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Lecture - 16 

AdaLinE and LMS algorithm; General nonliner  

least-squares regression 

Welcome to the next lecture on pattern recognition. To briefly recall what we have been 

doing in the last lecture we have we looked at learning linear models for classification 

and regression. 

(Refer Slide Time: 00:43) 

 

We have been looking at linear discriminant functions as well as linear regression 

models; we started it a few classes ago. And the first linear classifier we considered is the 

perceptron algorithm, is a classical algorithm for learning linear classifiers, and we have 

seen all the details and as we showed it can learn a separating hyperplane if the data is 

linearly separable. Then for more general purposes, we have been looking at learning 

linear models using least squares method, linear least squares methods. Here we can 

learn both classifiers and regressors. So, this is what we started with last class and we 

will continue. This is a very general method applicable for both classification and 

regression problems. So, we have been treating both of them together. 
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So, to recall in a regression problem the given training data is X i y i where X i as usual 

is say d dimensional vector, y i now can be any real value real value. In a classification 

problem y i as that X binary values when you are considering two class problem, the 

binary values can be either 0, 1 or plus 1 minus 1 or it it will take finitely many values if 

I am considering M class problem. In a regression problem the only difference is that the 

targets y i can take any real value.  

So, the idea is to learn a function relationship between x and y, so given this x i y i 

samples you want to learn y i the general function of x, so that given any nu x, we can 

predict y. And here we are interested in learning a linear model we are essentially 

interested in predicting the value of y, y hat I wrote there, which of course, is a function 

of x as f of x that is the function we want to learn, as w transpose x plus w naught. And 

this is the linear model that we have been looking at. As we have seen if we use 

augmented variables I can write it as w transpose x. 

So, we will continue within the occasion when we want we will write the w 0 separately, 

otherwise we will just write w transpose X. But whenever we write w transpose X it is 

implicitly assumed that we are using augmented vector, so that this constant is also 

incorporated. Augmenting X essentially means I put one extra component in X whose 

value is 1 and I use w 0 at that first component in W. Essentially this is called an affine 



 
 

function this is quite linear because of the constant by augmenting it becomes a strictly 

linear function otherwise they are essentially affine functions. 
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So, our objective is to learn such a linear model and we have also seen that such a model 

can also be looked at as a classifier for example, we can use targets to be plus 1 minus 1 

in a two class problem. And then if we learn affects to be close to the targets w 1, w 

naught are there w transpose x plus w naught is close to the targets, then we can simply 

use sign of f X as the classifier. We have been looking at the following criterion for our 

least squares method, the criterion is to minimize the mean square error. Essentially on 

an example X i, if I am currently using W, then W transpose X i is my prediction, y i is 

the target. 

So, W transpose X i minus y i whole square is the error who we sum it up. So, that is 

why it is called a mean square error, essentially to make it strictly mean I should divide 

by n here. But really a because we are minimizing this constant here makes no difference 

and as we shall also see once again later on. Hence, we just take it to be half summation 

of the squares of the errors.  

This is the criterion we are trying to minimise and we saw last class that the minimisers 

of this mean square criterion is given by W star is A transpose A whole inverse A 

transpose Y, where A is the n plus n by d plus 1 matrix whose rows are X i, X i’s are the 

training data training vectors. There are n of them that is because I stack up X‘s at the 



 
 

rows of A, A will be A will have n rows and because each X i is an augmented vector 

there will be d plus 1 columns and capital Y is the n by 1 vector for all the targets namely 

y i. 
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We have also seen that A transpose n inverse A transpose is called the generalised 

inverse of A, we have seen these relations with solving assets for linear equations. We 

also considered last class a gradient base method for minimising J and with that was the 

LMS algorithm, which is a incremental version of the gradient descent method. We that 

is what we ended the last class with we very hurriedly went through LMS algorithm. So, 

in this class we consider it in more detail, we will start with LMS and then discuss some 

more about the linear least squares method. 
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So, essentially as I have said we our objective is to find a W star that minimizes this 

function of W, thus half i equal to 1 to n, X i transpose W minus y i whole square this is 

sum of squares of errors. And we have of course, seen you know straight linear algebra 

we are solving it, but we could have also used a gradient descent to find the minimum. 
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We can minimise any function by simply using an iterative gradient descent algorithm, 

to obtain the gradient descent we need the gradient of this function. So, differentially this 

function the only reason as I said we get this half here is that when you differentiate that 



 
 

two will cancel this half. So, the gradient becomes as equal to 1 to n, X i into X i 

transpose W minus y i. So, given this is the gradient the gradient descent could now be 

W k plus 1 is W k minus eta time’s gradient that is the gradient. 

Now, we have already seen a gradient descent version of perceptron algorithm. So, in 

analogy with that we can call this a batch mode algorithm. Here we are have 1 W k with 

which we are predicting the target on each of the examples, finding all the errors and 

then summing up all the corrections and doing them together. So, essentially this is the 

batch version because we are using the current W to find the errors on all the training 

data and then do all the corrections together.  
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And just like in perceptron case we can consider a incremental variant of this gradient 

descent. So, what will be such an incremental of variant be so instead of with the current 

W predicting targets on all the samples and then during the correction like this. At each 

instant we pick up a random example X k, Y k and just do correction for that. So, in the 

incremental version there will be one term here. So, for the incremental version let us say 

we pick the training sample that is picked at k let us call that X k. 



 
 

(Refer Slide Time: 08:40) 

 

So, at the each iteration we pick one training sample, then on that training sample the 

error would be X k transpose W k minus y k whole square of course, half will be there. 

So, in the incremental version we use only gradient of this term to correct that gives us 

the following incremental version of the gradient descent algorithm, W k plus 1 is W k 

minus eta X k into X k transpose W k minus y k.  

So, this is the error and multiplied by X that is the update we do. So, in contrast we have 

this entire summation of the batch the batch version, here we will look at only one at a 

time, so even that we are looking at k th iteration is given by this given by X k. So, the 

example of X k, y k at k th iteration, so this is how I update W k in the gradient version. 

This is called the LMS algorithm, least mean square algorithm. 
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So, the LMS algorithm is given by this as we just now saw, W k plus 1 is W k minus eta 

times X k into X k transpose W k minus y k, where X k, y k is the training example 

picked at iteration k and W k is the weight vector at iteration k. So, like in the case of 

perceptron the basic idea about the incremental version is that we do not have to have all 

the training examples together with us. We can actually learn W from a stream of 

example so to say if I have got X k, y k coming at the stream without storing all of them 

we can simply keep updating W k like this.  

So, that is essentially what characterise incremental version, one can show that if eta is 

sufficiently small, then this algorithm also converges to the minimise of J W, which is 

same as the earlier solution we got. So, instead of doing calculating that matrix A and 

inverting a transpose A and all that we can simply run an iterative algorithm like this and 

that will also converts if the step size eta is sufficiently small.  
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Once again this is the LMS algorithm, this is very similar to perceptron algorithm. Now, 

we can actually see the similarities like this let us say y k belongs to 0 and 1, like in the 

perceptron algorithm. So, here because we are using a linear model the predictor is X k 

transpose y k. If I am using a perceptron the predictor will be thresholded version of X k 

transpose y k at 0. So, suppose this algorithm we shall using X k transpose y k at the 

predictor we use the threshold. 

Then what does that mean, if what I predict is same as y k of course, there is no 

correction like in the perceptron algorithm. Suppose I should have predicted one 

whereas, I predicted 0, so this is 0 this is 1 then it becomes the term in brackets becomes 

minus 1. So, which essentially means I am adding X k to W k, W k plus eta times X k is 

just a step size. Similarly, I should have predicted 0, but I have predicted 1, then I would 

have subtracted X k from W k. So, in that sense this exactly similar to the perceptron 

algorithm. So, like perceptron LMS algorithm is also a fairly classical algorithm more 

than 50 years old now, it is been used extensively in adaptive filtering and many other 

signal crossing and pattern recognition applications.  
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Like perceptron we can view this also as a unit is often called adaline, it is also originally 

thought of as modelling that can referred up to units.  
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So, essentially we have the same unit except that now the output is simply the weighted 

sum of the inputs, there is no thresholding anymore of this, such a unit was called 

adaline. Adaline standing for adaptive linear element, adaptive in the sense weights are 

adapted and this was first proposed by Widrow in 1963. Once again those days it was it 

was realised using op amps instead of having a algorithm in the system on a computer 



 
 

system. And it is it has been one of the one of the main algorithms for much of adapter 

signal crossing and many other linear model predictions. 
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So, before we go to more detail discussion of various extensions of linearly squares and 

its relationship with other algorithm. Let us just quickly run through one simple example, 

which is also a problem on which linear least squares very often used it is called linear 

prediction. Let us say we have a signal s k, we are assumed a discrete time signal, 

because we are working in discrete time here, all these algorithms are for discrete time 

case. So, let us say we have a signal s k, k is equal to 0, 1 so on and what we want is a 

model that s hat k by our notation of when we put hat is a estimate of s k.  

So, I want to predict the signal value at k based on the signal value at the previous m 

time distance, j goes from 1 to m. So, I am using s of k minus 1 k minus 2 all the way up 

to k minus m. So, using the m past values of the signal I want to predict the next value of 

the signal. So, we want a model that write s hat k as summation j is equal to 1 to m, w j s 

k minus j, here we are looking for a prediction model that is a linear w are the w j are the 

weights in the linear model that is why it is called a linear prediction.  

Such models are very useful in many applications such as speech codings, speech 

compression many other signal compressions and so on. The idea is that if the signal is 

varying slowly over tens of signal I can learn to predict the signal using the past values. 

So, I can use some of the past values to learn the w j, once I learn the w j the rest of this 



 
 

signal I can predict by keep taking the previous values. So, I do not have to store the 

entire signal I can store the first few of values of the signal and the w weights.  

So, that next few values can now be predicted on the fly that is how it is used in coding 

or compression. I will come back to this after running through the example. So, in our 

case say a linear model is w transpose X. So, we can think of the feature vector at k to be 

s k minus 1, s k minus 2, s k minus m. all vectors are column vectors, so that is why there 

is a transpose there. So, then if I take w components to be w 1, w m this is nothing but w 

transpose X. So, essentially I want a predictor that is w transpose X.  

So, the idea is that we want to adapt the weights w j or length the weights of w j. So, that 

s hat k would be a good estimate for s k. Now, my target is s k. So, it is a very interesting 

thing what is happening I am getting s 0, s 1, s 2, s so on, so at any given time I take say 

s k minus 1, s k minus 2, s k minus m as my feature vector. And using a w i want to 

predict and the target for me will be s k. So, we can use the linear least squares algorithm 

that we have been talking about so far. 
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So, for example, let us say I have the signal for up to some capital N instance. Then we 

can generate say a small n training examples X k, s k, k going from m, m plus 1 m plus n 

why m, because to get X of m I need s m minus 1, s m minus 2 all the way as s m minus 

m. So, using from s 0 to s m minus 1 I can get X m by our notation. So, that is the feature 

vector and the target predictor for it will be s f and so on. So, X k, s k, k m plus 1 m, m 



 
 

plus 1 up to m plus n, to use this I will consume the signal from 0 to m plus n, consume 

the signal from 0 to m plus n I can generate such samples. 

So, the basic idea is the following let us let us take P’s signal of course, across the entire 

time duration I may not be able to predict this P signal as a linear combination of its past 

values, but over short periods of time it might be feasible. So, let us say for concreteness 

I am sampling at 10 sampling frequency, so that in one second I get 10 thousand 

samples. So, let us say in 1 in 100 milliseconds I get about 100 samples, 100 

milliseconds might be a small enough chunk of time over which I can model the signal 

by this kind of a A R model, it is called A R model auto regressive model, which is 

which is essentially a linear combination of its past values. 

So, let us say I want to represent a linear combination of past 10 values. So, I may use up 

to the first 100 values of the signal, if I use the first 100 values of signal, then I may get 

about 90 training samples, to learn the 10 unknown w’s. Once I learn them from the 

sample 100 up to sample 1000. Now, I can predict using the length model. Now, I can do 

the same thing for the next chunk of 1000 samples. So, what happened is each chunk or 

as it is called a frame or the speech instead of storing all the 1000 samples I may need 

only the only the first 10 samples and then the 10 coefficients.  

Then I can predict the remaining ones may be there will be some error, but may be useful 

in many signal compression and coding applications. So, all such coding for example, 

this kind of coding is called LPC, linear predictive code. So, once I got such training 

examples how do I learn of course, I can learn weights using our linear least squares, I 

can line up all these X k’s into matrix A and then find the find the W optimal W or we 

can also learn it using the LMS algorithm. We can adopt weights at each instant.  



 
 

(Refer Slide Time: 19:05) 

 

If I use the LMS algorithm, let us say weights at k th instant is given by W k that is w 1 k 

to w m k. Then error instant k is X k at transpose W k minus the target s k whole square, 

X k transpose at W k is nothing but w j k, s k minus j minus s k whole square. Now, this 

is simply a filter if I am getting s k on some line, I essentially have to keep putting the s 

and then multiply with weights and sum. So, this is a very simple F A R filter. So, 

essentially I am designing an F A R filter system, that is what my predictor is and this is 

the error.  

Given this error of course, my algorithm will be W k plus 1 is W k minus eta X k, X k 

transpose X k into X k transpose W k that is this predictor minus s k that is the error 

term. So, as I said this can be thought of as a adaptive filter, essentially my predictor is 

an F A R filter and these w’s or the filter weights. So, at each instant I can keep 

modifying the filter (( )). So, this is a adaptive filter and if it has sufficiently small very 

quickly it converges and from then on I would be able to predict s k very accurately. 
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So, this is for example, one situation where the incremental version of the least squares is 

much more intuitively appealing. Instead of taking all the signal then offline making so 

many training samples by stacking of X k’s and then putting them in a matrix and 

inverting a transpose and all that, I can essentially do it online at each instant. I have a 

buffer to store the previous m value at the signal and I use that to calculate the current 

error and use that to keep changing my tapping weights in the in the filter. So, in this 

kind of adaptive filtering applications our incremental gradient descent version namely 

the LMS algorithm, is much more appealing than the batch version of variant descent or 

the actual matrix solution of the linear least squares. As I said with eta sufficiently small 

all of them give rise to the same final solution. 
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So, that is our example let us move on to now a few other issues about linear least 

squares. So, first let us consider the least squares error criterion is to minimize this error, 

if I assume that X i, y i are drawn IID from the underlying distributions. So, X n y have 

some stochastic relation between them and examples are IID. Then I can think of such a 

sum as essentially approximating the corresponding expectation. So, actually I can think 

of this as expected value of X transpose W minus y whole square, where X and y are the 

corresponding random variables, whose samples are X i and y i.  

So, X comma y is a random vector and I got NIID samples X i, y i out of them. Of 

course, if it is expectation it has to be 1 by n here, we said n really does not matter, we 

will see currently y n does not matter, but because we did not put n there I will put n 

here. So, this J W is a very good approximation of n by 2 expected value of X transpose 

W minus y whole square. Now, I can differentiate this and find what will be the optimal 

W using the expectation operator. So, one thing we can see is that more clearly then in 

this version, this version clearly shows that the object is to minimise mean square error. 

Expectation operation is to minimize mean of the squared error. So, that is why this is 

called you know mean square error algorithms, minimize mean squared or least mean 

square estimates and so on.  



 
 

(Refer Slide Time: 23:08) 

 

So, if we equate gradient of J W to 0, what is gradient of J W, this 2 will go away with 

this the half will go with the 2 that n will remain. 
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Then expect value of X into X transpose W minus y you equate it to 0, then I get n into 

expect value of X, X transpose W comes out of the expectation minus n times expected 

value of X y equal to 0. 
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It is expectation X, X transpose into W minus X y this of course, this two has come out 

when the derivative. So, this gives me w as n times expect value of X, X transpose whole 

inverse into n times expect value of X y. We can actually show that this the same 

expression we get for W star using our matrix relation, if we have once again 

approximate expectations by sample averages  
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That is easy to see let us quickly go through this; rows of A are X i, so A transpose will 

have columns as X i, so A transpose A will be X i, X i transpose some row. So, A at A 



 
 

transpose A is nothing but expect value of X, X transpose, but because there is input 1 by 

n here, that n comes here. Similarly, a transpose y because columns of A are X i will be 

summation i is equal to 1 to n X i times y i, which is approximately equal to n times 

expect value of X y.  

So, if I do a transpose a whole inverse a transpose y, I get n times expect value of X, X 

transpose whole inverse into n times expect value of X y, this is same as the expression 

we have got earlier. And of course, this this n will become 1 by n because the inverse 

that will cancel with this n. So, is actually equal to expect value of X, X transpose whole 

inverse into expect value of X y that is the reason whether or not we use that n, the final 

solution is the same. As I said we are minimising J, so a constant in front of j does not 

change the minimiser, so that is the minimiser. 

(Refer Slide Time: 25:20) 

 

So, to restate what I have been saying, we can think of least squares method as 

minimising the mean square error, essentially we are approximating the expectation by 

sample mean. But otherwise is actually minimising expect value of X transpose W minus 

y whole square, given IID samples of X comma y. And as we saw the minimiser is 

expectation of X, X transpose whole inverse into expect value of X y. Written in this 

style if I know something about the covariance matrix of X and so on so forth, I might be 

able to crunch this expression X, X transpose whole inverse into X y.  



 
 

And hence, it allows to understand the kind of model we get. So, time permitting later on 

we will we will see some more examples of this, but it is good to remember that we can 

actually think of mean square, least mean square method as minimizing this expectation 

and this is the ideal solution. 
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Now, as you said least squares method is fitting a model that is a function of X, f of X, to 

minimise some expect value of f X minus y whole square. Since, I put some f here I 

changed the function to R of f, if you remember R is what we have using for the risk in 

the beginning we will come back to that later, but let us call this R of f now. So, if I put 

different functions I will get different values for R or for R of f and essentially the idea is 

which function is the best function. So, I am choosing a function f to predict y, so on an 

X I will predict f X, all the true value is y.  

So, f X minus y whole square is the error and I am taking a mean of this other and trying 

to find R f that has the least error. So, there is what the kind of fit we are trying to make 

we are trying to fit a function. So, far in the method that we have considered we hare we 

are learning only a linear model here. So, the minimization is over not all possible f’s, 

but only the linear or affined functions f that is what our least square solution gives linear 

least square solution gives. But more generally we may actually want to ask, if I do not 

have this restriction, if I can somehow minimise this overall possible f. What is the best f 

among all possible functions? We can ask this question certainly whether or not we can 



 
 

computationally find such an f, we can ask that question what will be the best f if I do 

not put this linearity restriction, but say overall possible functions f find the find the best 

f. 
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Then there is a problem of approximating a random variable y as a function of another 

random variable X in the sense of best mean square error that is what this means. 
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There are some random variables X and y and they are somehow related. So, y may not 

be a determinist function of f, but X and y have some join distribution, so y is 



 
 

stochastically determined by X. So, I want to find if I want to predict the value of the 

random variable y based on the random variable X that is I want a function of X, which 

is the best predicted for y, best in the sense of minimising the mean square error. 
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So, our problem is approximating a random variable y as a function of another random 

variable X in the sense of best mean square error. If f star is such an optimal function, 

then such an f star is called the regression function of y on X. Regression function of y 

on X is the function of X that is the best predictor of y, where best is in the sense of 

minimum mean square error. We will currently show that this function the best function 

is given by expected value of y given X, this is a conditional expectation of the random 

variable y given the random variable X.  

A conditional expectation is the function of X, so this will be a function of X. So, the 

best function turns out to be the conditional expectation. In this course I have actually 

assumed that all the readers, how basic background on probability we have been using 

normal distribution, other concepts from probability, such as density functions, 

distribution function, joint densities, joint distributions, expectation movements and so 

on. But still conditional expectation is a little bit an advanced topic may not be covered 

in all first level probability courses. 
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So since, I had need some properties of conditional expectation as the proof, I will 

quickly give a short overview of conditional expectation of course, this is not teaching 

conditional expectation, it is just a short overview. So, given any two random variables X 

and Z, let us suppose they have a joint density at both they are continuous random 

variables. So, then the conditional expectation of any function of Z j of Z, conditioned on 

X at a value the value of the conditional expectation when X is equal to little x is given 

by this integral, g z, f of z given x z given x, d z, where f of Z given x is the conditional 

density.  

As you know the conditional density Z given X is the joint density of Z and X divided by 

the marginal density of X. So, essentially conditional expectation is an expectation with 

respect to the conditional density of that given X. Normally if I am taking expectation of 

Z expectation of g Z, it is an expectation integral with respect to the marginal density of 

Z. Here instead of taking the expectation with respect to the marginal density we are 

taking expectation with respect to the conditional density of Z given X. Because, in 

particular of g is an identity function of g Z is Z, then this becomes conditional 

expectation of Z given Z is equal to x.  

Of course, if Z is a discrete random variable then corresponding to this integral becomes 

a summation if it takes values Z 1, Z 2 so on. So, it will be g Z j and once again with 

respect to the conditional probabilities, probability Z is equal to Z j conditioned on X is 



 
 

equal to X. Of course, this integral if g Z is a real valued function, then this integral is 

over the real line otherwise, if g Z is a vector valued function this will be over an 

appropriate real Euclidean space, that is why I did not put any limits of course, nor it 

does not mean that it is a indefinite integral. This is over the entire space this integral. 
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So, in both cases we have defined conditional expectation of some function of Z 

conditioned on Z at a particular value of X. So, the first thing we have to understand is 

expect value of Z given X is a function of X, by that I mean if g suppose g Z is Z. So, 

conditional expectation of Z given X at a value little x taken by x is given by this 

expression, in this expression I am integrating over Z.  

So, X will remain, so this will have be this will be some expression involving x. So, for 

every value X takes I get a value for conditional expectation, it is thus conditional 

expectation of Z given X is a function of X, for every value X takes there is a value for 

expected value of Z given X. So, conditional expectation Z given X is a function of X. 

Since, X is random any function of X will be random. 
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So, conditional expectation is a random variable that is the first important concept to 

note, unlike an ordinary expectation, which gives me a number conditional expectation 

gives me a random variable. Of course, it is an expectation integral so all linearity 

properties will satisfy, it is very easy to see conditional expectation, g 1 plus g 2 given X 

will be conditional expectation of g 1 given X and plus g 2 given X simply because of 

the linearity of the integral or the summation.  

So, all the linearity properties are of course, satisfied. But in addition because of this 

special properties special nature of the conditional expectation, there are two very 

important special properties of conditional expectation. So, the first property is 

expectation of expectation Z given X is expectation Z, see the inner expectation is a 

conditional expectation that conditional expectation gives me a function of X.  

So, the outer expectation is the expectation of that function of X. So, the outer 

expectation is with respect to the distribution of X, because what is inside that 

expectation is a function of X well conditional expectation is a function of X. This is of 

course, just expectation of Z, so this expectation with respect to the distribution of Z, this 

is true for all Z and X. So, I might have given any Z, one way of finding its expectation 

is to find the expectation of the conditional expectation, conditioned on any X that is 

convenient to us.  



 
 

This often used in practice to find some certain expectation, but any way this is one 

property expectation or conditional expectation is the unconditional expectation. The 

second property because the conditional expectation with respect to the conditional 

distribution, anytime that is a function only of the conditioning random variable behaves 

like a constant inside the conditional expectation. So, if I am taking conditional 

expectation of g of Z into h of X conditioned on X, then it is same of as h of X into 

conditional expectation of g of Z given X.  

So, anything inside the conditional expectation here h of X, which is a function only of 

the conditioning variable behaves like a constant and comes out of the expectation. In 

particular suppose g of Z is 1, then what does that mean of course, conditional 

expectation of any constant is the constant it is easy to seek in the definition. If g of Z is 

1 for example, then conditional expectation of h of X given X will be simply h of X. 

These are two very important properties of conditional expectation, both of them we 

need for our proof. 

(Refer Slide Time: 35:19) 

 

What is that we want to show? If I want to minimise expected value of f X minus y 

whole square, over all possible functions f, then that minimised function is the 

conditional expectation. So, what does that mean if I take expectation of conditional 

expectation of y given X minus y whole square that will be less than or equal to 

expectation of f of X minus y whole square for every f, this is what I want to show. To 



 
 

show that this expectation is minimised over all possible f, if I take f to be conditional 

expectation, I have to show if I plug the conditional expectation for f. Then what I get is 

less than what I get for any other f, this is what you want to show. 

So, to do that first, let us write f X minus y whole square in an equivalent form which is 

convenient for the proof. So, f X minus y whole square, I can write as f X minus 

expectation of y given X plus expectation of y given X minus y whole square, I have 

done nothing we just added and subtracted a conditional expectation of y given X term. 

Now, I can I put brackets here to show how I intend to look at this, I look at this as the 

first term, this as the second term.  

So, write a plus b whole square is a square plus b square plus two a b, to give me f X 

minus expected value of y given X whole square plus expected value of y given X minus 

y whole square plus the cross term the two a b term. The idea is that now, I will take 

expectations on both sides, because I will get an expectation of f X minus y whole square 

that is what I want here. One of these things here because expectation mean operated will 

expectation go inside, one of the terms here is expected value of y given X minus y 

whole square. 

So, I get expectation of expectation of y given X minus y whole square that is the other 

term I want here. So, if I take expectation of both sides I get both the terms I want and 

then looking at the remaining terms I might be able to establish a relationship. To do that 

what we will do is we will first look at this cross term and show that if I take an 

expectation the cross term vanishes.  
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So, we will show it like this, first consider the last term that is expectation of f X minus 

expect value of y given X into expected value of y given X minus y that is the last term. 
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Further about the 2, 2 does not make any difference f X minus expected value of y given 

X into expected value of y given X minus y. I want to take expectation of this that is 

what it is. So, we can rewrite like this as we just now saw expectation of any random 

variable is expectation of a conditional expectation. So, I will write this expectation as 



 
 

expectation of expectation of this same thing f XX minus expected value of y given X 

into expected value of y given X minus y conditioned on X.  

So, there is an inner expectation that is condition on x, so for the inner expectation I used 

the flower bracket, so that we can see and then that the outer expectation. So, I simply 

wrote this using expect value of Z is expect value of expect value of z given x. Now, 

what I can do is if I look at the let us look at the inner conditional expectation without 

cluttering the thing.  

If I had look at the first term in the inner conditional expectation, f of X is a function of 

X, so it depends only on X, as we just now saw expected value of y given X is a function 

of X. So, this also depends only on X. So, this entire term f X minus expect value of y 

given X is a some function of X. So, that term behaves like a constant in the inner 

conditional expectation, so it comes out.  
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So, I can write this as, so I have taken that f X minus expect value of y given X out of the 

inner conditional expectation and wrote expected value of the second term expected 

value of y given X minus y given X. So, here we used the second property of the 

conditional expectation. Now, you look at the inner conditional expectation this is 

expectation of some a minus b given X, there will be expectation of a given X minus b 

given X. a given X is expectation of expectation of y given X, given X expected value of 



 
 

y given X is a function of X. So, it will come out by itself, the second term is simply 

expected value of y given X. 
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So, if I push this inner conditional expectation inside I will get expected value of y given 

X minus expected value of y given X that gives me 0. So, using the two special 

properties of conditional expectation, we can show that the expectation of the third term 

in our expression goes to 0. Using this now what we have see this is what we had earlier, 

if I take expectations I will put expectation here that is expectation of this term, that is 

expectation of this term plus expectation of this term, this term will go to 0. So, 

expectation of this is expectation of this plus expectation of this. 
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So, let us write that, so expected value of f X minus y whole square the expected value of 

f X minus expected value of y given X whole square plus expectation of expected value 

of y given X minus y whole square. Now, the right hand side is expectation of 

conditional expectation minus whole square, this is the term we are interested in plus 

expectation of some quantity, which is always positive. The expectation of square of 

some random variable expectation of square of some random variable is always greater 

than or equal to 0.  

So, if I drop this term this will be greater than this, because this is obtained by adding 

some positive term to this term. So, expected value of f X minus y whole square is 

greater than or equal to expected value of expected value of y given X minus y whole 

square. This is true for every f, no matter of what function f i take, expect value of f X 

minus y whole square is always greater than or equal to expected value of conditional 

expectation of y given X minus y whole square. 

So, this is since this is true for all f, we have we finally, prove the results that the optimal 

function to approximate y in a mean square sense is the conditional expectation of y 

given X. It is very important result about mean square estimation of course, the 

conditional expectation of y given X depending on the joint distribution of y and X, may 

be a linear function of X, may not be a linear function of X. We have not made any 



 
 

restriction on the functions over which you found the minimum or all possible functions 

if you find the best approximation then that is the conditional expectation of y given X. 
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So, what is that we have showed we show that if you want to predict y as the function of 

X to minimise the mean square error, then the optimal function is the conditional 

expectation of y given X. Now, suppose y is a binary variable, y to X only value is 0 1 

then what is the conditional expectation, f star X, which is conditional expectation of y 

given X. From our definition y takes only two values 0 into probability of y is equal to 0 

given X plus that is 1 into probability y is equal to 1 given X. So, that is only probability 

of y is equal to 1 given X and we already have a name prior probability y is equal to 1 

given X in a classification situation. This is the posterior probability of class 1, so that is 

q 1 of X. 

Similarly, suppose we take y to be minus 1 plus 1, then conditional expectation of y 

given X will be plus 1 into probability of y is equal to 1 given X plus minus 1 into 

probability of y is equal to minus 1 given X, that will be q 1 X minus q 0 x or q minus 1 

X and that is q 1 X minus 1 minus q 1 X, so that is two q 1 X minus 1. So, if we if we are 

using in this prediction model in this mean square problem, if we are using if in a 

classification problem, if we are taking y to be 0 or 1. Then the optimal f star would be q 

1 X, using y to be minus 1 or plus 1, then the optimal f star will be 2 q 1 X minus 1. 
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What does it mean? Suppose in a classification problem I have learnt W to minimise this 

X i transpose W minus y i whole square. So, if I think of this as f of X, the best function 

would be the conditional expectation, which I have given to be q 1 x or to q 1 x minus 1 

depending on what is the coding for y is. So, we can say if we are using y is equal to 0 1, 

then we learnt the best linear approximation to q 1 x. If we had minimised our all 

functions, we would have learnt q 1 X at the optimal function. But since, you are not 

doing it to all functions, but only over linear functions we can say roughly hand 

wavingly that we learnt a best linear approximation to the posterior probability that is q 1 

X. 
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So, essentially if we solve this least square problem in a classification problem using y is 

equal to 0 1. Then after learning given any X, X transpose W is a good estimate of the 

posterior probability, which means a good classifier is obtained by thresholding X 

transpose W star at 0.5. Similarly, if I have taken y to be minus 1, 1 then we learn a good 

linear approximation to 2 q 1 X minus 1, which means we can threshold X transpose W 

star at 0 to get a good classifier. Earlier we said this hand wavingly in the sense, y is plus 

1 minus 1 I am trying to match y with X, X transpose W that is why I can threshold it 0, 

but now, we exactly know y. In the mean square estimation, if we use targets as minus 1 

plus 1, then we would be trying to approximate 2 q 1 x minus 1 and hence it. 
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So, it does not matter they put minus 1 plus 1 or 1, 1 and 0, both cases I essentially learn 

some information about the posterior probability. So, mean square estimation is one way 

of learning posterior probability right. Of course, we said if we use 0 1, we will learn the 

best linear approximation of posterior probability of function. But of course, in general a 

linear function is not a good model for posterior probability, if the q 1 function X is a 

linear function of X that means q 1 of X 1 plus X 2 is q 1 X 1 plus q 1 X 2 probabilities 

do not add like that.  

Because, X 1 plus X 2 is another X that will also have a posterior probability, but if you 

keep adding probabilities like that it will easily go beyond 1. So, in general a linear 

function of x is not a good choice for posterior probability. But linear least square 

method is very easily extendable to extendable; so that more interesting models than just 

such linear models for posterior probability can be learnt. Let us look at it a little more 

carefully, let us say h is some function continuous strictly monotonically increasing 

function R to R plus. So, we wanted to be positive because we wanted to model the 

posterior probability. By assume continuous strictly monotonically increasing so that h 

becomes invertible. And let us say instead of saying we learned a linear model W 

transpose X plus w naught, we say we actually learning a model, which is h of W 

transpose X plus w naught. 
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By our assumption h is invertible, so suppose h of W transpose X plus w naught is a 

good model. What does that mean, given some data like this, essentially if W star and w 

naught star are the are the optimal values. Then h of X i transpose W star plus w naught 

star is a very good approximation for y i, that is what this model is good means. With 

since, h is invertible this is same as saying X i transpose W star plus w naught star is a 

good approximation for h inverse of y. So, if instead of predicting y if I am trying to 

predict h inverse of y, then I would get a linear model the usual linear model. So, putting 

a h there makes no difference.  
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We can use the usual linear least squares method by simply taking the targets to be h 

inverse of y i, rather than y i. What does that mean, suppose that is the given data X i, y i 

I make new data, where y i prime is h inverse of y i. So, for X i, y i prime I fit a linear 

model, W transpose X plus w naught is fitted to the new data. And then the usual linear 

least squares problems we will work now and finally, we can use the model h f, h f X 

transpose W star plus w naught. So, in this sense, I can easily generalise linear least 

squares not to just model such as X transpose W plus w naught, but also models, which 

are h f X transpose W plus w naught, where h is any strictly monotonically increasing 

continuous function. 
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Of course, when learning this in the usually least square sense we could have used the 

matrix method we could have used LMS method. If we use the LMS method it is 

particularly simple I do not even have to rework the targets. To do this let us say to make 

my job easier instead of writing X i transpose W plus w naught, I will simply revert back 

to X i transpose W by using augmented variables. 
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So, this is what we want to minimise h of X i transpose W minus y i whole square 

summed over i. We can use the gradient descent or do the gradient descent, essentially 

the h was not there, then that will become X i transfer W minus y i into and the left 

multiplied with X i. Because, there is h the only thing I will get is an additional h prime 

term. So, that will be the gradient descent the extra term will be h prime of X i transpose 

W. If I differentiate this 2 will come out, then I need derivative of this with respect to W. 

So, that becomes h prime of this and then gradient of X i transpose W, which is the old 

term. So, my gradient descent will be the gradient term will be h prime of X i transpose 

W and to X i into h of X i transpose W minus y i, where h prime is the derivative of h. 
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So, earlier instead of h of X i transpose W minus y i, I had X i transpose W minus y i, but 

that is natural, because my new error now is h of X i transpose W minus y i, the X i was 

anyway there, only thing extra there is added is h prime. So, I do not have to do any 

recoding of targets or nothing I can just run the whole gradient descent with this extra 

term. Matter of fact if I write it in terms of incremental version is even simpler, W k plus 

1 W k minus eta times, I wrote it as h prime k X k e k, e k is the error, usually it is X k 

transpose W k minus y k. Now, it is h of X k transpose W k minus y k, h prime k is 

nothing but the derivative of h evaluated at the current prediction. 
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So, that will be the incremental version and the LMS algorithm in this case is easily 

extended to this case and it is very simple to implement. I do not have to do anything I 

just add a h prime term, the same error term earlier X k term I just add a derivative term. 

A h that is often used is this form h of a is 1 by 1 plus exponential minus a, we have seen 

this in our one of first few lectures, but anyway you might have forgotten. So, this has 

this generic structure. So, essentially for a positive large it becomes 1, because 

exponential minus a goes to 0 for a negative large this goes to infinity, so actual go to 0. 

So, in between it sharply transits and always takes value half h 0. 
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This function is called and as you can see this could be a probability function, at for 

various values of a this could be probability because it goes between 0 and 1. This 

function is known as the logistic function or the sigmoid function and this is useful 

model for posterior probability. Least squares method using this h, the modifier least 

square method that we have just now discussed that using this particular h is called 

logistic regression. Normally one uses the LMS algorithm as I told you in logistic 

regression. 
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So, logistic regression is often a good way to learn posterior probability functions, we 

will just see in what way it happens. Let us take a two class problem and recall our 

notation f 0, f 1 are the class conditional densities, q 0, q 1 are posterior probabilities, p 

0, p 1 are the prior probabilities.  
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Then what is the Bayes rule the posterior probability q 0 is given by f 0, p 0 by f 1, p f 0, 

p 0 plus f 1, p 1, this is the Bayes rule this is how the posterior probability is calculated. 

So, I can write this in this form, if I divide the numerator and denominator by f 0, p 0 I 



 
 

will get 1 by 1 plus f 1 X, p 1 by f 0 X p 0. Now, I can write any a as exponential l n a, so 

that is what I did, but I wanted a minus a, so I wrote xi itself as minus of l n, f 1 X p 1 by 

f 0 X p 0. So, if I write xi as minus of l n, f 1 X p 1 by f 0 X p 0. So, this becomes 

exponential l n, f 1 X p 1 by f 0 X p 0 exponential l n cancel each other, this becomes 1 

by 1 plus f 1 X p 1 by f 0 X p 0, so that is what I want. And minus in l n is nothing you 

know you just because it is a fraction you just interchange the fractions simply becomes l 

n of f 0, p 0 by f 1, p 1. 
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So, I can always write q 0 as 1 by 1 plus exponential minus xi, there is no problem 

writing it as a sigmoid the posterior probability, where the xi becomes this. So, posterior 

probability can always be written as sigmoid function, but the main question is can this 

xi be expressed as a linear function, because we wanted h of W transpose X plus w 

naught. So, asking can I write q 0 of x as 1 by 1 plus exponential minus W transpose X 

plus w naught.  

So, can I write this l n f 0, p 0 by f 1, p 1 as a linear function? So, logistic regression is a 

very good method, if we can write l n, f 0, p 0 by f 1, p 1 as W transpose X plus w 

naught. If I can do that then it becomes 1 by 1 plus exponential minus W transpose X 

plus w naught. So, that is nothing but h of W transpose X plus w naught, where h is the 

sigmoid function. Hence, this perfectly fits the logistic regression to estimate the 

posterior probability.  
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So, the question is can I the... So, hence we can conclude the logistic regression is a very 

good method if we can write l n f 0, p 0 by f 1, p 1. So, for all class conditional density is 

such that this expression can be approximated by a linear function logistic regression is a 

very good model. For example, if f 0 and f 1 are Gaussian, multidimensional Gaussians, 

but with the same covariance matrix, then as we saw when we studied the Bayes 

classifier for them. l n of this will be a linear function of X that is why the optimal 

classifier in Bayes case will be a linear discriminant function that you already seen. So, 

this will always be a linear function what it means is that, in this one situation, that is this 

is any example of one situation or many such situations, where logistic regression would 

give you the actual of bayes optimal classifier.  
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So, in that sense unlike the linear function logistic regression is a good model for 

posterior probability. So, to sum up in a in logistic regression we find W and w 0 to 

minimise, i is equal to 1 to n h of W transpose X i plus w naught minus y i whole square, 

where h is given by 1 by 1 plus exponential minus a that is the logistic function. We take 

the targets to be 0 on 1 for the two class case. We can use the LMS algorithm for finding 

W star and w naught, this is easier than because even the logistic function is strictly 

invertible beyond a level the inverse is inverse becomes very large.  

But we do not have to find the new targets as I said, if we use the LMS algorithm it is 

simply adding 1 h prime term in the update. Then once we learn W one w naught we use 

h of X transpose W star plus w naught as the posterior probability estimate, which means 

given a nu X I calculate h of X transpose W star plus w naught and then threshold it at 

0.5 to implement the classifier. Very often wherever linear classifiers are useful this 

logistic regression finds you the optimal classifiers. 
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So, to sum up in the linear regression so far we have assumed, so we have looked at 

linear regression linear classifiers, we have looked at how to look at it from the mean 

square error point of view, we looked at the regression function optimum mean square 

estimate. And arising out of it we looked at the logistic regression as a way to learn 

posterior probabilities. Now, so far we have considered linear regression when this 

targets are scalar we took our data to be X i can be any three dimensional vector, but y i 

is belong to R that by itself is not much different.  

Extension to vector case is straight forward, essentially if y’s are multidimensional then 

you have to learn a function from R d to say R 2 or R 3, then R d to R 2 or R 3 is simply 

three different functions each will be linear. So, I will just learn a number of linear 

functions. In the classification class also we will be looking at only two class case both 

for we regularly in a regression as well as in logistic regression. There is not quite clear 

what you would use in multiclass case, because using the 0 and 1 is what gave us this 

nice posterior probability estimates.  

So, in general it is not so easy to look at multiclass case, but we will generalise the 

multiple classes later on. So, what we will do is next class we will look at some other 

connection between linear least squares estimate and the M L R Bayesian estimates that 

we considered earlier. And after that we will look at how to generalise this multi class 

case and look at multiclass linear discriminant functions. Thank you. 


