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Hello, good afternoon. Welcome to the next lecture in this pattern recognition course. To 

recall, we have been looking at learning linear models essentially, linear classifiers and 

linear regressors. So, linear models for both classification regression, we have been 

looking them together. We first looked at basically learning linear discriminant functions 

that is a hyper plane classifier, we looked at the special case of linearly separable classes, 

we looked at perceptron, and various ramifications of perceptron. Then we, we were 

considering linear least squares method.  

This is a general method for learning linear model for both classification and regression, 

essentially the idea is to minimize the sum of squares of errors. We have, we have looked 

at the linear least squares method, how one can find the minimizer using standard result 

from linear algebra? We also looked at how we can find the minimizer using gradient 

descent and we also looked at some small generalizations of the linear model such as 

logistic regression. 
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So, what we will do in this class is, we will, we will just briefly review this, and there are 



 

 

few interesting aspects in which linear least squares method can be viewed. So, we will, 

we will look at many small, small variations on the basic linear least squares method, and 

tight up with M L estimation, tight up with Bayesian estimation. Look at what is called 

Regularized Least Square, and so on. And end the class, with just a hint of another 

different method of learning, the linear classifier called the Fisher linear discriminant. 
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So, let us start by recalling linear Regression. So, for the regression, the training data is 

of the form, X i y i X i's are still some d-dimensional vectors, but y i are real valued 

targets now. So, we are given X i y i X i n R d y i n R, and the idea is to learn a 

functional directional period in X i and y i, as you are all learning to predict y given X, 

normally y i are called the targets. So, the targets are real valued.  

So, that as we saw is the main difference between the classification, the regression 

problems. In the regression problem, the target is real valued as the classification 

problem, target is bind the valued in two class or finitely many valued, but essentially we 

have been looking at boundary valued currently. So, in a regression problem given data 

like this, the objective is to fit a linear Model. So, we want to predict y given any X, 

using some linear affine function W transpose X plus w naught. As we seen of course, 

we can absorb that constant, whenever the constant is not particularly important by 

simply assuming augmented vectors. All means is that, we take the X and put an extra 

component of 1 in it, so that the new X is now in d plus 1 dimensional space, and we 



 

 

assume the W vector has w naught as its first component. 

So, that we can always represent the linear Model as W transpose X. So, essentially the 

idea is to learn a linear Model in this notation, W transpose X, actually we also saw that 

the the we do not have to only use X in general. A linear Model can be written as, f X as 

a sum of some linear combination, of some fixed basis functions. So, if phi 0 X phi 1 X, 

and phi d prime X are some fixed basis functions, then my linear Model can also be 

written as f X, is equal to some w i phi i X. 

So, as long as all the phi's are fixed functions, we have seen the same methods of linear 

least squares regression, linear Least squares with instead of learning classifiers, we will 

work. So, even though most of the time, we will be only considering W transpose X, as I 

said it will work equally well for phi i X. One example, we saw is say just curve fitting in 

when X is also real valued, we will come back to that problem to introduce some more 

concepts this class, but in general a linear model is can be also written as w i phi i X and 

where phi 0 to i, just put d prime here because it does not have to be same as the 

dimension of X here, it can be any arbitrary number. 
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So, all such models are also learnt using the same method. Further as we saw, we can 

also learn classifiers using this method. We, we will still learn a W transpose X, we take 

the targets y to be plus 1 minus 1 in a two class case and then after learning f of X as W 

transpose X, given a new X we calculate f X and threshold it at 0 to decide the 



 

 

classification decision. 

So, the same model can also be used for classifiers. In all cases, our criterion has been to 

minimize the mean square error. Essentially, somehow square error mean should have, 

should mean that we could have put 1 by n. Also as we seen last class by the way, we put 

that 1 by n or not makes no difference, because we are only interest in the minimizer of 

this function. 
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So, the criterion function is sum of squares W transpose X i, is what my model would 

have set on X i Y i, is the actual target in that example W transpose X i minus Y I, whole 

square is the other, and I am trying to find a W to minimize sum of squares of errors that 

is the reason, if I put Y i plus 1 or minus 1, I would learn something so that for all plus 1 

patterns, W transpose X is closer to plus 1 all minus 1 pattern, W transpose X i is minus 

closer to minus 1. And that is why thresholding, W transpose X would give us a good 

way of learning linear classifiers also. We have seen that the, the minimizer of this can 

be directly written as W star is a transpose A whole inverse A transpose Y and our 

notation. We will always putting a star for anything that is the optimization solution of 

some criterion function. 

So, the W that optimizes this J W is called the W star, that is given by A transpose A 

whole inverse A transpose Y, where A is the n by d plus 1 matrix, whose rows are the 

given patterns X i. So, of course X i's are augmented that is why they are d plus 1 



 

 

dimensional. So, in stack of all the given, X i as the rows of this matrix. Yes, that is why 

the A will be n by d plus 1 matrix and capital Y is the, is a n vector obtained by stacking 

of all the targets y 1 y 2 y n. 

So, capital Y is an n by 1 vector, and then this is the optimal solution as we already seen 

A transpose A inverse A transpose is called the generalized inverse. Essentially, what 

this is trying to do is to project Y on to the column space of the A matrix. In the more 

general case, when we use fixed basis functions the solution is still given by this. 

Basically, in the more general case this instead of becoming W transpose X i, it become 

W transpose capital phi X i whose components are phi 0 X i phi 1 X i so on up to phi b 

prime X i. When we use that more general model, the only difference in the solution is 

that the i th row of a matrix instead of being the, the i th data sample X i, it becomes phi 

0 X i phi 1 X i phi d prime X i, that is the only difference when we use the case of fixed 

basis functions. 
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Now, let us look at a few few generalizations of this. So, far we have just being taking 

our X i and Y i, as given data we are not worried about any probability model of 

generating the data. So, let us look at some, some of these issues. The only reason we 

want to fit a model is that obviously the data is not exact. So, there is no they may not be 

any specific function which exactly gives for Y i for each X i, specifically linear function 

that gives Y i exactly for each X i. This often happens because of observations of noisy. 



 

 

So, we want to get a good fit for noisy observations, and that is, that is the reason why 

we are summing this squares of errors as you seen is like expectation. So, let us suppose 

we take X i fixed, but the observations Y i to be random, random in the sense. They are, 

they are actually observations or their noise cap for observations of some function, f of X 

i, so it is like f of X i plus noise. So, observations Y i have noise, so they are random. 

But, we take X i to be fixed. This is a very convenient model is a useful scenario because 

very often the way, we get data is we, we take some X i, and measure the Y i that is how 

we generate the example data X i Y i, for which we, we fit a function. The most of our 

first experience with curve fitting is in physics experiments. 

So, there is one control variable, and then you measure the value of the dependent 

variable, and then asking is there a functional relationship change. So, we pick some X 

i's and then measure Y i. So, it is good to think of Y i as where all the randomness is. So, 

because Y i are random, and we are, we are learning a W based on the Y i's. The W star 

that we obtained through linear least squares regression would also be random. 

So, essentially what we want is how much is the variance in this W because, that tells us 

the amount of error in our fit. So, it is like the, the actual Y i given in the data set are not 

the true values. There are error bars, which Y i could be you know plus minus J of Y i. 

So, if there is such noise and I do not know how much the noise, but I take whatever is 

the actual measured value as the given value on fit the function, then how close is my W 

to the actual underlying W that is that is your question. 

And, while we do not know the underlying W, we can certainly look at the variance of 

the fitted W. We do not know if indeed there is a true linear model, if it is then we can 

think of our linear least squares method. As an unbiased estimator of that linear model, 

and if you can look at is as an unbiased estimator, as you know its variance gives me 

least mean square error. So, in that sense, it is nice to be able to calculate the variance of 

W. So, how do we calculate the variance of W? 
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So, we we look at a very simple case this can be extended, but this is good enough for to 

get an idea of how these things are done. Let us assume the noise corrupting different Y i 

are IID, and zero mean, that is each observation is corrupted by similar noise, that is 

what IID stands for independent identical distributor. So, IID noise means similar noise. 

And, we assume 0 mean because you know, there should not be any bias in the noise. 

Now, capital Y is a vector whose components are y i, if y i's are random variables capital 

Y is a random vector, n-dimensional random vector, whose components are y i and this 

assumption means that each y i has zero mean, and fixed variance because they are IID, 

and they are independent. 

So, the covariance between any two components of y 0, which means that given these 

assumptions the covariance matrix of the vector random variable is sigma square i, 

where i is the identity matrix, because it will be diagonal matrix, because there is no 

covariances all covariance express covariance between any two components of the 

capital Y vector is 0.  

So, the, the covariance matrix of the capital Y vector would be diagonal and in addition, 

because we assuming that each is the noise in each y i is IID all of, all of them will have 

the same variance. So, we are writing the covariance matrix as sigma square i. Of course, 

assuming that it is sigma square i makes our makes our final calculation easier. As you 

will see, but even if it is not sigma square i even if it is diagonal and is still good enough 



 

 

even otherwise we can, we can get an expression, but this will give us simpler 

expression. 
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So, given that this is the covariance matrix. Let us for the, for the moment assume that 

we know sigma square, of course we are not saying who gives us sigma square, but let us 

assume that we have sigma square. So, if I know that we have sigma square, then can we 

calculate what is the variance in the fitted W star. For that, just recall a simple useful 

identity in random variables. Let us say, we have two random vectors Z and Y and Z is 

written as B times Y, some for some matrix B. Z and Y need not even have to be of the 

same dimension, because there is a matrix here. 

But, Z is written as B times Y, for some matrix Y, then the question is can I calculate the 

covariance matrix of Z given the covariance matrix of Y. Because W star is given as 

some matrix multiply by capital Y this is an important question for us. How do we do 

this? So, the covariance matrix of Z by definition is expectation of Z minus expectation 

of Z into Z minus expectation Z transpose.  

I hope you all of you remember that we are by our notation all vectors are column 

vectors. So, both Z and Y, we think of as column vectors. So, Z minus expectation Z is a 

column vector, this is a row vector. So, this is an auto product this gives my matrix. So, 

this is the definition of covariance matrix under vectors being column vectors. Now, I 

can substitute Z to be B Y and expected value of Z to be B expected value of Y, because 



 

 

B is a constant. So, Z minus expected value of Z will be B into Y minus expected value 

of Y. So, if I substitute that I get B into Y minus expected value of Y because of the 

transport, transpose becomes Y minus expect value of Y transpose B transpose. Now, 

since B is constant expectation can go inside, then it becomes B expectation of Y minus 

expectation Y into Y minus expectation Y transpose, that is nothing but the covariance 

matrix of Y. 

So, this becomes B sigma Y B transpose. So, if Z is equal to B Y, then covariance matrix 

of Z is given by B sigma Y B transpose. The sigma Y is the covariance matrix of Y. 

Now, we have, we have given that W star is some matrix into Y that particular matrix 

happens to be A transpose A whole inverse A transpose. So, know you take that to be B, 

and plug it in this formula. This is what we will get as our, this is what we will get as our 

covariance matrix of W sigma W is equal to B is a transpose A whole inverse A 

transpose sigma square I. Now, I need transpose of this that will be A into A transpose A 

whole inverse, realize that A transpose A is symmetric, and inverse transpose is same as 

transpose inverse. 

So, now this is identity, so this drops off. So, I have got A transpose A into A transpose 

A whole inverse that becomes identity. So, ultimately I get the covariance matrix are W 

to be sigma square times A transpose A whole inverse. So, this gives us the covariance 

matrix to the least squares estimate. Essentially, W has components W 0 W 1 W n. So, in 

this matrix, the diagonal elements will be the covariances of the, the variance of the 

individual components, and the half diagonal elements will be covariance of the different 

pairs of components of W. So, this gives us all the information that we need about the 

variance in the least squares estimates. So, this is a useful formula to calculate the 

variance in the least squares estimate. 
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So, let us look at a come back to our criterion. This is our criterion least squares 

criterion, as you already seen instead of using this W star formula, we can also minimize 

it using the LMS algorithm which is nothing but the gradient descent. But, implemented 

in a incremental manner. So, at each iteration k, you pick up pick one of the training 

samples. Let us call them X k Y k, then you update it only based on that samples error. 

So, the update turns out to be W k plus 1 is equal to W k minus eta times X k into X k 

transpose W k minus Y k. This is actually the error multiply by X k. This is the LMS 

algorithm as we saw earlier. 

This is an incremental algorithm use one example at a time, and as we already seen at 

least stated, if eta is small then the algorithm converges to a minimizer of J. So, this is 

the LMS algorithm. I am as we discussed earlier, there are some very interesting 

properties of this it is the, it is also classical algorithm. And one other reason for its 

attractiveness is that, it is easily generalize to some slightly mode general models than 

linear models. 
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So, we considered one generalization earlier, which the logistic regression, what is 

logistic regression? Do instead of using W transpose X i at the model, we use h of W 

transpose X i at the model, where h is the h X is 1 by 1 plus exponential minus X is the 

logistic function. As we seen, this is a very good model for posterior probability, and we 

know the least squares. When we are doing expected value of f X minus Y whole square, 

the best function f is the conditional expectation of Y given X. Hence, in a in a 

classification context, this will allow us to estimate the posterior probability compared to 

linear function W transpose X h of W transpose X. The logistic function is a much better 

model for posterior probability. 

So, for example we seen last class, that if the class conditional densities are Gaussian 

with the equal covariance, then the, the posterior probability actually is given by h of W 

transpose X. So, in such cases, this is a very nice model does not really linear model 

because of this h function here, but as we have seen, the LMS algorithm is easily 

extended for this. So, essentially for  two class problem, we take y i to be 0 or 1. So, that 

h, h of W transpose X will give us the posterior probability estimate. 

And, when we while, we with, with more difficult to put the projection thing into this 

frame work, if you are using LMS, we essentially need the gradient of this. The gradient 

of this is easy, because I get this error term anyway like in the previous LMS case, I get 

the error term instead of X k transpose W k minus y k, I get h of X k transpose W k 



 

 

minus y k, because the 2 cancels. Then I need the derivative of this term. So, there will 

give me one h prime term and then the X i X k term. 

(Refer Slide Time: 21:52) 

 

So, essentially if I use LMS for this, it will be same as this except that in this update, I 

will have one more term that is just h prime X k transpose W k. So, in that sense, LMS 

algorithm is easily extended for this and that is the Logistic Regression that we 

considered last class. Moving on, as you seen the least squares method is actually a good 

approximation to minimizing actual mean square error, that is why I put expectation 

here, and we seen that this is the solution for it. 
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Now, we are if we are actually minimizing expectation like this. Let us suppose, X and y 

are related actually related by y is equal to W transpose X plus x i, where x i is a 0 mean 

noise. If for each X y is given by this, then in this expectation essentially they are able to 

transpose X will cancel. And, I will get only x i i here for each I, so what I should get 

ultimately. So, if I use the same W with which X and y are related. Then for that W J of 

W turns out to be nothing more than expected value of x i square. If x i is a 0 mean noise 

expect value of x i square is the variance 
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So, what it tells us is that if actually X and y are related by this, then we can expect the 

linear least squares method to true learn W very easily, and further that the final mean 

square error would be the variance of xi. This is if you actually did the expectation.  

What this means is the following, we can give a probabilistic interpretation to the linear 

Least Squares, by thinking of it as a, as a method as a, as a estimation method. 

Specifically, as a maximum likelihood estimation procedure for the parameters in a 

probability model governing y. 
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So, what we will do is we will, we will think of a reasonable probability model, to 

capture this idea and then show that the Least Squares Method is nothing but an M L 

estimate of the parameters of that model. So, let us look at the probability model. So, the 

idea is y is random variable, which a function of X, that is what we want to model. So, 

we take the model as follows.  

So, this is I am, we have been using f for many different things, during when we did M L 

and Bayesian estimation. I said f whenever needed stands for density function of any 

random variable, that you want conditional anything else, only when necessary we put 

any subscript, superscript so from context, you should know that this is a density 

function. Earlier, we are using f as our model function. So, because we are back to in 

estimation context this time, this f represents a density function. 

So, this is the density f y. These are the model parameters of the model W and sigma in 



 

 

addition y depends on X, as we thinking of X as fixed, X is not part of the probability 

model. So, what we are saying is the density of y, with the parameters W and sigma, and 

an X, and a given X is Gaussian, whose mean is W transpose X and whose variance is 

sigma square. 

So, essentially what it means is that we are modeling y as W transpose X plus a zero 

mean Gaussian, Gaussian noise whose variance is sigma square. So, that is same as 

saying, the probability model for y condition on X, and W on sigma is Gaussian with 

mean W transpose X, and variance sigma square, so W and sigma the parameters. Now, 

if I got many IID samples from this model.  

So, sample from this model will be I put an X, I get a y. So, we will think of the models 

as y 1 at X 1, y 2 at X 2, y n at X n. This is the IID data that I have, and using this IID 

data I want to estimate the model parameters W and sigma more importantly W for us. 

So, I want to estimate the parameters W in the maximum likelihood convection. So, what 

does that means? Given, this IID data I will calculate the likelihood function, and find 

the W that maximizes the likelihood function. That is what we have done. We have done 

this M L estimate for many different models, earlier in this course. 
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So, let us do the same thing again with this probability model, we want to find the M L 

estimate for W, and may be also for sigma. So, what is the data likelihood? The 

likelihood function, which is a function of the parameters condition on the data, is 



 

 

product i is equal to 1 to n f of y i condition on X i W sigma. This is the, the probability 

model we are using. So, inside the product it becomes 1 by sigma root 2 pi exponential 

minus half, because this X i y i is y i minus X i transpose W whole square by sigma 

square. 

So, this is my data likelihood. So, we want to maximize this as we know in the ML 

context, we often take the log likelihood, and maximize that. So, let us take the log 

likelihood. So, if I take the logarithm, this becomes sum over i. So, this term is not 

dependent on i, the first term. So, that becomes n times sigma root 1 by sigma root 2 pi. 

So, its n times l n 1 by sigma root 2 pi, and this sum goes inside. So, I get exponential 

sum, so that is the second term. The exponential drops off because of l n. So, I get minus 

1 by 2 sigma square y i minus X i transpose W whole square. That is my log likelihood. I 

want to maximize this with respect to parameter. Let us say in particular with respect to 

W. So, to maximize it with respect to W, we take the gradient with respect to W, and 

equate it to 0. 
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So, if we equate the gradient of the log likelihood to 0, the gradient this term, of course is 

not function of W. The gradient of this is back to what we are getting earlier. So, forget 

the sigma square because equate it to 0, the 2 anyway cancels. So, we get i is equal to 1 

to n X i into y i minus X i transpose W is equal to 0. This is exactly the set of equations, 

we have for solving our linear least Squares estimate. So, this gives us the same W, as 



 

 

the linear least squares estimate. 
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So, essentially I can think of the linear least squares estimate or linear least square 

solution W. As, as a maximum likelihood estimate of the parameters of this model, for y 

and this model, for y is very nice, we are essentially assuming, that the relationship in X 

and y is random. But in such a way that, y can be written as a linear function of X plus 

additive Gaussian noise. 

So, if I, if I think that, that is the underlying relation between y and X, y is a linear 

function of X plus additive Gaussian noise, then my least square solution is nothing but 

the M L estimate of model of that parameter. Actually, my my probability model for y 

has two parameters, W and sigma as we seen. The M L estimate W is same as what I get 

out of least square. 
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So, you can also ask what will be the ML estimate for sigma. So, to find the ML estimate 

for sigma, we have to maximize the log likelihood again with respect to sigma. So, I 

have to differentiate this with respect to sigma. 
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So, let us differentiate this with respect to sigma. This is what we get, this time is minus 

n l n sigma root 2 pi, that I can write as minus n l n sigma plus minus n l n root 2 pi. So, 

that is one term that is dependent on sigma the first and this term is also dependent on 

sigma. 



 

 

So, this will give me minus n by sigma because minus n l n sigma differentiates this 

minus n by sigma. This is a constant. This entire sum and this term will give me minus 2 

by 2 sigma cube. So, that is my derivative minus n by sigma minus 2 by minus 2 sigma 

cube into this. So, this minus, this minus cancels take this n by sigma on that side, and 

bring n this side, and sigma cube that side.  

And that gives me sigma square is 1 by n i is equal to 1 to n y i minus X i transpose W 

whole square, of course I have to simultaneously solve del l by del sigma is equal to 0 on 

del l by del W is equal to 0. So, the final M L estimate for sigma will be given by this 

equation, where this W is the W that satisfies del l by del W is equal to 0, which is my 

least square solution. 

So, then X i transpose W here, is the actual fitted least square solution and in that sense 

this is nothing but the final average squared error that I get on the on the data. Because if 

this is the final least square solution. This is the square of the final error I get on the 

fitted model for the i th sample. So, this is the average error I get with the i th sample. 

So, my M L estimate for sigma square is the residual average error as we have seen in 

our sigma estimate earlier. 

So, essentially if y is actually a linear function of X plus additive Gaussian noise, then 

linear least squares is the, is the best thing we can do. Then the W the linear least square 

gives us, is the M L estimate. For that W under that assumed model and the M L estimate 

for sigma square the noise corrupting the observations y i is well captured by the final 

average square error in the fitted model. So, this is one way in which we can look at 

linear least squares as a M L estimation procedure under a simple additive noise models. 

That is why very often we talk about this method, as also as linear least squares estimate. 
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Let us look at another aspect of the, the linear least squares method, as we said in the 

beginning of this class, all these techniques are applicable for more general models, 

which are essentially used fixed basis functions. So, I can take my linear model to be 

sum over i equal to 0 to M w i phi i X. Earlier, we were calling it d prime let us call it M. 

Now, for some reason I will give you. 

Now, let us go back to our old example to illustrate this. Let us say we have one 

dimensional data that is X i y i both belong to R, then let us take phi i X to be X power i, 

then this becomes w 0 plus w 1 X plus w 2 X square plus w 3 X cube and so on. So, this 

will be an m th degree polynomial expression in X say, essentially if I use that kind of 

phi i and I have one dimensional data, what I am doing is I am trying to fit a polynomial 

of degree M for the data. And this is the standard curve fitting problem though many of 

many of you may have only done it for straight lines. 

In general given data X i y i in R, I can fit a polynomial of degree M. By simply using 

this method earlier, of course we looked at it as a nice generalization of linear, nice way 

of illustrating the generality in what we called linear models, but let us say we actually 

want to use it for fitting a polynomial. Now, I am given only data X i y i. So, this M is 

my choice, this M is the choice of the learning algorithm or the designer of the learning 

algorithm. 

So, a question is if I want to use it what M should I take? How do I decide what M 



 

 

should I take? So, I have given points X i y i. Should I fit a straight line to them? Should 

I put a fit, a quadratic curve through them? Should I fit a cubic curve through them? 

After all, I can chose any M, and then write this expression. And my linear least squares 

method gives me all the W's that is the best. So, I can have a best fit straight line. I can 

have a best fit quadratic function, and so on, which one should I use? 
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Now, this though it may look. Look this may look deceptively simple say very, very 

deep issue. So, deep issue because I cannot fix M to get low error that is to, that is to say 

suppose, I fitted the best straight line and let us say the final residual mean square error is 

some number call it is a 2 point 1.Then, let us say I using the same method. I fitted the 

best quadratic line and let us say the final residual error 1 point 9 5. Does it really mean 

that the data has a quadratic relationship rather than linear relationship? How do I know?  

The first issue that all of us can immediately see, is that fixing M to get least error is not 

a good idea. Why it is not a good idea, not a good idea? Because, if I take M to be n 

minus 1, then we always get 0 error, why do we get 0 error? If I take n to be n minus 1, 

essentially if you give me n points I can always find a n minus 1 degree polynomial, that 

goes through all the data points give me any two points, there will be an straight line give 

me any three points, I can find a quadratics on which they will be and so on. 

So, if I take M to be n minus 1. I will always get 0 error, but that is ridiculous is like 

saying if I have ten points I will put a 10 degree polynomial or 9 degree polynomial 



 

 

through them, which of course would have a, would be a perfect fit. But, anybody who is 

played around with exponential data points knows that is very, very unlikely to be a good 

fit. It is it is essentially highly over treatment. It is like determining a straight taking two 

points in a, in an experiment, and say that this shows me that the relationship is linear, 

which is, which is ridiculous. Two points will not tell you that the relationship is linear. 

So, generalizing this if I increase M, I may get lower and lower error, but does that mean 

that I am getting better and better fit. That is not true. Large M, of course gives me small 

error, but it results in what is called over fitting. So, because y i's are most probably noise 

corrupted. I would be fitting the noise rather than the trend in y i, if I increase M. So, 

large, M results in over fitting, though we get small error. Hence, we cannot really fix M 

based on the error we are getting. 

Now, this is a very fundamental issue in learning from examples. We will come back to 

this question and in its most general version, the question is not even answerable, but is 

this is the first? First time in this course, we will come into this question. So, it is good to 

pond around this at least a little bit. Basically, in this scenario I cannot fix the degree of 

polynomial that I want to fit, based on which, degree polynomial gives me low error 

because I can get a ridiculous polynomial that gives me 0 error. 
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So, we can actually generalize this example. We are fitting a model f X is equal to W 

transpose capital phi of X on the data. And we want to rate different W for the goodness 



 

 

of fit. What we know now is this is the data error on the sample I have W transpose phi 

X i, is what my model will say y i is what the actual targets says and square this, and sum 

over i, that is the data error that we can call the data error. 

We of course, have been just trying to minimize this data error. We know that, y is noisy 

and hence we do not want to exactly match, but we are still trying to minimize this data 

error. But, what we now saw is said it does not tell the whole story of how good W is? 

We can get in this kind of error row by simply putting more and more basis function. We 

can easily get 0 data error, but that does not mean that I am actually learning the 

underlying functional relationship, so what else can I ask? 

So, somehow we do not want to fit too complicated model, it is like if I have 9 

experimental points, and I will show you that a straight line as a, is a fairly good fit. May 

be I am inclined to believe that the relationship is linear, but if you tell me is that I can 

put eighth degree polynomial. Obviously, it is very difficult to believe. So, somehow we 

want a good error with a simple model, whatever that simple model means. 

So, when we are asking how good a fitted model is, we should not blindly go only by the 

data error, but we should also ask. Are we fitting a very complicated model to get low 

data error? In this class, we look at it at a very simple level to just introduce what I called 

regularized least squares. We will come back to this question at least, at least at a 

preliminarily level. We will, we will discuss this question in more detail, when we take 

up our discussed terms statistical learning theory. 
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So, based on just what have we said just now, we one can say we want to change your 

criterion. The old J W not to just the error term, but in addition there is one more term, 

that somehow tells me the model complexity, and I want a W that is simultaneously 

minimizes both. Now, because I do not know how to simultaneously minimize both, I 

just added data error and model complexity. I cannot directly add them because it is like 

adding apples and oranges. This might be in one units, units in a, in a, in a general sense. 

Numerically, this can be in one range because I do not know, on what scale I want to 

measure model complexity. And I also do not know how much a model complexity I 

want to trade for how much of data error. 

So, we just put some arbitrary constant here called lambda, which is kind of an exchange 

rate between my model complexity and data error trade off. So, in particular, in this in 

this linear model case, this is my data error half W transpose phi X M as the whole 

square. I have some model complexity term currently. Let us just called it capital omega 

of W, but chose what function W would be a nice model complexity term.  

And we use this exchange rate lambda, so to say to decide how to add them, and then 

find a W to minimize it. This omega of W is some measure of how complex the model 

is. I put that complex in codes. So, it is, it is not easy to define what is complexity of 

model, but there are various measures in this class. We will just consider one of them 

without giving much reasons, but we will come back later on, on this issue. Now, this 



 

 

kind of a method is called regularized least squares, and the lambda is called a 

regularization parameter, regularization constant, omega is called the regularization 

function, and lambda is called the regularization constant. 

So, instead of just minimizing data error and hence artificially getting low data error, and 

high confidence on a model that is unnecessarily complicated. Hence, it is not really 

good at predicting. That is the problem that happens, if I chose too many terms in my 

file. I am sure to say in some sense take any more complex model, then can be justified. 

But, I may not know because I will get very low data error and hence I am very confident 

about my model. 

So, to avoid that kind of an error, that kind of over fitting error, we add a regularizing 

term, so this omega is called a regularization function; lambda is called the regularization 

constant. These kinds of things will be coming with us again and again in this course. 

We will, we will look at them in more detail, when we consider some other techniques of 

classification regression. This is the simplest and the first experience for you with this, so 

called regularization the idea is that not just data error.  

But, some level of model complexity should also be taken in to account. In linear least 

squares, we often choose the model complexity term to be norm W square. Later on, 

when we look at SVM's and so on, I will come back and tell you why this could be a 

good model complexity term? Now, let just take it to be a good model complexity term, 

then the criterion becomes J W is this plus lambda by 2 W transpose W. 
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Now, I want a W that minimizes this whole thing not just this, but the whole thing. Now, 

once again this data error, of course can be rewritten in the matrix form like we did 

earlier, A W minus Y transpose A W minus Y, where what will be, A will be the matrix 

whose rows are phi of X i capital phi of X, is the i th row of A. So, using that matrix I 

can always write this, this squared error as A W minus Y transpose A W minus Y. I just 

got one extra term, now finding gradient of this term is very simple. So, we can once 

again find the gradient of J, equate it to 0 to find our best W. 
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So, let us do that, so if we equate the gradient of J to 0, first term will be same A 

transpose into A W minus Y. Second term is just lambda by 2 W transpose W, its 

gradient is nothing, but lambda W. That is what we get, so if we simplify this I get a 

transpose A plus lambda I whole times W is equal to A transpose Y. Earlier, this lambda 

term was not there. It is simply A transpose A W is equal to A transpose Y, that is how 

we got W is A transpose A whole inverse into A transpose Y. 

Now, I am adding this lambda. So, I get a A transpose A plus lambda I whole times W. 

So, my optimal W now transfers to be A transpose A plus lambda I whole inverse into A 

transpose Y. So, this exactly same as the earlier least squares except for this lambda I 

term. At this point, one simple thing you can notice, if some of you, if you have studied 

some optimization algorithms, you may have (( )) to add lambda times identity matrix to 

some other matrix. 

Before taking inverse, many so called quasi neutron algorithms, if some of you know 

about them are based on this. A simple way of looking at this is, if A transpose A is not 

invertible or even if it is invertible, it has very poor condition number, then adding 

lambda times I will improve the condition number of A transpose A. So, in that sense the 

regularization is making this solution behave more smoothly and better. 

So, with poor condition number what it means is even a small differences in your targets 

or in your examples can make large difference to W's. By adding lambda I, we can 

improve the condition number of this matrix which means the, the final solution obtained 

is somewhat robust to errors made in Y that is essentially what we want for relying only 

on the data error. We will might be giving too much importance to some noisy values of 

Y for fitting, where as using this regularization. I improve the condition number, so Y is 

much more robust. So, small perturbation W star is much more robust to small 

perturbations. 

So, this is one way of looking at regularization. So, this is called the regularized least 

square solution. So, when you want to regularize the, the regularized least square means 

the same least squares thing, where the, in the criterion we add lambda time W transpose 

W as the regularizing term. Then this becomes the solution. Another way of looking at 

regularized least squares is from a Bayesian framework. We just now saw that the 

original least squares solution can be obtained as a ML estimate of the parameters of a 



 

 

reasonable probability model for y. 
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As it turns out the regularized least square solution, turns out to a Bayesian particularly 

specifically map estimate of the parameters of the same probability model. Let us 

quickly derive this, as earlier take the probability model. 
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For y, this is the same model that we used earlier, sigma root 2 pi exponential minus half 

y minus W transpose X sigma square W, and sigma are the parameters of the model.  We 

want to estimate them. We are given IID data y 1 X 1, y 2 X 2, y n X n and we want to 



 

 

estimate. The only difference is that earlier we did an ML estimate, and now we want to 

do a Bayesian estimate. Recall from our earlier lectures in this course, that when you 

want to do a Bayesian estimate, we need a prior density on the parameters, prior density 

n W, because W is what we want to estimate. 
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Now, W is the essentially, the parameter effecting the mean of a Gaussian distribution, 

Gaussian densities my probability conditional, my data model is a Gaussian density and 

my unknown parameter is what effects the mean. So, the conjugate prior would itself be 

a Gaussian. So, we will choose a Gaussian prior for W. So, we choose the prior n W as 1 

by alpha root 2 pi whole to the power d exponential minus W transpose W by 2 alpha 

square. What is this W is I, I taken W to be d-dimensional error. Actually, I should have 

taken it to be d plus one dimensional. I am sorry, but really does not matter whether it is 

augmented or not. We just simply take it to be d dimensional for now. So, then the prior 

we are taking is a 0 mean normal distribution, which has a diagonal covariance matrix 

with all components having the same variance alpha squares. 

So, different components of W have no covariance, and all components of W have the 

same variance, and it is 0 mean. So, we just choosing a 0 mean normal with the diagonal 

covariance matrix, and the variance alpha square is a parameter of the prior. As we seen 

the each prior density will have its own parameters. Sometimes in the Bayesian jargon, 

they are called the hyper parameters. So, we do not know what parameter to choose for 



 

 

alpha square prior choice, choice of the actual prior density is part of the art of Bayesian 

estimation, but anyway let us choose this as the prior. 
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So, then in the Bayesian estimation, I have to calculate the posterior and because I want a 

MAP estimate, I have to find the maximum of the posterior. So, let us calculate the 

posterior. The posterior of Y given the data because capital Y is all the Y i and y i's are 

essentially the random part of the datas. So, that is our data is, this is the conditional the f 

y i given X i W sigma into the prior product over i is equal to 1 to n over the an IID 

observations proportional. Because we do not put the denominator, which in turn is 

proportional to see this is normal, y i given, this is y i minus W transpose X i whole 

square by 2 sigma square, this is also normal. 

So, the exponential term is 1 by 2 alpha square W transpose W. There are some constant 

outside 1 by sigma root 2 pi 1 by alpha root 2 pi to the power d n all those things. So, 

forgetting about the constants, now this proportion to this, so we need to, to find MAP 

estimate, we need to maximize the posterior. So, instead of maximizing the posterior, we 

can maximize the log of the posterior. So, let us try, and maximize the log of the 

posterior because if I take log the exponential will go away, this proportional constant 

simply means I can write the posterior, to be some K times this exponential, if I take log, 

I get some log K term as a, as a additive constant. 
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So, with that this is my log posterior. So, will give me whatever inside the exponent. 

These two terms plus some constant, so minus 1 by 2 sigma square summation i is equal 

to 1 to n y i minus W transpose X i whole square minus 1 by 2 alpha square W transpose 

W. This is what is inside the exponent plus some constant K. This is the log posterior 

density, and this is what I want to maximize. 
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So, essentially of course this alpha square is some hyper parameter, I do not know it is 

value sigma square is also part of the model. I do not know it is value. So, bottling up all 



 

 

those unknown constants, we can rewrite this form as follows, can write this as half i is 

equal to 1 to n y i minus W transpose X i whole square minus some lambda times W 

transpose W. 

All I am doing is I am multiplying this whole thing by sigma square, and calling sigma 

square by 2 alpha square as lambda, K really does not matter it is some constant. It does 

not come into our maximization. So, I can write this as minus half i is equal to 1 to n y i 

minus W transpose X i whole square minus lambda times W transpose W plus some 

constant. This is what I want to maximize. 

So, if you want to maximize this, this K does not make any difference a constant. I am, I 

have to maximize this both terms, I put minus here. So, it is same as minimizing if I put 

both terms plus. So, maximizing the log posterior will be same as minimizing the 

regularized least square. That is my regularized least squares criterion function, half i is 

equal to 1 to n y i minus W transpose X i whole square plus lambda times W transpose 

W. 

So, maximizing the log posterior is same as minimizing the regularized least squares 

criterion, which essentially means that the MAP estimate is the regularized least square 

solution. So, just like we shown that for this reasonable probability model namely the 

targets y i, there are related to X i by y i W transpose X i plus a 0 mean additive 

Gaussian noise, then the ML estimate corresponds to the, corresponds to the regularly or 

normal least squares, and the Bayesian estimate corresponds to regularized least square. 

And that is also on hinge side, not very surprising because ML estimate is good, when 

we have large data, large relative to the dimension of the W vector. 

So, if I have large data then this problem of over fitting does not come. Over fitting 

comes if my degree of the polynomial is much higher compared to is, is large relative to 

the number of data points I have, but my number of data points are very large, then over 

fitting is not a not an issue. So, ML estimate is good enough, and on the other hand if my 

number of data points is small as we have seen, when we did estimation Bayesian 

estimation performs well. So, the regularized least squares would is particularly needed, 

if, if my model complexity is large as the number of data point is small both are 

essentially the same. 
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So, to sum up the standard least squares, is the ML estimate under, under this nice 

probability model on the regularized least squares, is the Bayesian MAP estimate. So, let 

us, let us sum this up. So, least squares method is based on the criterion of minimizing 

mean square error. It is a good way to fit linear models to given data, if through linear fit 

is appropriate. This is very good method as we seen if I can assume that the X and y are 

related by y is equal to W transpose X plus additive Gaussian noise, then you know 

essentially, if it least squares is an M L estimate, and regularized least square is a 

Bayesian estimate of the, of the model. This is also a good method of learning linear 

classifiers. 
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Let us now, we will move on to another related method of learning linear classifier that 

we consider next I just give you a brief overview of this. A discriminant function based 

classifier, we will, we will move it first. We will look at it again next class that 

discriminant function based classifier is to say X belongs to class 1, if W transpose X 

plus W not greater than 0, I can think a W transpose X as projecting X into the direction 

W. So, then essentially the feature vector no matter what its dimension is becomes a 1 

dimensional feature vector.  

So, one way of asking because W 0 is just a threshold, I am asking, which is a good 

direction along which the two classes are well separate? I am asking project all the things 

along W. So, and put a W 0 point somewhere in that direction all points on one side are 

one class, all points in the other side are another class. One, one can think of learning a 

linear discriminant function, as learning the best W direction along which to project 

different data. So, the separation between points of different classes is the projected data 

is large. 
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So, one way of telling what is a good W, is to look at projections of data along direction 

W and if the separation between different classes is good, then that is a good direction. 

Such a method is called Fisher linear discriminant.  Let us look at a small example, let us 

say, this is the two class problem, so that will be the separating hyper plane. Now, if I 

project that on to X axis, they overlap if I project data onto Y axis, they overlap. But, if 

you project data along some line like this, then I can make one dimensional data point.  

For projecting along this direction, then all the data is well separated, if I project onto X 

axis and Y axis, then are well separated, but along this direction.  

If you project along that one dimensional subspace, the two classes are well separated 

and that is the W direction, which I project. As you know, W is the normal to the 

separating hyper plane. So, that will be the separating hyper plane. So, a best way to ask 

where is the separating hyper plane is to ask, which is the direction along which I should 

project? This is the basic idea of Fisher linear discriminant. A Fisher linear discriminant 

is just a way of formalizing this notion. So, in the next class we look at the Fisher linear 

discriminant in more detail.  

Thank you. 

 


