a vector, is lambda 

times the same vector. Here, I am not gaining the same vector but, some other matrix 

multiplies W. But, this is also very similar to the Eigen value problem. So, this is known 

as the generalized Eigen value problems.  

The standard ways of solving the analyzed Eigen value problem, there are methods based 

on LU decomposition so on. So, once we know is a analyzed Eigen value problem; for 

example, your mat lab will have a very standard protein for solving this. But, anyway we 

will not get into the details of special methods to solve general Eigen value problems 

because often we can solve it easily but, right now we know that because the generalized 

Eigen value problem. By solving generalized Eigen value problem I can always find the 

best direction W. 
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But as I say often, I may not have to solve the generalized Eigen value problem. This is 

because the real symmetric matrix S w is often invertible. And, why is that so? S w is 

this matrix, X i minus M 0, X i minus M 0 transpose, sum door X i belongs to C 0; X i 

minus M 1, X i minus M 1 transpose some door X i belongs C 1. There are atleast 2 

reasons why we can suspect that this matrix is invertible. One is, we know for each i, X i 

minus M 0 into X i minus M 0 transpose in outer product is a rank one matrix. So, this 

adds lot of rank one matrix. When you add rank one matrixes suppose, I add x 2 minus 

M 0 into x 2 minus M 0 transpose to x 1 minus M 0 into x 1 minus M 0 transpose. If x 1 

and x 2 are linearly independent then, this becomes a rank 2 matrix.  

So, if I keep adding many rank one matrixes because the rank one at most go by 1 but, if 

we should the sufficiently many. So, the first reason is that this is a sum of a large 

number of rank one matrixes. If the number is large and X i are in general position, it is 

unlikely that all the X i will be in some lower dimensional subspace. Since, if all the X i 

are not in lower dimensional subspace then, adding all these rank one matrixes should 

give me a full rank matrix. Normally, the number of samples is much larger than the 

dimension d and hence, adding that many rank one matrix should give me a full rank 

matrix. Another reason, why we think why often this as a invertible is that as you seen, 

each term in this is a good estimate especially the data is large or prepositional to a good 

estimate of the covariance matrix X i and the covariance matrix will be invertible. So, by 



in both ways we accept S w to be invertible. Suppose, S w is invertible then, it is very 

much easier to solve for d. 
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Let us say, S w is invertible. So, we have seen in the W has to satisfy S w into W is 

equals to lambda S B W. So, if this matrix is invertible, I can multiply by S w inverse. 

So, I get an equation for W or atleast relation W is equals to something. So, let us look at 

that relation.  

Suppose, S w is invertible then, W can be written as S w inverse S B times W. There is 

There has to be lambda here, I omitted the lambda because ultimately constant factor is 

do not make much difference but, any way there is a lambda here. Let us not worry about 

that right now. This looks like off course an Eigen value problem. Putting a lambda here, 

it is the Eigen value of S w inverse S B. But, we do not even have to look at the Eigen 

values because S B W, what is S B? M 1 minus M 0, M 1 minus M 0 transpose into W. 

We know M 1 minus M 0 transpose W is nothing but little M 1 minus little M 0 which is 

scalar. So, this is some scalar k times M 1 minus M 0 as I wrote here, k is equals to M 1 

minus little M 1 minus M 0.  

So, S B W is a vector is propositional to M 1 minus M 0. So, I can replace S B W by 

some constant times M 1 minus M 0. So, which gives me W is S w inverse M 1 minus M 

0. There are so many constants; there is a lambda here, there is a k here. So, ultimately 

there will be some constant times S w inverse M 1 minus M 0. But, as I said constant do 



not make difference in a linear classifier. Right. We can accordingly k W on b to 

anything that we want.  

So, essentially we can find the W x surface scale factor to S w inverse M 1 minus M 0 

and I do not want to worry about the scale factor, I can take this to be W because I am in 

a linear classifier context. So, this is the W that I can use as the fisher linear discriminant, 

if the matrix S w transpose to be invertible which as we just now said very often that 

would be the case. 
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 So, let us sum-up how we obtain fisher linear discriminant. With given the data, given 

the data, we first form the scatter matrix S w and also calculate the mean M 0 and M 1. 

Once the within class can I matrix S w is invertible, I can directly find W. As S w is 

invertible, I can calculate W by S w inverse M 1 minus M 0, that is the fisher linear 

discriminant direction. Or it is normal to the hypo plane classifier given by the fisher 

linear discriminant. 

Just for completeness let us remember that, even if S w is not invertible there are 

techniques to find maximizes as a W by solving some generalized Eigen value problem. 

There are some techniques, even the generalized Eigen value problem. If S w is not 

invertible, there are some issues. I will just show that, so that you will appreciate that 

there are some issues that means just go back to.  



If S w is rank deficient, what it would not mean is there can be some W at which W 

transpose W, W you can go to 0. Right. Thus, there would be some W for which this will 

be infinite but, thus not the W we want. So, we have to define this little more carefully. 

But, it does not matter there are techniques to take care of it. So, we will just we would 

not go there but, will just remember that.  

If S w is invertible, W is given by this. Even, otherwise one can find a maximize by 

solving some generalized Eigen value problem. So, that is how we obtain the best 

direction W; very often this is what is no given as the fisher linear discriminant, as said 

in most pattern recognition problems S w would be invertible. So, this is the fisher linear 

discriminate. But, obviously we have found only the best direction W. We have not yet 

found a classifier. Right.  
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Let us remember that a discriminant based classifier is sign of W transpose X plus b. So, 

I have to find the b also. Right. All that we have done so far is how to find the best W. 

And have been found best W, to convert it to a classifier I still have to find W. But, this 

is a must simple of problem right. We have to tell on the best b but, this simple problem 

just learning a threshold. We are saying this is the best direction now, we have one 

dimensional data and I want the best threshold. So, now given one dimensional data and 

class labels, I just want a threshold bayes classifiers. I am asking which threshold is 

good, there are many methods.  



For example, we considered ROC, how we can experimentally calculate ROC and come 

to a threshold; that is one thing. We can do we can do any that kind of such for a 

threshold. We essentially have to along W, we keep putting the threshold at various 

points and keep asking is my accuracy and the training data improving. I need only one 

threshold. So, I will start from some end of some point and keep moving, just like a line 

search in the optimization problem. So, we can do a simple line search to find the best 

threshold, to maximize the probability of a correct classification and the training data. 

Or, what we do is, the projected one dimensional data z i that is, what we have with class 

labels. We can simply take it as a one dimensional pattern recognition problem and is 

very easy to solve one dimensional pattern recognition problem. For example, we can 

take the class conditional density to be normal, estimate the associated normal densities 

very easy to do for one dimensional as you have seen. And then, take the classifiers 

based on the estimated densities. This is also often done. So, in whichever way we do 

that gives us the final fisher linear discriminant. So, this is how I would obtain the fisher 

linear discriminant. 
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Officially, a discriminant is also a popular classifier, just like the least squares. Now, the 

way we derived fisher linear discriminant it looks quite different from the least squares 

method. As I had told you, a fisher linear discriminant came from also, came from 

statistic but, not it came from different direction.  



So, essentially linear least squares and fisher linear discriminant evolved historically as 

different algorithms. However, how different it may look, there are close connections. As 

the matter of fact we can think of fisher linear discriminant as a special case of linear 

least squares. The reason we did not start there is that because historical is important, it is 

very often used in a applications and is nice to know another way of formulating what is 

a good linear classifier. But, having said all that, one can actually mathematically show 

the equalence of linear least squares and fisher discriminant in a in a very specialized 

sense. What is specialized sense; is the following.  
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We start with some data X i, y i. This is our given data X i is in r d, y i is 0 1; this is our 

classification data. Given this data suppose, we form some new training data where, X i 

are same but, y i’s change it to y i prime.  

How do I form the new y i primes? Originally, y i’s are 0 and 1. So, if y i is 0 that is, X i 

is coming from class 0, I take y i prime to be n by n 0. So, I am just changing the targets 

for all class 0 patterns, the correct value to predict is n by n 0. Where, n is the total 

number of samples and M 0 is the samples of class 0. On the other hand if y i happened 

to be 1, I take y i prime to be minus n by n 1. So, now I got new data X i, y i prime 

where, y i prime take some real numbers not 0 1 because n by n 0 and minus n by n 1 are 

some real numbers. Even though we take some real numbers we will think of y i prime 

as some generic real numbers. Then, we can treat this X i, y i prime data as a regression 



problem. X i is an r d, y i prime are a naught; I want a predictor, I want a linear predictor 

where, I has is W transpose x plus b. 

Simply, viewing X i, y i as some data for a regression problem, I can certainly use least 

squares to find a linear predictor. What I have is W transpose X plus b. Using the 

outstand linear least square method that you have done in the last couple of lectures. One 

can show algebraically the algebra is a little tedious but it is there in one of the 

prescribed text book namely, Bishops book. But, it can be shown through somewhat long 

variant algebra that, if I done that, if I take this data recoded X i y i prime and then, think 

of this as a data for regression problem and then, find a linear regression. Then, one can 

show that the least square solution W that I obtain for fitting this model to this changed 

data will be exactly same as the W that we get out of fisher linear discriminant.  

I am not prove this I am not proving this, as I said the algebra is tedious and it possibly 

does not add much score through the algebra, it is also there in bishop book. But, it 

should know that, it can be shown that the least square solution have obtained here 

would be this, would be same as the fisher linear discriminant. Thus, one can show or 

one can see that fisher linear discriminant can be viewed as he special case linear least 

squares. So, it is not really different from linear least square but, at the same it gives you 

another very important useful idea of how one looks at what is a good linear classifier.  
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There is other ways of looking at how good fisher linear discriminant is. For example, 

we take simplest 2 class problem; let us say we have a 2 class problem with both the 

class conditional densities to be normal unless they say they have the same covariance 

matrix. Why same covariance matrix? If the 2 class of the same covariance matrix we 

know that the based optimal classifier is a linear classifier. Right. 

So, now one can ask, will fisher linear discriminant give me the optimal linear classifier 

because fisher linear discriminant can give me only linear classifiers. We can only ask 

whether will give the optimal classifiers when the optimal classifier itself is a linear. So, 

let us take a case class conditional density is normal with same covariance matrix and we 

know that the based optimal is a linear classifier and will show that fisher linear 

discriminant will give me the same classifier as the based classifier. So, let us say mu 0 

and mu 1 are the 2 means of the classifiers classes and because the covariance matrix is 

same, there is only 1 sigma for both classes. Thus, sigma is the common covariance 

matrix. Suppose, given this data if we want to actually implement bayes classifiers we 

would estimate class conditional densities; let us say using maximum likely hood 

method. If we give maximum likely hood method, we know mu 0 and mu 1 will be 

estimated in sample means. Similarly, a similar sample mean estimate exists for the 

covariance matrix.  

So, then we know that M 0 and M 1 would be the sample mean estimate is for mu0 that 

is how we obtain. M 0 is 1 by M 0, 1 by M 0 summation X i so, the sample mean 

estimated for mu 0 similarly, M 1. So, I would have obtained the same M 0, M 1 as the 

sample mean estimate for mu 0 and mu 1 had a try to do this estimation of class 

conditional densities under maximum likely hood. Similarly, I would I would have got 

some sigma hat as the estimate with the covariance matrix.  
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Then, what will be the bayes classifiers, we implement with this estimated quantities. If 

you still remember the bayes classifiers that we derived for common covariance matrix 

k. It is a linear classifier W transpose X plus b where, the W is given by sigma inverse 

mu 1 minus mu 0. So, what I would have implemented is sigma hat inverse M 1 minus 

M 0. Now, we know that this has to be same as the FLD because we know that the S w 

inverse that comes there is like covariance matrix. So, very very quickly will show that 

this W would be same as the W given by the fisher linear discriminant. 
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Coming back; this is the S w matrix. Because both classes are having the same 

covariance matrix, I could estimate the covariance matrix either from class 1 or from 

class 0. So, if I estimate this from class 0, that estimate would be propositional to this 

accept for a propositional constant. Simply, if I estimate it from class 1 it will be 

propositional to this accept propositional constant. And the classes are the same 

covariance matrix; each of the 2 terms above would be proportional with the same 

sample mean estimated. Right. So, the first term will be some a times sigma hat and the 

second term will be some b times sigma hat. So, essentially S w will be propositional to 

sigma hat. 

So, since S w propositional to the sample mean estimate for sigma, we know that the 

fisher linear discriminant is given by S w inverse M 1 minus M 0 is same as the bayes 

optimal classifiers. So, fisher linear a fisher linear discriminant is an interesting 

classifiers because atleast in this kind of cases it gives you the bayes bayes optimal 

classifiers. So, it has a variant testing geometric interpretation namely, finding a direction 

along which classes are well separated. That is that is in itself is a nice interesting 

geometric interpretation. In addition, as you seen it can be viewed as a special case of 

least squares. And also, you know in this in the cases that bayes optimal is linear, I am 

iam getting atleast in the normal class conditional densities case. Fisher linear 

discriminant gives me the same classifier as the bayes optimal. So, that is the story of the 

fisher linear discriminant.  
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So, to move on; we consider various methods of learning linear classifiers and linear 

regression models starting with perceptron and then, we spent a lot of time on linear least 

squares methods and now, fisher linear discriminant. But, most of the time we are 

restricting ourselves when we doping regression we are talking of targets being in r in the 

regression case where we assume the training data as X i, y i where, y i belongs to r. 

What it means is, we are only estimating the real valued functions.  

So, one generalization that we may want to do is to generalize this to vector valued 

functions. Right. Similarly, whenever we consider classifiers the classification problem 

we always restrict our self to do class problems so we have to generalize this to multi 

class problem. These are the 2 issues still left. So, in this class will atleast look at the 

issues involved and will tell you what the things are and pretty much that is all the least 

for multi class classifier. We may just briefly touch upon it next class and leave it at that. 

So, let us do it one by one.  
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So, let us first look at the regression problem. First consider estimating vector-valued 

functions. What does vector-valued function mean? Now, my training data is given by X 

i, y i. As earlier, X i is a feature vector it belongs is an r d, y i is the target. Now, bacause 

I am learning vector value function let us say the functiom map from R d to R m. So, y i 

will be m vector. I am sorrry this should not be r d, this should be r m. I am sorry about 



that. But, anyway y is a m vector. So, because we already put i for denoting the i’th 

sample.  

Let us put, let us denote the components of y i by y i 1, y i 2 upto y i m. So, the main 

difference in the vector value case is that y i is now a vector of some m components for 

some orbitary value of m. So, given any X, we want a model that can prdict the target 

which is a m vector. So, given any X we want to predict y which is actually an m vector 

given whose components are y 1 to y n. And we want to do it using our basic linear 

methods. So, what it means is that, we want to learn m W’s and b’s such that, the j’th 

component can be predicted as some a fine function that is, W to j transpose X plus b j. 

So, essentially the problem falls down to find m vectors W j and m scalars b j.  

So, that is a good model, my good model my prediction model would be the j the 

estimate of the j’th component in the target y hat j is W a traspose X plus b j. What is 

mean? If i just take this data and split it into many data’s X I, y i 1 is 1 data set, X i y i is 

another data set, X i y i is another data set and so on. For each data set I find a standard 

least squares methods. Right. So, this learning a vector valued function is no different 

from simply solving m number of linear least squares regression problems.  

So, simply by learning running m linear least squares regression problems, we can solve 

the vector vector case. Of course, we can all put it into a better formulism. We can 

actually put all these W j’s as columns of a W matrix in d right a the entire least squares 

solution in a vector matrix notation. But, except for some complecation notation, there is 

nothing really conceptually linear over here because we are simply effectively running m 

number of linear least square regression problems. So, which means in principle, we 

know how to solve the ah linear model problem even if we have to lane a target function 

which is vector value.  
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Now, let us come to the multi clas problem. If i know so far we know many methods for 

learning 2 class problems. So, If i know how to learn 2 class problems, can i find? Can i 

use the 2 lane multi class problem? The issue is just a little more complicated here, we 

have earlier considered this. So, let us say we have k classes C 1, C 2, C K. So, will 

come to decide how the data will be. For knowledge let us assume that we get X i y i 

then, y i takes any any any value between 1 and k. 

Note that earlier we always been looking at our classes some C 0, C 1 so on. At this time 

we look at a C 1, C 2, C K. Now, as i said some time ago essentially 2 class problem is 

the more fundamental problem because we can solve multi class problems simply by if 

you know how to solve 2 class problem. So, we can in principle solve number of 2 class 

problems to solve a multi class problem. There are atlest 2 very generic techniques of a 

learnig in a multi class problem using 2 class methods. One is that i can learn K 2 class 

classifiers where, K is the number of classes as follows. I learn C i verses not-C i.  

So, the i’th classifier I learn is learning to classifier C i verses not-C i. What you mean by 

C i verses not-C i? I have the data, a training data of the K class K’s so, I take all the 

data, all the X i that belongs to a particular classes say C i or say all data that belongs to 

C 1 as 1 class all the rest of the data as another class. Then, I solve a 2 class problem 

whose objective is to say given an X is it is in C 1 or is not in C 1. Similarly, is it in C 2 

or not in C 2. So, I learn key a number of 2 class classifiers, each classiffier is learnig to 



distinguish between C i or not-C i. This apporach is often called one verses rest and is a 

very standard approach in learning multi class case. Especially, in when you one one 

does all in a clasifier very often one goes for on verses rest apporach. 
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Another way of doing it is inster learning K, I learn K C 2 number of 2 class clasifiers. 

Now, for every distincit pair i and j I am learning 1 classifier to distinguish here C i from 

C j. The main of course, I am learning more number of clasifiers here. Why should I 

learn more number of clasifiers, why cant i use the previous method where I have to 

learn only K classes? One problem with this C i verses not-C i learning could be that for 

this problem, the effective training set could be very (( )) . Let us say I have 100 classes 

and I have let us say 50 examples of each class making a total of 5000 examples.  

Now, when I want to do C 1 verses not-C 1, I have only 50 examples of C 1 whereas, 

4950 examples of not-C 1. fine. Then, if one of the classes has much less much less 

represent the training set then the another 2 class problem. Predominantely, all traning 

data belongs to to 1 class, that is very diffucult to learn the classifier. For example, in this 

case if i have 50 of 1 class and 5000 minus 50 of the other class. Then, a classifier 

always says not- C 1 has only a error rate of 50 by 5000 on the traning data which is very 

small right. So, stupid classifiers can have very low error on the training set and that 

always makes it difficult. Often, what one does is when 1 class as too many samples 

then, you resample from there. So, out of this 4050 I may be I take some 50 or 100 



randomly selected samples and use that to do C i verses not-C i. But, when I do that may 

be that does not represent all the other not C 1 not-C 1 clases.  

So, if the number of classes is very large then, one versese rest can be difficult. Because 

the training data squte will be very squte for the resulting 2 class problems. If I have only 

3 or 4 classes then it may not be so bad. But, if i have hundred or 200 class 100 classes or 

50 classes then learning C i verses not-C i could be a squte data set problem and I have to 

properly balance the data set. It is in those casses that learning C i verses verses C j 

classifiers could be because if essentially when I have got K class problem and I have 

training data, one accept that all class all clases are represented about equal measure. So, 

for a 2 class problem C i verses C j, I will have roughly equal number of example for 

both clases there is no squte traning training say distrubution.  

So, this is a little more easier, is more stable 2 class clasifier learning and that the reason 

even though I am learning more number of classifiers, I may want to do this. So, these 

are essentially 2 ways of using, there are others but, these are the 2 main ways of using 

an algorithm that can learn a 2 class classifier to classify K classes. But, however there 

are issues with both of these. Right. I will we will We will see look at some problem, 

there is not to say that there are not followed.  

But, there are pit falls with both the apporaches in as much as any set of such classifiers, 

this set of K classifiers or this set K into K minus 1 by 2 clasifiers do not make a perfect, 

a well defined classifiers. Perfect is wrong word to use because we are not saying it has 

to have 0 error or anything like that. But, atleast it should be a well defined classifier. 

What do you mean by this? A classifier is a black box to which if I give an X. There is 

no doubt in the classifiers mind as to what class X should be goin because this is an 

algorithm, it has to be an algorithm. Whether, it is right or wrong is a different issue but, 

something to be call a classifier atleast structurelly, given an X it should be assigned to 

one unique class.  

But, if I learn this many 2 class clasifiers or this many 2 clas clasifier, together they do 

not really define a very a proper classifier in this sense. Thus, what will see next that 

neither this apporaches are realy satisfactory generalizing the linear discriminant 

function to multiple classes. So, before I will show you some examples of why this 

happens and tell you how we can solve this.  



But, before I go there I spent a lot of time telling you about this 2 ways of dealing with 

multi class problems because inspite of the problems I am going to tell you, sometimes 

people use this apporach for solving multi class problem. But, we should still know what 

the pit falls in the apporach are. 
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So, let us first consider one verses rest apporach. The problem is that there are regions of 

feature space where, the classifiaction is ambiguous. Right. Let us say, this is the linear 

classifier that separates class C 1 on one side and not C 1 on the other side. Let us say 

this is a linear classifier that separates class C 2 one side and not C 2 on other side. This 

is the region 3 where, it is class 3 as it should be not C 1, not C 2. But, there will be 

region like this where, this classifier will say C 1 and that classifier will say C 2, may be 

my third classifier will may say not C 3. That is all right. But, what should I do here; 

because if I take any X here one classifier say C 1, other classifier say C 2, my third 

classifier say not C 3. So, that is okay, not C 3 is fine. But, is it C 1 or C 2 or no way of 

knowing. So, this does not even define a proper function that maps every feature vector 

to a class. Right.  
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The same this is to even, if you use C i verses C j apporach. Once again here is an 

example. So, in 3 class case. So, this is a C 1 verses C 2 line, Right. That is, a C 1 verses 

C 3 line, this is C 2 versesc C 3 line. In the centre triangle where, I put the question 

marks if I take any x; one classifier will say C 1, another clasifier will say C 2, the third 

classifier will say C 3. A perfect disagrement between the 3 classifiers. What should i 

assign it as the class label?  

So, there is always this issue when I have that many 2 class classifiers. If the responses 

given them are consisted then, given any x, I can decide on the class label for that x. But, 

there will always be the regions in the feature space like this. Where, the responses are in 

consistence and one does not have any simple solution of how to put together all those 

responses into a perfect or into a proper class labels. This is the problem of generalizing 

2 multiple classes. 
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Of course, there is a better way of formulating this. We have seen this when we 

considered multi class bayes clasification for minimizing this. The same thing is to do in 

the linear discriminant functions. Essentially, the way to generalize 2 multiple classes is 

will have K functions, I represent them as g subscript s, s going from 1 to k and each 

function is a standard linear function. That is a fine function rather, j s of X is W s 

transpose X plus b s. Right. 

Now, I define a way of making this into a classifier for all such functions. Now, once I 

have all these functions, if i if you give me an X, I will assign X to class C j, if g j of X is 

greater than g s of X for all s. So, I calculate the value of X for each of this functions and 

which every function has the maximum value of X at that point X, I will assign X to that 

class. of course, this is not at complete because there will be ties. Right. So, there might 

be say g 1 X and g 2 X might have the same value and that is bigger than the value of g j 

X for all other j. Now, should I put X in class 1 or class 2. But, once we come this for we 

can have a very simple and arbitrary rule for breaking ties. For example, I can say that if 

the maximum is attained at more than 1 j then, I will put it to the j to the least j. 

So, if j 1 X and j 2 X are the 2 maximum of function values for x then, I will put it in 

one. Right. So, I can have any arbitrary but fixed rule for breaking ties so that it becomes 

a proper function. Given any X it unquely defines a class label. So, essentially this is 



how one would like to generalize linear discrminant functions to multiple classes. Recall 

that, this is the we have generalize the bayes classifiers. 
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Now, to learn a linear classifier for K-class case, we need to learn all the K functions g s. 

The best way to do this is to use or vector valued idea of regression functions. So, what 

we do is, we make the class label to be a vector of K components. What is that mean? If 

X i belongs to C j then, in the training data the class label y i instead, of simply taking 

value j, it actually will be a K vector with the j’th component 1 and all others 0.  

Now, y i will be K vector now. And to denote j’th class j, I put 1 in the j‘th component 

and 0 will be. So, each y i will be a unique one of the co-ordinate vectors. So, we seen 

similar coding when we consider this K random variable as M l estimation. So, the same 

codind we can use to make the class labels K vectors. Now, learning K functions is same 

as a linear regresion with vector valued targets. I am given X i, y i; y i are vectors. I want 

to learn a linear function. So, I can learn K functions using linear regression with vector 

value targets. So, this is one standard way in which linear (( )) analysis can be extended 

to multiple classes. There are of course some slighty different ways and this by itself 

does not tell you how y can generalize logistic regresion or fisher linear discriminant 

because they there the structure of landing is slightly different there.  

But, similar ideas can be used for generalizing logistic regresion fisher linear 

discriminant also. So, with the next class we will just briefly look at how to generalize 



logistic regression to K classes. And then, we will step back we since some algorithms 

now for learning a classifiers. We will just take a look at all the algorithms and then, take 

a step back and ask, is there some therotical ways in which we can say whether one 

classifier is good or not good; how do we decide whether a classifier is optimal or good; 

is there a a statistical way of defining the goal of learning in learning a clasifier. So, we 

will do a better statistical learning theory and then, we returned to learning non-linear 

classifiers. Now, that we finished all linear clasifiers, we will step back to do some 

statical learning theory and then, come back and do the non-linear classifiers.  

Thank you.  


