

Pattern Recognition

Prof. P. S. Sastry

Department of Electronics and Communication Engineering

Indian Institute of Science, Bangalore

Lecture - 17

Logistic Regression; Statistics of Least Squares

Method; Regularized Least Squares

Hello, good afternoon. Welcome to the next lecture in this pattern recognition course. To

recall, we have been looking at learning linear models essentially, linear classifiers and

linear regressors. So, linear models for both classification regression, we have been

looking them together. We first looked at basically learning linear discriminant functions

that is a hyper plane classifier, we looked at the special case of linearly separable classes,

we looked at perceptron, and various ramifications of perceptron. Then we, we were

considering linear least squares method.

This is a general method for learning linear model for both classification and regression,

essentially the idea is to minimize the sum of squares of errors. We have, we have looked

at the linear least squares method, how one can find the minimizer using standard result

from linear algebra? We also looked at how we can find the minimizer using gradient

descent and we also looked at some small generalizations of the linear model such as

logistic regression.

(Refer Slide Time: 01:01)

So, what we will do in this class is, we will, we will just briefly review this, and there are

few interesting aspects in which linear least squares method can be viewed. So, we will,

we will look at many small, small variations on the basic linear least squares method, and

tight up with M L estimation, tight up with Bayesian estimation. Look at what is called

Regularized Least Square, and so on. And end the class, with just a hint of another

different method of learning, the linear classifier called the Fisher linear discriminant.

(Refer Slide Time: 02:26)

So, let us start by recalling linear Regression. So, for the regression, the training data is

of the form, X i y i X i's are still some d-dimensional vectors, but y i are real valued

targets now. So, we are given X i y i X i n R d y i n R, and the idea is to learn a

functional directional period in X i and y i, as you are all learning to predict y given X,

normally y i are called the targets. So, the targets are real valued.

So, that as we saw is the main difference between the classification, the regression

problems. In the regression problem, the target is real valued as the classification

problem, target is bind the valued in two class or finitely many valued, but essentially we

have been looking at boundary valued currently. So, in a regression problem given data

like this, the objective is to fit a linear Model. So, we want to predict y given any X,

using some linear affine function W transpose X plus w naught. As we seen of course,

we can absorb that constant, whenever the constant is not particularly important by

simply assuming augmented vectors. All means is that, we take the X and put an extra

component of 1 in it, so that the new X is now in d plus 1 dimensional space, and we

assume the W vector has w naught as its first component.

So, that we can always represent the linear Model as W transpose X. So, essentially the

idea is to learn a linear Model in this notation, W transpose X, actually we also saw that

the the we do not have to only use X in general. A linear Model can be written as, f X as

a sum of some linear combination, of some fixed basis functions. So, if phi 0 X phi 1 X,

and phi d prime X are some fixed basis functions, then my linear Model can also be

written as f X, is equal to some w i phi i X.

So, as long as all the phi's are fixed functions, we have seen the same methods of linear

least squares regression, linear Least squares with instead of learning classifiers, we will

work. So, even though most of the time, we will be only considering W transpose X, as I

said it will work equally well for phi i X. One example, we saw is say just curve fitting in

when X is also real valued, we will come back to that problem to introduce some more

concepts this class, but in general a linear model is can be also written as w i phi i X and

where phi 0 to i, just put d prime here because it does not have to be same as the

dimension of X here, it can be any arbitrary number.

(Refer Slide Time: 05:17)

So, all such models are also learnt using the same method. Further as we saw, we can

also learn classifiers using this method. We, we will still learn a W transpose X, we take

the targets y to be plus 1 minus 1 in a two class case and then after learning f of X as W

transpose X, given a new X we calculate f X and threshold it at 0 to decide the

classification decision.

So, the same model can also be used for classifiers. In all cases, our criterion has been to

minimize the mean square error. Essentially, somehow square error mean should have,

should mean that we could have put 1 by n. Also as we seen last class by the way, we put

that 1 by n or not makes no difference, because we are only interest in the minimizer of

this function.

(Refer Slide Time: 06:56)

So, the criterion function is sum of squares W transpose X i, is what my model would

have set on X i Y i, is the actual target in that example W transpose X i minus Y I, whole

square is the other, and I am trying to find a W to minimize sum of squares of errors that

is the reason, if I put Y i plus 1 or minus 1, I would learn something so that for all plus 1

patterns, W transpose X is closer to plus 1 all minus 1 pattern, W transpose X i is minus

closer to minus 1. And that is why thresholding, W transpose X would give us a good

way of learning linear classifiers also. We have seen that the, the minimizer of this can

be directly written as W star is a transpose A whole inverse A transpose Y and our

notation. We will always putting a star for anything that is the optimization solution of

some criterion function.

So, the W that optimizes this J W is called the W star, that is given by A transpose A

whole inverse A transpose Y, where A is the n by d plus 1 matrix, whose rows are the

given patterns X i. So, of course X i's are augmented that is why they are d plus 1

dimensional. So, in stack of all the given, X i as the rows of this matrix. Yes, that is why

the A will be n by d plus 1 matrix and capital Y is the, is a n vector obtained by stacking

of all the targets y 1 y 2 y n.

So, capital Y is an n by 1 vector, and then this is the optimal solution as we already seen

A transpose A inverse A transpose is called the generalized inverse. Essentially, what

this is trying to do is to project Y on to the column space of the A matrix. In the more

general case, when we use fixed basis functions the solution is still given by this.

Basically, in the more general case this instead of becoming W transpose X i, it become

W transpose capital phi X i whose components are phi 0 X i phi 1 X i so on up to phi b

prime X i. When we use that more general model, the only difference in the solution is

that the i th row of a matrix instead of being the, the i th data sample X i, it becomes phi

0 X i phi 1 X i phi d prime X i, that is the only difference when we use the case of fixed

basis functions.

(Refer Slide Time: 09:01)

Now, let us look at a few few generalizations of this. So, far we have just being taking

our X i and Y i, as given data we are not worried about any probability model of

generating the data. So, let us look at some, some of these issues. The only reason we

want to fit a model is that obviously the data is not exact. So, there is no they may not be

any specific function which exactly gives for Y i for each X i, specifically linear function

that gives Y i exactly for each X i. This often happens because of observations of noisy.

So, we want to get a good fit for noisy observations, and that is, that is the reason why

we are summing this squares of errors as you seen is like expectation. So, let us suppose

we take X i fixed, but the observations Y i to be random, random in the sense. They are,

they are actually observations or their noise cap for observations of some function, f of X

i, so it is like f of X i plus noise. So, observations Y i have noise, so they are random.

But, we take X i to be fixed. This is a very convenient model is a useful scenario because

very often the way, we get data is we, we take some X i, and measure the Y i that is how

we generate the example data X i Y i, for which we, we fit a function. The most of our

first experience with curve fitting is in physics experiments.

So, there is one control variable, and then you measure the value of the dependent

variable, and then asking is there a functional relationship change. So, we pick some X

i's and then measure Y i. So, it is good to think of Y i as where all the randomness is. So,

because Y i are random, and we are, we are learning a W based on the Y i's. The W star

that we obtained through linear least squares regression would also be random.

So, essentially what we want is how much is the variance in this W because, that tells us

the amount of error in our fit. So, it is like the, the actual Y i given in the data set are not

the true values. There are error bars, which Y i could be you know plus minus J of Y i.

So, if there is such noise and I do not know how much the noise, but I take whatever is

the actual measured value as the given value on fit the function, then how close is my W

to the actual underlying W that is that is your question.

And, while we do not know the underlying W, we can certainly look at the variance of

the fitted W. We do not know if indeed there is a true linear model, if it is then we can

think of our linear least squares method. As an unbiased estimator of that linear model,

and if you can look at is as an unbiased estimator, as you know its variance gives me

least mean square error. So, in that sense, it is nice to be able to calculate the variance of

W. So, how do we calculate the variance of W?

(Refer Slide Time: 12:17)

So, we we look at a very simple case this can be extended, but this is good enough for to

get an idea of how these things are done. Let us assume the noise corrupting different Y i

are IID, and zero mean, that is each observation is corrupted by similar noise, that is

what IID stands for independent identical distributor. So, IID noise means similar noise.

And, we assume 0 mean because you know, there should not be any bias in the noise.

Now, capital Y is a vector whose components are y i, if y i's are random variables capital

Y is a random vector, n-dimensional random vector, whose components are y i and this

assumption means that each y i has zero mean, and fixed variance because they are IID,

and they are independent.

So, the covariance between any two components of y 0, which means that given these

assumptions the covariance matrix of the vector random variable is sigma square i,

where i is the identity matrix, because it will be diagonal matrix, because there is no

covariances all covariance express covariance between any two components of the

capital Y vector is 0.

So, the, the covariance matrix of the capital Y vector would be diagonal and in addition,

because we assuming that each is the noise in each y i is IID all of, all of them will have

the same variance. So, we are writing the covariance matrix as sigma square i. Of course,

assuming that it is sigma square i makes our makes our final calculation easier. As you

will see, but even if it is not sigma square i even if it is diagonal and is still good enough

even otherwise we can, we can get an expression, but this will give us simpler

expression.

(Refer Slide Time: 14:32)

So, given that this is the covariance matrix. Let us for the, for the moment assume that

we know sigma square, of course we are not saying who gives us sigma square, but let us

assume that we have sigma square. So, if I know that we have sigma square, then can we

calculate what is the variance in the fitted W star. For that, just recall a simple useful

identity in random variables. Let us say, we have two random vectors Z and Y and Z is

written as B times Y, some for some matrix B. Z and Y need not even have to be of the

same dimension, because there is a matrix here.

But, Z is written as B times Y, for some matrix Y, then the question is can I calculate the

covariance matrix of Z given the covariance matrix of Y. Because W star is given as

some matrix multiply by capital Y this is an important question for us. How do we do

this? So, the covariance matrix of Z by definition is expectation of Z minus expectation

of Z into Z minus expectation Z transpose.

I hope you all of you remember that we are by our notation all vectors are column

vectors. So, both Z and Y, we think of as column vectors. So, Z minus expectation Z is a

column vector, this is a row vector. So, this is an auto product this gives my matrix. So,

this is the definition of covariance matrix under vectors being column vectors. Now, I

can substitute Z to be B Y and expected value of Z to be B expected value of Y, because

B is a constant. So, Z minus expected value of Z will be B into Y minus expected value

of Y. So, if I substitute that I get B into Y minus expected value of Y because of the

transport, transpose becomes Y minus expect value of Y transpose B transpose. Now,

since B is constant expectation can go inside, then it becomes B expectation of Y minus

expectation Y into Y minus expectation Y transpose, that is nothing but the covariance

matrix of Y.

So, this becomes B sigma Y B transpose. So, if Z is equal to B Y, then covariance matrix

of Z is given by B sigma Y B transpose. The sigma Y is the covariance matrix of Y.

Now, we have, we have given that W star is some matrix into Y that particular matrix

happens to be A transpose A whole inverse A transpose. So, know you take that to be B,

and plug it in this formula. This is what we will get as our, this is what we will get as our

covariance matrix of W sigma W is equal to B is a transpose A whole inverse A

transpose sigma square I. Now, I need transpose of this that will be A into A transpose A

whole inverse, realize that A transpose A is symmetric, and inverse transpose is same as

transpose inverse.

So, now this is identity, so this drops off. So, I have got A transpose A into A transpose

A whole inverse that becomes identity. So, ultimately I get the covariance matrix are W

to be sigma square times A transpose A whole inverse. So, this gives us the covariance

matrix to the least squares estimate. Essentially, W has components W 0 W 1 W n. So, in

this matrix, the diagonal elements will be the covariances of the, the variance of the

individual components, and the half diagonal elements will be covariance of the different

pairs of components of W. So, this gives us all the information that we need about the

variance in the least squares estimates. So, this is a useful formula to calculate the

variance in the least squares estimate.

(Refer Slide Time: 18:13)

So, let us look at a come back to our criterion. This is our criterion least squares

criterion, as you already seen instead of using this W star formula, we can also minimize

it using the LMS algorithm which is nothing but the gradient descent. But, implemented

in a incremental manner. So, at each iteration k, you pick up pick one of the training

samples. Let us call them X k Y k, then you update it only based on that samples error.

So, the update turns out to be W k plus 1 is equal to W k minus eta times X k into X k

transpose W k minus Y k. This is actually the error multiply by X k. This is the LMS

algorithm as we saw earlier.

This is an incremental algorithm use one example at a time, and as we already seen at

least stated, if eta is small then the algorithm converges to a minimizer of J. So, this is

the LMS algorithm. I am as we discussed earlier, there are some very interesting

properties of this it is the, it is also classical algorithm. And one other reason for its

attractiveness is that, it is easily generalize to some slightly mode general models than

linear models.

(Refer Slide Time: 19:16)

So, we considered one generalization earlier, which the logistic regression, what is

logistic regression? Do instead of using W transpose X i at the model, we use h of W

transpose X i at the model, where h is the h X is 1 by 1 plus exponential minus X is the

logistic function. As we seen, this is a very good model for posterior probability, and we

know the least squares. When we are doing expected value of f X minus Y whole square,

the best function f is the conditional expectation of Y given X. Hence, in a in a

classification context, this will allow us to estimate the posterior probability compared to

linear function W transpose X h of W transpose X. The logistic function is a much better

model for posterior probability.

So, for example we seen last class, that if the class conditional densities are Gaussian

with the equal covariance, then the, the posterior probability actually is given by h of W

transpose X. So, in such cases, this is a very nice model does not really linear model

because of this h function here, but as we have seen, the LMS algorithm is easily

extended for this. So, essentially for two class problem, we take y i to be 0 or 1. So, that

h, h of W transpose X will give us the posterior probability estimate.

And, when we while, we with, with more difficult to put the projection thing into this

frame work, if you are using LMS, we essentially need the gradient of this. The gradient

of this is easy, because I get this error term anyway like in the previous LMS case, I get

the error term instead of X k transpose W k minus y k, I get h of X k transpose W k

minus y k, because the 2 cancels. Then I need the derivative of this term. So, there will

give me one h prime term and then the X i X k term.

(Refer Slide Time: 21:52)

So, essentially if I use LMS for this, it will be same as this except that in this update, I

will have one more term that is just h prime X k transpose W k. So, in that sense, LMS

algorithm is easily extended for this and that is the Logistic Regression that we

considered last class. Moving on, as you seen the least squares method is actually a good

approximation to minimizing actual mean square error, that is why I put expectation

here, and we seen that this is the solution for it.

(Refer Slide Time: 22:12)

Now, we are if we are actually minimizing expectation like this. Let us suppose, X and y

are related actually related by y is equal to W transpose X plus x i, where x i is a 0 mean

noise. If for each X y is given by this, then in this expectation essentially they are able to

transpose X will cancel. And, I will get only x i i here for each I, so what I should get

ultimately. So, if I use the same W with which X and y are related. Then for that W J of

W turns out to be nothing more than expected value of x i square. If x i is a 0 mean noise

expect value of x i square is the variance

(Refer Slide Time: 22:53)

So, what it tells us is that if actually X and y are related by this, then we can expect the

linear least squares method to true learn W very easily, and further that the final mean

square error would be the variance of xi. This is if you actually did the expectation.

What this means is the following, we can give a probabilistic interpretation to the linear

Least Squares, by thinking of it as a, as a method as a, as a estimation method.

Specifically, as a maximum likelihood estimation procedure for the parameters in a

probability model governing y.

(Refer Slide Time: 23:56)

So, what we will do is we will, we will think of a reasonable probability model, to

capture this idea and then show that the Least Squares Method is nothing but an M L

estimate of the parameters of that model. So, let us look at the probability model. So, the

idea is y is random variable, which a function of X, that is what we want to model. So,

we take the model as follows.

So, this is I am, we have been using f for many different things, during when we did M L

and Bayesian estimation. I said f whenever needed stands for density function of any

random variable, that you want conditional anything else, only when necessary we put

any subscript, superscript so from context, you should know that this is a density

function. Earlier, we are using f as our model function. So, because we are back to in

estimation context this time, this f represents a density function.

So, this is the density f y. These are the model parameters of the model W and sigma in

addition y depends on X, as we thinking of X as fixed, X is not part of the probability

model. So, what we are saying is the density of y, with the parameters W and sigma, and

an X, and a given X is Gaussian, whose mean is W transpose X and whose variance is

sigma square.

So, essentially what it means is that we are modeling y as W transpose X plus a zero

mean Gaussian, Gaussian noise whose variance is sigma square. So, that is same as

saying, the probability model for y condition on X, and W on sigma is Gaussian with

mean W transpose X, and variance sigma square, so W and sigma the parameters. Now,

if I got many IID samples from this model.

So, sample from this model will be I put an X, I get a y. So, we will think of the models

as y 1 at X 1, y 2 at X 2, y n at X n. This is the IID data that I have, and using this IID

data I want to estimate the model parameters W and sigma more importantly W for us.

So, I want to estimate the parameters W in the maximum likelihood convection. So, what

does that means? Given, this IID data I will calculate the likelihood function, and find

the W that maximizes the likelihood function. That is what we have done. We have done

this M L estimate for many different models, earlier in this course.

(Refer Slide Time: 26:23)

So, let us do the same thing again with this probability model, we want to find the M L

estimate for W, and may be also for sigma. So, what is the data likelihood? The

likelihood function, which is a function of the parameters condition on the data, is

product i is equal to 1 to n f of y i condition on X i W sigma. This is the, the probability

model we are using. So, inside the product it becomes 1 by sigma root 2 pi exponential

minus half, because this X i y i is y i minus X i transpose W whole square by sigma

square.

So, this is my data likelihood. So, we want to maximize this as we know in the ML

context, we often take the log likelihood, and maximize that. So, let us take the log

likelihood. So, if I take the logarithm, this becomes sum over i. So, this term is not

dependent on i, the first term. So, that becomes n times sigma root 1 by sigma root 2 pi.

So, its n times l n 1 by sigma root 2 pi, and this sum goes inside. So, I get exponential

sum, so that is the second term. The exponential drops off because of l n. So, I get minus

1 by 2 sigma square y i minus X i transpose W whole square. That is my log likelihood. I

want to maximize this with respect to parameter. Let us say in particular with respect to

W. So, to maximize it with respect to W, we take the gradient with respect to W, and

equate it to 0.

(Refer Slide Time: 27:41)

So, if we equate the gradient of the log likelihood to 0, the gradient this term, of course is

not function of W. The gradient of this is back to what we are getting earlier. So, forget

the sigma square because equate it to 0, the 2 anyway cancels. So, we get i is equal to 1

to n X i into y i minus X i transpose W is equal to 0. This is exactly the set of equations,

we have for solving our linear least Squares estimate. So, this gives us the same W, as

the linear least squares estimate.

(Refer Slide Time: 23:56)

So, essentially I can think of the linear least squares estimate or linear least square

solution W. As, as a maximum likelihood estimate of the parameters of this model, for y

and this model, for y is very nice, we are essentially assuming, that the relationship in X

and y is random. But in such a way that, y can be written as a linear function of X plus

additive Gaussian noise.

So, if I, if I think that, that is the underlying relation between y and X, y is a linear

function of X plus additive Gaussian noise, then my least square solution is nothing but

the M L estimate of model of that parameter. Actually, my my probability model for y

has two parameters, W and sigma as we seen. The M L estimate W is same as what I get

out of least square.

(Refer Slide Time: 29:27)

So, you can also ask what will be the ML estimate for sigma. So, to find the ML estimate

for sigma, we have to maximize the log likelihood again with respect to sigma. So, I

have to differentiate this with respect to sigma.

(Refer Slide Time: 27:41)

So, let us differentiate this with respect to sigma. This is what we get, this time is minus

n l n sigma root 2 pi, that I can write as minus n l n sigma plus minus n l n root 2 pi. So,

that is one term that is dependent on sigma the first and this term is also dependent on

sigma.

So, this will give me minus n by sigma because minus n l n sigma differentiates this

minus n by sigma. This is a constant. This entire sum and this term will give me minus 2

by 2 sigma cube. So, that is my derivative minus n by sigma minus 2 by minus 2 sigma

cube into this. So, this minus, this minus cancels take this n by sigma on that side, and

bring n this side, and sigma cube that side.

And that gives me sigma square is 1 by n i is equal to 1 to n y i minus X i transpose W

whole square, of course I have to simultaneously solve del l by del sigma is equal to 0 on

del l by del W is equal to 0. So, the final M L estimate for sigma will be given by this

equation, where this W is the W that satisfies del l by del W is equal to 0, which is my

least square solution.

So, then X i transpose W here, is the actual fitted least square solution and in that sense

this is nothing but the final average squared error that I get on the on the data. Because if

this is the final least square solution. This is the square of the final error I get on the

fitted model for the i th sample. So, this is the average error I get with the i th sample.

So, my M L estimate for sigma square is the residual average error as we have seen in

our sigma estimate earlier.

So, essentially if y is actually a linear function of X plus additive Gaussian noise, then

linear least squares is the, is the best thing we can do. Then the W the linear least square

gives us, is the M L estimate. For that W under that assumed model and the M L estimate

for sigma square the noise corrupting the observations y i is well captured by the final

average square error in the fitted model. So, this is one way in which we can look at

linear least squares as a M L estimation procedure under a simple additive noise models.

That is why very often we talk about this method, as also as linear least squares estimate.

(Refer Slide Time: 32:41)

Let us look at another aspect of the, the linear least squares method, as we said in the

beginning of this class, all these techniques are applicable for more general models,

which are essentially used fixed basis functions. So, I can take my linear model to be

sum over i equal to 0 to M w i phi i X. Earlier, we were calling it d prime let us call it M.

Now, for some reason I will give you.

Now, let us go back to our old example to illustrate this. Let us say we have one

dimensional data that is X i y i both belong to R, then let us take phi i X to be X power i,

then this becomes w 0 plus w 1 X plus w 2 X square plus w 3 X cube and so on. So, this

will be an m th degree polynomial expression in X say, essentially if I use that kind of

phi i and I have one dimensional data, what I am doing is I am trying to fit a polynomial

of degree M for the data. And this is the standard curve fitting problem though many of

many of you may have only done it for straight lines.

In general given data X i y i in R, I can fit a polynomial of degree M. By simply using

this method earlier, of course we looked at it as a nice generalization of linear, nice way

of illustrating the generality in what we called linear models, but let us say we actually

want to use it for fitting a polynomial. Now, I am given only data X i y i. So, this M is

my choice, this M is the choice of the learning algorithm or the designer of the learning

algorithm.

So, a question is if I want to use it what M should I take? How do I decide what M

should I take? So, I have given points X i y i. Should I fit a straight line to them? Should

I put a fit, a quadratic curve through them? Should I fit a cubic curve through them?

After all, I can chose any M, and then write this expression. And my linear least squares

method gives me all the W's that is the best. So, I can have a best fit straight line. I can

have a best fit quadratic function, and so on, which one should I use?

(Refer Slide Time: 35:15)

Now, this though it may look. Look this may look deceptively simple say very, very

deep issue. So, deep issue because I cannot fix M to get low error that is to, that is to say

suppose, I fitted the best straight line and let us say the final residual mean square error is

some number call it is a 2 point 1.Then, let us say I using the same method. I fitted the

best quadratic line and let us say the final residual error 1 point 9 5. Does it really mean

that the data has a quadratic relationship rather than linear relationship? How do I know?

The first issue that all of us can immediately see, is that fixing M to get least error is not

a good idea. Why it is not a good idea, not a good idea? Because, if I take M to be n

minus 1, then we always get 0 error, why do we get 0 error? If I take n to be n minus 1,

essentially if you give me n points I can always find a n minus 1 degree polynomial, that

goes through all the data points give me any two points, there will be an straight line give

me any three points, I can find a quadratics on which they will be and so on.

So, if I take M to be n minus 1. I will always get 0 error, but that is ridiculous is like

saying if I have ten points I will put a 10 degree polynomial or 9 degree polynomial

through them, which of course would have a, would be a perfect fit. But, anybody who is

played around with exponential data points knows that is very, very unlikely to be a good

fit. It is it is essentially highly over treatment. It is like determining a straight taking two

points in a, in an experiment, and say that this shows me that the relationship is linear,

which is, which is ridiculous. Two points will not tell you that the relationship is linear.

So, generalizing this if I increase M, I may get lower and lower error, but does that mean

that I am getting better and better fit. That is not true. Large M, of course gives me small

error, but it results in what is called over fitting. So, because y i's are most probably noise

corrupted. I would be fitting the noise rather than the trend in y i, if I increase M. So,

large, M results in over fitting, though we get small error. Hence, we cannot really fix M

based on the error we are getting.

Now, this is a very fundamental issue in learning from examples. We will come back to

this question and in its most general version, the question is not even answerable, but is

this is the first? First time in this course, we will come into this question. So, it is good to

pond around this at least a little bit. Basically, in this scenario I cannot fix the degree of

polynomial that I want to fit, based on which, degree polynomial gives me low error

because I can get a ridiculous polynomial that gives me 0 error.

(Refer Slide Time: 38:19)

So, we can actually generalize this example. We are fitting a model f X is equal to W

transpose capital phi of X on the data. And we want to rate different W for the goodness

of fit. What we know now is this is the data error on the sample I have W transpose phi

X i, is what my model will say y i is what the actual targets says and square this, and sum

over i, that is the data error that we can call the data error.

We of course, have been just trying to minimize this data error. We know that, y is noisy

and hence we do not want to exactly match, but we are still trying to minimize this data

error. But, what we now saw is said it does not tell the whole story of how good W is?

We can get in this kind of error row by simply putting more and more basis function. We

can easily get 0 data error, but that does not mean that I am actually learning the

underlying functional relationship, so what else can I ask?

So, somehow we do not want to fit too complicated model, it is like if I have 9

experimental points, and I will show you that a straight line as a, is a fairly good fit. May

be I am inclined to believe that the relationship is linear, but if you tell me is that I can

put eighth degree polynomial. Obviously, it is very difficult to believe. So, somehow we

want a good error with a simple model, whatever that simple model means.

So, when we are asking how good a fitted model is, we should not blindly go only by the

data error, but we should also ask. Are we fitting a very complicated model to get low

data error? In this class, we look at it at a very simple level to just introduce what I called

regularized least squares. We will come back to this question at least, at least at a

preliminarily level. We will, we will discuss this question in more detail, when we take

up our discussed terms statistical learning theory.

(Refer Slide Time: 40:27)

So, based on just what have we said just now, we one can say we want to change your

criterion. The old J W not to just the error term, but in addition there is one more term,

that somehow tells me the model complexity, and I want a W that is simultaneously

minimizes both. Now, because I do not know how to simultaneously minimize both, I

just added data error and model complexity. I cannot directly add them because it is like

adding apples and oranges. This might be in one units, units in a, in a, in a general sense.

Numerically, this can be in one range because I do not know, on what scale I want to

measure model complexity. And I also do not know how much a model complexity I

want to trade for how much of data error.

So, we just put some arbitrary constant here called lambda, which is kind of an exchange

rate between my model complexity and data error trade off. So, in particular, in this in

this linear model case, this is my data error half W transpose phi X M as the whole

square. I have some model complexity term currently. Let us just called it capital omega

of W, but chose what function W would be a nice model complexity term.

And we use this exchange rate lambda, so to say to decide how to add them, and then

find a W to minimize it. This omega of W is some measure of how complex the model

is. I put that complex in codes. So, it is, it is not easy to define what is complexity of

model, but there are various measures in this class. We will just consider one of them

without giving much reasons, but we will come back later on, on this issue. Now, this

kind of a method is called regularized least squares, and the lambda is called a

regularization parameter, regularization constant, omega is called the regularization

function, and lambda is called the regularization constant.

So, instead of just minimizing data error and hence artificially getting low data error, and

high confidence on a model that is unnecessarily complicated. Hence, it is not really

good at predicting. That is the problem that happens, if I chose too many terms in my

file. I am sure to say in some sense take any more complex model, then can be justified.

But, I may not know because I will get very low data error and hence I am very confident

about my model.

So, to avoid that kind of an error, that kind of over fitting error, we add a regularizing

term, so this omega is called a regularization function; lambda is called the regularization

constant. These kinds of things will be coming with us again and again in this course.

We will, we will look at them in more detail, when we consider some other techniques of

classification regression. This is the simplest and the first experience for you with this, so

called regularization the idea is that not just data error.

But, some level of model complexity should also be taken in to account. In linear least

squares, we often choose the model complexity term to be norm W square. Later on,

when we look at SVM's and so on, I will come back and tell you why this could be a

good model complexity term? Now, let just take it to be a good model complexity term,

then the criterion becomes J W is this plus lambda by 2 W transpose W.

(Refer Slide Time: 43:34)

Now, I want a W that minimizes this whole thing not just this, but the whole thing. Now,

once again this data error, of course can be rewritten in the matrix form like we did

earlier, A W minus Y transpose A W minus Y, where what will be, A will be the matrix

whose rows are phi of X i capital phi of X, is the i th row of A. So, using that matrix I

can always write this, this squared error as A W minus Y transpose A W minus Y. I just

got one extra term, now finding gradient of this term is very simple. So, we can once

again find the gradient of J, equate it to 0 to find our best W.

(Refer Slide Time: 44:52)

So, let us do that, so if we equate the gradient of J to 0, first term will be same A

transpose into A W minus Y. Second term is just lambda by 2 W transpose W, its

gradient is nothing, but lambda W. That is what we get, so if we simplify this I get a

transpose A plus lambda I whole times W is equal to A transpose Y. Earlier, this lambda

term was not there. It is simply A transpose A W is equal to A transpose Y, that is how

we got W is A transpose A whole inverse into A transpose Y.

Now, I am adding this lambda. So, I get a A transpose A plus lambda I whole times W.

So, my optimal W now transfers to be A transpose A plus lambda I whole inverse into A

transpose Y. So, this exactly same as the earlier least squares except for this lambda I

term. At this point, one simple thing you can notice, if some of you, if you have studied

some optimization algorithms, you may have (()) to add lambda times identity matrix to

some other matrix.

Before taking inverse, many so called quasi neutron algorithms, if some of you know

about them are based on this. A simple way of looking at this is, if A transpose A is not

invertible or even if it is invertible, it has very poor condition number, then adding

lambda times I will improve the condition number of A transpose A. So, in that sense the

regularization is making this solution behave more smoothly and better.

So, with poor condition number what it means is even a small differences in your targets

or in your examples can make large difference to W's. By adding lambda I, we can

improve the condition number of this matrix which means the, the final solution obtained

is somewhat robust to errors made in Y that is essentially what we want for relying only

on the data error. We will might be giving too much importance to some noisy values of

Y for fitting, where as using this regularization. I improve the condition number, so Y is

much more robust. So, small perturbation W star is much more robust to small

perturbations.

So, this is one way of looking at regularization. So, this is called the regularized least

square solution. So, when you want to regularize the, the regularized least square means

the same least squares thing, where the, in the criterion we add lambda time W transpose

W as the regularizing term. Then this becomes the solution. Another way of looking at

regularized least squares is from a Bayesian framework. We just now saw that the

original least squares solution can be obtained as a ML estimate of the parameters of a

reasonable probability model for y.

(Refer Slide Time: 47:15)

As it turns out the regularized least square solution, turns out to a Bayesian particularly

specifically map estimate of the parameters of the same probability model. Let us

quickly derive this, as earlier take the probability model.

(Refer Slide Time: 47:47)

For y, this is the same model that we used earlier, sigma root 2 pi exponential minus half

y minus W transpose X sigma square W, and sigma are the parameters of the model. We

want to estimate them. We are given IID data y 1 X 1, y 2 X 2, y n X n and we want to

estimate. The only difference is that earlier we did an ML estimate, and now we want to

do a Bayesian estimate. Recall from our earlier lectures in this course, that when you

want to do a Bayesian estimate, we need a prior density on the parameters, prior density

n W, because W is what we want to estimate.

(Refer Slide Time: 48:54)

Now, W is the essentially, the parameter effecting the mean of a Gaussian distribution,

Gaussian densities my probability conditional, my data model is a Gaussian density and

my unknown parameter is what effects the mean. So, the conjugate prior would itself be

a Gaussian. So, we will choose a Gaussian prior for W. So, we choose the prior n W as 1

by alpha root 2 pi whole to the power d exponential minus W transpose W by 2 alpha

square. What is this W is I, I taken W to be d-dimensional error. Actually, I should have

taken it to be d plus one dimensional. I am sorry, but really does not matter whether it is

augmented or not. We just simply take it to be d dimensional for now. So, then the prior

we are taking is a 0 mean normal distribution, which has a diagonal covariance matrix

with all components having the same variance alpha squares.

So, different components of W have no covariance, and all components of W have the

same variance, and it is 0 mean. So, we just choosing a 0 mean normal with the diagonal

covariance matrix, and the variance alpha square is a parameter of the prior. As we seen

the each prior density will have its own parameters. Sometimes in the Bayesian jargon,

they are called the hyper parameters. So, we do not know what parameter to choose for

alpha square prior choice, choice of the actual prior density is part of the art of Bayesian

estimation, but anyway let us choose this as the prior.

(Refer Slide Time: 50:17)

So, then in the Bayesian estimation, I have to calculate the posterior and because I want a

MAP estimate, I have to find the maximum of the posterior. So, let us calculate the

posterior. The posterior of Y given the data because capital Y is all the Y i and y i's are

essentially the random part of the datas. So, that is our data is, this is the conditional the f

y i given X i W sigma into the prior product over i is equal to 1 to n over the an IID

observations proportional. Because we do not put the denominator, which in turn is

proportional to see this is normal, y i given, this is y i minus W transpose X i whole

square by 2 sigma square, this is also normal.

So, the exponential term is 1 by 2 alpha square W transpose W. There are some constant

outside 1 by sigma root 2 pi 1 by alpha root 2 pi to the power d n all those things. So,

forgetting about the constants, now this proportion to this, so we need to, to find MAP

estimate, we need to maximize the posterior. So, instead of maximizing the posterior, we

can maximize the log of the posterior. So, let us try, and maximize the log of the

posterior because if I take log the exponential will go away, this proportional constant

simply means I can write the posterior, to be some K times this exponential, if I take log,

I get some log K term as a, as a additive constant.

(Refer Slide Time: 51:57)

So, with that this is my log posterior. So, will give me whatever inside the exponent.

These two terms plus some constant, so minus 1 by 2 sigma square summation i is equal

to 1 to n y i minus W transpose X i whole square minus 1 by 2 alpha square W transpose

W. This is what is inside the exponent plus some constant K. This is the log posterior

density, and this is what I want to maximize.

(Refer Slide Time: 52:55)

So, essentially of course this alpha square is some hyper parameter, I do not know it is

value sigma square is also part of the model. I do not know it is value. So, bottling up all

those unknown constants, we can rewrite this form as follows, can write this as half i is

equal to 1 to n y i minus W transpose X i whole square minus some lambda times W

transpose W.

All I am doing is I am multiplying this whole thing by sigma square, and calling sigma

square by 2 alpha square as lambda, K really does not matter it is some constant. It does

not come into our maximization. So, I can write this as minus half i is equal to 1 to n y i

minus W transpose X i whole square minus lambda times W transpose W plus some

constant. This is what I want to maximize.

So, if you want to maximize this, this K does not make any difference a constant. I am, I

have to maximize this both terms, I put minus here. So, it is same as minimizing if I put

both terms plus. So, maximizing the log posterior will be same as minimizing the

regularized least square. That is my regularized least squares criterion function, half i is

equal to 1 to n y i minus W transpose X i whole square plus lambda times W transpose

W.

So, maximizing the log posterior is same as minimizing the regularized least squares

criterion, which essentially means that the MAP estimate is the regularized least square

solution. So, just like we shown that for this reasonable probability model namely the

targets y i, there are related to X i by y i W transpose X i plus a 0 mean additive

Gaussian noise, then the ML estimate corresponds to the, corresponds to the regularly or

normal least squares, and the Bayesian estimate corresponds to regularized least square.

And that is also on hinge side, not very surprising because ML estimate is good, when

we have large data, large relative to the dimension of the W vector.

So, if I have large data then this problem of over fitting does not come. Over fitting

comes if my degree of the polynomial is much higher compared to is, is large relative to

the number of data points I have, but my number of data points are very large, then over

fitting is not a not an issue. So, ML estimate is good enough, and on the other hand if my

number of data points is small as we have seen, when we did estimation Bayesian

estimation performs well. So, the regularized least squares would is particularly needed,

if, if my model complexity is large as the number of data point is small both are

essentially the same.

(Refer Slide Time: 55:13)

So, to sum up the standard least squares, is the ML estimate under, under this nice

probability model on the regularized least squares, is the Bayesian MAP estimate. So, let

us, let us sum this up. So, least squares method is based on the criterion of minimizing

mean square error. It is a good way to fit linear models to given data, if through linear fit

is appropriate. This is very good method as we seen if I can assume that the X and y are

related by y is equal to W transpose X plus additive Gaussian noise, then you know

essentially, if it least squares is an M L estimate, and regularized least square is a

Bayesian estimate of the, of the model. This is also a good method of learning linear

classifiers.

(Refer Slide Time: 55:58)

Let us now, we will move on to another related method of learning linear classifier that

we consider next I just give you a brief overview of this. A discriminant function based

classifier, we will, we will move it first. We will look at it again next class that

discriminant function based classifier is to say X belongs to class 1, if W transpose X

plus W not greater than 0, I can think a W transpose X as projecting X into the direction

W. So, then essentially the feature vector no matter what its dimension is becomes a 1

dimensional feature vector.

So, one way of asking because W 0 is just a threshold, I am asking, which is a good

direction along which the two classes are well separate? I am asking project all the things

along W. So, and put a W 0 point somewhere in that direction all points on one side are

one class, all points in the other side are another class. One, one can think of learning a

linear discriminant function, as learning the best W direction along which to project

different data. So, the separation between points of different classes is the projected data

is large.

(Refer Slide Time: 57:08)

So, one way of telling what is a good W, is to look at projections of data along direction

W and if the separation between different classes is good, then that is a good direction.

Such a method is called Fisher linear discriminant. Let us look at a small example, let us

say, this is the two class problem, so that will be the separating hyper plane. Now, if I

project that on to X axis, they overlap if I project data onto Y axis, they overlap. But, if

you project data along some line like this, then I can make one dimensional data point.

For projecting along this direction, then all the data is well separated, if I project onto X

axis and Y axis, then are well separated, but along this direction.

If you project along that one dimensional subspace, the two classes are well separated

and that is the W direction, which I project. As you know, W is the normal to the

separating hyper plane. So, that will be the separating hyper plane. So, a best way to ask

where is the separating hyper plane is to ask, which is the direction along which I should

project? This is the basic idea of Fisher linear discriminant. A Fisher linear discriminant

is just a way of formalizing this notion. So, in the next class we look at the Fisher linear

discriminant in more detail.

Thank you.

