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Linear Discriminant Functions; Perceptron-Learning  

Algorithm and Convergence Proof 

Hello, welcome to the next lecture in pattern recognition. In this course so far in all the 

lectures we had, about twelve of them so far, we have mainly concentrated on 

implementing of Bayes classifier. We started with the standard statistical way of 

formulating the problem, talked about class conditional densities, priors, posterior 

probabilities, looked at the Bayes classifier mainly, and then we were discussing how to 

implement the Bayes classifier. 
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Essentially Bayes classifier is optimal, when we exactly know the posterior probabilities. 

Since we do not know the posterior probabilities we use the training set of examples to 

estimate the class conditional densities and hence the posterior probabilities, which 

means, when we estimate densities, there would be inaccuracies in the densities of 

course. Bayes classifier is optimal only when we exactly know the posterior 

probabilities. 

But when we use estimated densities the inaccuracies in the density estimation will 

translate into non-optimality of the implemented Bayes classifier. So, we have discussed 



this earlier so, but it is we have been looking at how to implement Bayes classifier, how 

to estimate densities. We considered various methods of estimating densities and how we 

can implement Bayes classifier with that but, since this is a problem in general, to relate 

how inaccuracies in density estimation affects final classification accuracy accuracies of 

the classifier. It is you know, it is often desirable to look at techniques other than the 

Bayes classifier for classification.  
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So, as we seen in the beginning of the course when we gave a overview, there are 

methods other than Bayes classifier. One of them that we specifically mentioned is the 

discriminant function based classification. So, that is what we are going to look at next. 

So we will start in this class basically with linear discriminant function based classifiers 

what are called linear models for classification.  
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So, let us recall what a discriminant based sort of classifier is. In a discriminant based 

classifier we like we have been doing so far we will stick to two class classification we 

look at multiclass discriminant functions a little later. So, for this class and the next few 

classes, we are essentially looking at two class classification and also regression 

problems we look at. So, in a two class classification problem, a discriminant function 

based classifier has the following structure given a feature vector x, the classifier output 

h of X is 1, if g x is greater than 0, is equal to 0 otherwise where g is some pre given 

function which is called the discriminant function. 

That is how the discriminant based classifier is formulated once again, which should be 

one, which should be 0 is matter of notation, but in this course we will take if g X is 

greater than 0 then the class is 1 and now, a classifier based on that is equal to 

discriminant function based classifier. Sometimes, the classifier itself is called a 

discriminant function. For any case the function g is called the discriminant function. 

The Bayes classifier results if we take g (X) to be q 1 (X) minus q 0 (X) where q 1 and q 

0 are the posterior probabilities of class one and class 0 respectively. So, g X greater than 

0 means q 1 (X) greater than q 0 (X) in which case I will put in 1 that is the bayes 

classifier in the 0 1 loss function model. 



(Refer Slide Time: 04:20) 

 

So, even the Bayes classifier is essentially discriminant function based classifier for the 

issue of that we do not have to take g X to be q 1 (X) minus q 0 (X). We can take many 

other functions for g (x). That is how we get a richer class of classifiers. When we look 

at discriminant based classifiers in general, the discriminant function may have some 

parameters say, a vector parameter denoted by W then we write the discriminant function 

as g of W comma X. The idea is that so far we have been assuming some functional form 

for the class conditional densities and then using the training samples to estimate the 

densities and then using the estimated densities to implement a classifier. An equivalent 

method is to think of some particular functional form for g and then need the needed 

parameters can be estimated directly from the training samples. 
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So, that is basic idea of discriminant function based classifiers we use the training data to 

learn the parameters in the discriminant function. Specifically, in this class we look at 

what are called linear discriminant functions. So let us consider discriminant function 

which has let us say d plus 1 parameters, the parameter vector w has components w 0, 

w1 , w d and the feature vector is d dimensional with components x 1 to x d. Then a 

discriminant function which has the following structure summation i is equal to 1 to d w 

i x i plus w naught is called a discriminant function. It is called a linear discriminant 

function. So, a linear classifier or a linear discriminant function based classifier, both of 

them are often used as synonymously is one where I put x in class 1 if summation w i x i 

plus w naught is greater than 0 otherwise, I put in class 0 .So, that is why this is a linear 

discriminant function.  

Basically, this is called linear mainly because it is linear in the parameters w this 

discriminant function has d plus one parameters if the feature vector has dimension d. 

Those are w 0 w 1 up to w d and it is essentially a linear some with respect to w i the w 

i’s are the unknown parameters that is what we need to learn and this function is linear in 

w 1’s and that is the main reason it is called linear discriminant function. All the various 

techniques we consider for implementing such linear classifier, essentially make use of 

the fact that this function is linear in its parameters w i. This particular function is also 

linear in x i right very often one may confuse that linearity is with respect to x i while we 

normally write the linear discriminant function like this. The fact that it is linear in x i is 



not particularly important for the linear techniques of learning classifiers. So, basically it 

being linear in w i is what makes it a linear discriminant function. 
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To make this very clear let us consider generalization, let us say phi i of X i running from 

1 to d prime, where d prime is some number, may be greater than d. This some fixed 

functions so, given any feature vector x I can compute phi 1 X phi 2 X phi d prime X 

each of these phi’s are function of all components of X that is why I wrote it as phi i of 

X. 

Let us say this phi i are some prefixed functions. There cannot be changes there, they are 

not learnt using the training sample. They are fixed and then consider a classifier like 

this: h X is 1 if summation i is equal to 1 to d prime w i phi i x plus w naught greater 

than 0. So, essentially instead of using x i the i th component of the feature vector, we 

were using phi i of x the idea is that this is also a linear classifier even if phi are non-

linear. We would still think of this as the linear classifier, because its linear in the 

adoptable parameters w i the parameters w i are what are to be learnt and with respect to 

those parameters this is still a linear function. Hence, this is called linear discriminant 

function and the classifier is called a linear classifier. For any fixed phi i, because phi i 

are not learnt once again is it is a linear discriminant function because it is linear in the 

parameters w i. 
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This means that I can write a general linear discriminant function in the following form g 

W comma X is i is equal to one to d prime w i phi i X plus w naught where phi i’s are 

some fixed functions. It essentially means that because phi i is a prefixed instead of using 

X i at the i-th feature I am using z i is equal to phi i of X at the i-th feature. So, if you 

think of z i as phi i of x then the vector z, z 1, z 2, z d prime is a new feature vector and 

with respect to that it is same as the old linear discriminant function.  

So, that is the reason why we will still like to call all such things as linear discriminant 

functions and the resulting classifier structures as linear classifiers. As long as phi is 

fixed all these are linear classifiers. It means that all the techniques that we are going to 

present for linear classifiers will be valid if we, instead of using x i as the features if we 

use phi i of x as the features where phi 1 phi 2 and so on are some prefixed functions. For 

the rest of the lecture and for many lectures to follow most of the time we will use X 

itself for the feature vectors. 

So, we will write the discriminant function as w i x i summation w i x i plus w naught, 

but we will remember that all the algorithms are valid if we change x i by phi of X 

because this will revert back to our usual notation of summation w i x i plus w naught. 

Sometimes, this phi i are called fixed basis functions. We will see later on in the course 

why that basis function name comes from.  
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One more small notation which is convenient when we are describing linear classifiers. 

Let us define a new feature vector which we call x tilde which is same as the old one 

except that I put an extra feature 1 extra feature whose value is 1 as the first feature. So, 

x tilde is 1 x 1 x 2 x d is a d plus one dimensional vector. It is called the augumented 

feature vector. Recall that w is the d plus one dimensional vector with components w 0 w 

1 w d so what I get by this is the earlier linear discriminant function g of W comma X 

can be written as w 0 plus i is equal to 1 to d w x i. This is how we define the linear 

discriminant function can now be written as; W transpose X i this can be written as 

simple inner product between the parameter vector w and the augmented feature vector x 

tilde. 

So, essentially we can think of this as simply as an inner product without worrying about 

the constant. So, by considering the feature vector to be augmented with a extra 

component which is always 1, we can write the linear discriminant function simply as W 

transpose X tilde. What we will do in this class as well as for the rest of our discussion 

on linear classifiers that we always assume the feature vector to be augmented of course.  

But whenever, we need we simply assume that the feature vector is augmented so that 

we can write linear discriminant function as W transpose X this is useful mainly in linear 

discriminant functions and linear classifiers and also linear models for regression. So, we 

simply write this as W transpose X even though we should write it as X tilde under the 



implicit understanding that whenever we need we will augment the feature vector like 

this. 
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Alright now, what is learning of linear classifiers as usual the training set is x i y, i going 

from 1 to n. So, such a set of patterns are feature vectors is said to be linearly separable if 

there exists a W star such that X i transpose W star is greater than 0 if y i is equal to 1 

and X i transpose W star less than 0 if y i is equal to 0. It means there does exist a linear 

discriminant function with parameters W star, which correctly classifies all the training 

patterns. I am not using the augmented feature vector notation here. When I write X i 

transpose W star I am implicitly assuming that X i is augmented any W star that satisfies 

this is called a separating hyperplane. There exists infinitely many separating 

hyperplanes if the data is linearly separable right here is a simple example. 
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So, it is a two dimensional data note that I am showing it in the original space not in the 

augmented feature space. So, this is one class, this is another class. So, they are linearly 

separable because I can put a line and you know any line that passes through this cone 

that I showed will be a separating hyperplane. Essentially, if you consider the middle line 

here the w will be a vector perpendicular to this hyperplane. Let us say w is in point in 

this direction, the direction of w is arbitrary, but suppose W’s point in this direction then 

the dot product between w and any of these patterns. Pattern vectors would be positive 

and the dot product between w which is directly like this and any of these pattern vectors 

will be negative. That is why this pattern set is linearly separable and that is what is 

given by this equation. 

So, essentially when you say w is a separating hyperplane representationally W star is 

actually the normal vector to the hyperplane. So, W transpose X is equal to 0 is the 

solution of the hyperplane. All points on the hyperplane are perpendicular to w. W 

transpose X is equal to 0 is the hyperplane. So, W transpose X greater than 0 is one side 

of the hyperplane. W transpose X less than 0 is the other side of the hyperplane. 
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So, when we said that patterns are linearly separable we used a strict inequality on either 

side which means like in this example no pattern need to be on the separating hyperplane 

patterns are strictly away from the separating hyperplane. It is because you have only 

finitely many patterns that is separable. I can always make sure that a separable 

hyperplane is such that no pattern is on the separating hyperplane.  

So, that is the reason why we have used strictly inequalities in both sides, I hope the 

notation is clear. Now, the separating hyperplane is this line that separates the two 

classes w is actually a vector perpendicular to this hyperplane. Thus, the equation of the 

hyperplane is W transpose X is equal to 0. So, W transpose X greater than 0 is one side 

of the hyperplane, the positive side of the hyperplane that is all the vectors which have a 

positive inner product with the vector w which is perpendicular to the hyperplane. 
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So, the hyperplane separate these two, the w vector is the perpendicular to the 

hyperplane and we also noted that when it is separable no pattern is on the hyperplane 

that is why both the inequalities are strict so what is learning of linear discriminant 

functions. So this is our classifier h (X) is 1 if the sum is greater than 0 otherwise. So, we 

call is the sign function s g n we will write this as s g n for this lecture. 

So, I can also write as W transpose X implicitly assuming that X is augmented. So, sign 

of W transpose X is my classifier so, what I have to learn I have to learn the optimal 

values of W from the training samples there are many algorithms. We will start with the 

one of the oldest algorithms for this problem which is arguably the first ever pattern 

recognition or machine learning algorithm that is ever proposed that is called the 

perceptron algorithm. 

The perceptron learning algorithm is one of the earliest algorithms for learning linear 

discriminant functions. It can find a separating hyperplane if it exists so, it works only if 

the pattern set is linearly separable. Later on we will see how to handle pattern sets that 

are not linearly separable. But to start with we look at the perceptron algorithm, which 

works only when the pattern set is linear probe that is what I mean by it finds a 

separating hyperplane, if a separating hyperplane exists so this what we are going to start 

with in this class. 
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So, once again for a linear discriminant function this is the classifier sign of W transpose 

X. So, we can think of this as what is W transpose X. It is a kind of a weighted sum so 

w’s are the weights, x’s are the components of X are the features so you find a weighted 

sum of the features. The W transpose X is simply a weighted sum of the features so this 

is a weighted sum of the features and then the sign simply thresholds at 0 here. 

So, if W transpose X is greater than 0, it has one value less that equal to 0 another value. 

So, we can pictorially think of it as a unit some unit into which there are various inputs 

coming X 1 to X t and each input line there is a weight W 1 W d. What this unit does is it 

finds a weighted sum of all its input W 1 X 1 plus W 2 X 2 plus W n X n and then 

thresholds it at W 0 because there is a constant W 0 in this. 

So, the sign of this is same as finding the weighted sum W 1 X 1, W 2 X 2, W d X d and 

threshold you get it W 0 that is its output such a unit is what is called perceptron.  

It is originally proposed by Rosenblatt in late 1950s. The particular algorithm with its 

convergence proof first came out in 1962 that is also due to Rosenblatt. Actually the 

perceptron was used as a model for neurons model for how neurons in our brain can 

learn which is not particularly important for us for this class. But for historical purpose 

perspective is this interesting to note that Rosenblatt was actually investigating how we 

learn to recognise mainly visual categories. This is one mathematical model he came up 



with. At the end of this lecture I will come back to this figure and explain a little more on 

that. 
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The perceptron learning algorithm which learns the weight vector W corresponding to a 

separating hyperplane is an iterative algorithm iterative means it is over iterations it 

keeps updating. So, at k th iteration W of k W within brackets k is the value of the 

current weight vector. From now on we will call the parameter as weight vector because 

as we seen essentially what the linear discriminant function does is a weighted sum.  

So, the let W(k) denote the weight vector at the k th iteration so at each iteration I update 

W k. So, W(k) is updated into W(k plus 1) so to that what I do is at each iteration I pick a 

training sample. We currently see how to, but is this almost any way of picking we will 

work. So, let us say X k is the one that is picked at k, so this could be one of the X 1, X 

subscript 1 X subscript 2 X subscript n the n pattern vectors have x subscript one tox 

subscript n.  
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So, X of k let that denote the training sample that is picked at iteration k and let y of k be 

the corresponding class label as given in the training set for that pattern. What the 

perceptron algorithm does is, it uses the current weight vector namely W(k) to classify 

the current sample namely X k. And depending on whether this classification turned out 

to be right or wrong it updates W(k) into W(k) plus 1. That is how the perceptron 

algorithm works is an iterative algorithm like this you start with any arbitrary W 0. For 

example, I can take W 0 to be 0, then at each iteration I have current weight vector W k. 

I pick one of the patterns I call that X k .Then I classify X k using W(k) and based on the 

correctness or otherwise of that I update W(k) to W(k) plus 1. How do I pick? I can pick 

training patterns sequentially. I can first X 1 then X 2 then X 3 then X n and then once 

again go over the training set X 1 X 1 and so on. 

So, I repeatedly keep going over the training set picking feature vectors one by one till 

the algorithm converges. We will see what convergence means we stop when the current 

weight vector correctly classifies all the training data. So, at any time I am holding a 

weight vector in hand I pick the next training sample as I said for concreteness. Let us 

say I keep going over the training set repeatedly so I pick training samples as first X 1 

then X 1 then X n minus and so on. Then X n minus 1 then X n then once again X 1 then 

once X 2 and so on. So, anytime the current weight vector correctly classifies the current 

sample I do nothing I we will see the algorithm correctly otherwise I change W. I keep 



doing this and I stop when the current weight vector correctly classifies all the training 

data. How would I know this we need a stopping criterion. For example, we can 

remember in each pass over the data whether or not we had an incorrect classification 

and I can remember when I had last incorrect classification.  

If the last time I had incorrect classification is more than you know n iterations away M 

being the training sample because I know I am picking them one by one. I know the 

current weight vector correctly classifies. So, using some such simple technique of 

programming I can stop by knowing that the current weight vector correctly classifies all 

the training samples. 
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So, if we have a sufficiently long run of no classification errors sufficiently long depends 

on how many training samples I have then I can stop. So, that is the overall view of the 

algorithms the only thing that is not specified is how to update W k. Now, let us see how 

to update w k. To update W(k) so say W(k plus 1) minus W(k) is delta W(k) that means 

W(k plus 1) is W(k) plus delta W k. So, I have to specify delta w k. So we specify delta 

W(k) as follows, delta W(k) is 0 meaning I do nothing I make W(k plus 1) is equal to 

W(k) if W(k) transpose X k greater than 0 and y k is 1 or W(k) transpose X y is less than 

0 and y k is equal to 0. So, if the current weight vector correctly classifies the current 

sample I have to do nothing that is reasonable because this particular W correctly 



classified X. How do I know if y k is one I want W(k) transpose X k to greater than 0 

and if y k is equal to 0 I want W(k) transpose X k to be less than 0. 

So, this simply tells you whether or not W(k) correctly classifies X k. So, W(k) correctly 

classified X k I do not update I keep W(k plus 1) is equal to W(k) all right. Otherwise I 

have two kinds of errors. These two kinds of errors could be, y k is equal to 1 I get W(k) 

transpose X k less than 0 or y k is equal to 0 I get W(k) transpose X k greater than 0. So, 

in each of the errors we have to say what to do for W(k) here is what I do. If W(k) 

transpose X k is less than equal to 0 instead of being greater than 0 and y k is 1 then delta 

W(k) is X k. That means W(k plus 1) is W(k) plus X k which means if I make this kind 

of error W(k) transpose X k less than equal to 0 or y k is equal to 1. I simply add that X k 

to current W(k) and if I make the other kind of error W(k) transpose X k greater than 0 

but, y k is equal to 0 I subtract that X k from W(k) so delta W(k) is minus X k. 

So, this is the perceptron algorithm it is a kind of simple error correction algorithm. If I 

make no error I keep W(k plus 1) equal to W k. If I make error depending on the kind of 

error I either add or subtract X k. Of course, we will currently see why adding or 

subtracting can be called error correction, we will see it in a couple of minutes. So, it is a 

simple error correcting algorithm actually as we will see every time the current sample is 

incorrectly classified we are locally trying to correct the error. How are we locally trying 

to correct the error? Let us look at the error correction there are two cases one is W(k) 

transpose x k less than equal to 0 y k is equal to one then we add x k. 
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Let us look at what it does. So, when W(k) transpose X k less than 0 y k is equal to 1. 

What is the error? When y k is equal to 1, to correctly classify X k I should have had 

W(k) transpose X k to be positive. Somehow I have to change W(k) so that the if I taken 

W(k plus 1) transpose X k it is possibly would become positive. So, what have I done 

now W(k plus 1) transpose X k in this particular case W(k plus 1) is W(k) plus X k. In 

this case, the correction is to add x k. So, W(k plus 1) transpose X k is W(k) transpose X 

k plus X k transpose X k so, actually I had W(k) transpose X k to be less than 0 while I 

wanted it to be greater than 0. So, I am ensuring that W(k plus 1) transpose X k is the old 

W(k) transpose X k plus some positive quantity. This means I have ensured that W(k 

plus 1) transpose X k is greater than W(k) transpose X k. I have made an error because 

W(k) transpose X k is less than 0. 

So, the right direction of changing W is such that W(k plus 1) transpose X k should 

increase relative to W(k) transpose X k that is what adding X k does. In a similar way 

when W(k) transpose X k is greater than 0 and y k is equal to 0 essentially we have to 

decrease this inner product that is why I am subtracting X k from W k. So, W(k plus 1) 

transpose X k by the same token will be less than W(k) transpose X k. So, this is how the 

corrections are. So, in both lines I am correcting W(k) so that intuitively next time 

around at least I moved this W transpose X in the right direction. The corrections are 

intuitive is very simple as I said locally try to correct the error just for that particular X k 



and essentially adding and subtracting X k simply ensures that I am correcting in the 

right direction. 
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That is the motivation for the algorithm is easy to see is very simple minded so to say 

just locally try to correct the error. However, it is not clear why such a simple minded 

algorithm should work. I hope you people see it is very simple and what is remarkable 

about it is that it always finds a separating hyperplane. What do you means by its not 

clear why the algorithms should work? Firstly, while W(k plus 1) transpose X k is more 

than W(k) transpose X k when it should increase W(k) transpose X y is negative. So, I 

added X k so that W(k plus 1) transpose X k is more than W(k) transpose X k but, does 

not mean that W(k plus 1) transpose x i is become positive because so to say this step 

size I am just adding x and the magnitude of X I do not know. 

So, I have not even ensured that at least W(k) plus one correctly classifies X. I am just 

moving in the right direction so there is not even a guarantee that W(k plus 1) correctly 

classifies X k. More importantly when I correct W(k) to take care of X k then corrected 

W(k) may now misclassify some other feature vectors which are classified correctly. 

Earlier, I might have looked at some other X which is classified correctly so, I did not do 

anything to W k. Now, when I modify W(k) I have no way of knowing whether what all 

earlier corrections I have undone. So, really there is I just do not know why this should 

work at all. So, given that it is really remarkable that this algorithm works we will prove 



it formally. I just want you to see that while its intuitive and very simple it is also a very 

remarkable result that such a simple algorithm always gives you a separating hyperplane.  
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There is also a geometric way of looking at the problem. So, let us look at it like this. Let 

us say this is my data set, all the blues are one class all the greens are other class and 

these are linearly separable. Note that in the augmented feature space because I am 

talking about W transpose X greater than 0 or less than 0 and W transpose X equal to 0 is 

the hyperplane. The hyperplane always passes through the origin in the augmented 

feature space ok. So of course, the feature vectors are closed but, not on the hyperplane. I 

have taken a slightly tough problem but, the two classes are still linearly separable now. 
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Let us say on this problem at some iteration we had one particular W vector. So, let us 

say this is the hyperplane I am currently considering. This is the normal to the 

hyperplane and let us says this is the positive direction. So, this is my W vector, the 

vector that is shown is the W vector and the line shown in dashes the magenta line is the 

current hyperplane. So, all my blues were on the positive class all my reds are in 

negative class. So, there is one blue thing which is circled which is incorrectly classified 

by this particular hyperplane. So, what is that I do for correction I take this W vector to 

that I add the X vector. X vector is the line that joins origin to this incorrectly classified 

point and that gives me new W(k) plus 1. Let us do that computation. 
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So, as earlier that is my earlier W vector and this line is the X k that is incorrectly 

classified. Now, I have shown you the parallelogram law these are vector addition so, if I 

add this vector to that vector I get this green vector. So, that is the new W(k plus 1) 

which means this is the new hyperplane. So, I have effectively adding this incorrectly 

classified X to this W means I am rotating this hyperplane around the origin in the 

direction in which this particular sample is in this case is in the counter clockwise 

direction. 

So, adding this X to W is simply rotating so adding and similarly, subtracting will be 

rotating in the other direction because subtracting is simply reversing the direction of that 

vector and adding. So, I am just rotating the hyperplane so each correction is essentially 

rotating the hyperplane. So, that is a direction so that the incorrectly classified sample 

comes on the hopefully comes on the right side of the hyperplane. In this particular 

example by this amount of rotation the incorrectly classified sample is now come on the 

right side. 

However, earlier this hyperplane was correctly classifying that sample. That sample was 

on the positive side of the dashed hyperplane. Now, when I rotated this to take care of 

this. This has come on the wrong side of the hyperplane. Now, it has come on the 

negative side hyperplane right. So, this shows us both that the adding X and subtracting 

X to W is simply rotating the hyperplane in the correct direction as far as that particular 



sample is concerned. Now, the rotation of course in this particular example rotation 

action is sufficient to correctly classify that sample that is one problem. The second 

problem is when I rotate like that something else that was correctly classified earlier may 

now become incorrectly classified. As I said that keeps on going I will keep going on the 

training samples repeatedly. I keep rotating the hyperplane this way, that way every time. 

I see the example and somehow at the end I come to the. So, let us get over this again. 

So, that is the original hyperplane that is the wrongly classified sample so I have to rotate 

the hyperplane counter clockwise to take care of it and that is what my perceptron 

algorithm does. 
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Now, given that we got the algorithm, let us look at the convergence. So, we now show 

that the algorithm learns a separating hyperplane. How do I show that? We first before 

we go there, Let us put some notation. First recall that all feature vectors are augmented 

in this we assuming all feature vectors augmented that is why as I said the hyperplane 

always passes through the origin. In addition, let us suppose that in the training set we 

will first take the training set and then multiply all x i whose corresponding y i are 0 with 

minus 1. What does this do to me this means that a weight vector W represents a 

separating hyperplane if W transpose X i greater than 0 for all i. I do not have to look at 

y i anymore if I simply multiplied all X i whose corresponding y i is equal to 0. Then I 

do not need y i for implementing my algorithm. 



Now, I am working towards finding a W so that W transpose X i greater than 0 for all i 

because if it is a y i is equal to plus 1 vector then W transpose X i greater than 0. If y i is 

equal to 0 class then the original X i has been multiplied by minus 1 to make this X i. So, 

if this W transpose X i is greater than 0 for the original feature vector will be negative 

right so by this simple notational device of assuming that in the training set is equal to 0 

class feature vectors are multiplied by minus 1. 
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Now, a separating hyperplane is simple defined by W transpose X i greater than 0 for all 

i and similarly, this simplifiers or notation as follows and I have notation the perceptron 

algorithm. Simply, if W transpose x, W(k) transpose X k is less than equal to 0, we add x 

there is no adding or subtracting anymore because we are adding y, y is equal to 1 

patterns and subtracting y is equal to 0 patterns, but all the y is equal to 0 patterns are 

multiplied by minus 1. 

So, for all patterns is only addition now my algorithm is very simple. If W(k) transpose 

X k greater than 0 do nothing if W(k) transpose X k less than equal to 0 add X k to W k. 

So, by the simple device of assuming that all the 0 class patterns, I have multiplied by 

minus 1. I can notationally simplify my perceptron algorithm. The second simplification 

we make is let us say we count our iterations only when the weight vector is updated. So, 

as k goes every iteration picking up an X k if W(k) transpose X k greater than 0 we are 



saying W(k) plus one is equal to W(k) if because W(k) plusone is equal to W(k) i can 

simply assume k is not incremented. 

So, I increment k only whenever I have a correction so that i get successively different 

W’s. So, I consider a sequence updated like that where k increments only when there is a 

correction sounder. This is the perceptron algorithm till it actually converges. Thus what 

this for all k means not really for all k till it actually converges is like this is always W(k) 

transpose X k less than equal to 0 and W(k plus 1) is equal to W(k) plus X k because that 

is how am I am counting my k’s. The algorithm stops when it finds a separating 

hyperplane. So, it keeps on going like that after some k it would not update at all if the k 

would not increase because everything is correctly classified. So, if it stops then because 

everything is correctly classified that is the final W(k) so there will be a maximum k at 

which kit will stop or till that time. This is the algorithm because I am incrementing my 

iteration count only when I had an error. 
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Now, we want to show that the algorithm finds a separating hyperplane if the data is 

linearly separable. We prove this by contradiction that is, we first assume that the 

algorithm fails to find a separating hyperplane even though 1 exists and then show that it 

cannot be. If the perceptron algorithm ever stops that it W(k) is no longer updated and 

W(k) transpose X k but, greater than 0, it remains greater than 0 for all k then it has 

found a separating hyperplane. So, what it means is that if the algorithm fails. We are 



assuming that the algorithm fails to find a separating hyperplane that means, this keeps 

on going but, at every k W(k) transpose X k less than or equal to 0. Hence, W(k plus 1) 

is equal to W(k) plus X k that keeps on going for all k. The k does not stop ever k keeps 

going. So, if perceptron algorithm fails to find a separating hyperplane then we must 

have this for all k. 
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So, now under that let us see a contradiction under the perceptron algorithm. We have 

W(k plus 1) is equal to W(k) plus X k now I am saying that this keeps on going without a 

stop. The iteration count keeps increasing. Now, using this we know W(k plus 1) norm 

square, these two lines denote norm. So, W(k plus 1) norm square because W(k plus 1) is 

this is W(k) plus X k norm square. Now, let us expand this norm square to get W(k) 

norm square plus X k norm square plus 2 W(k) transpose X k. Now, our iteration count 

or iterations are such that for each k W(k) transpose X k is always less than or equal to 0. 

So, which means W norm of W(k plus 1) whole square is less than equal to norm of 

W(k) the whole square plus norm of X k whole square because this is always less than or 

equal to 0. 
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So, now I can re curs on this so I had W(k plus 1) so I have put k so W(k) norm square is 

W(k) minus 1 norm square plus X k minus 1 norm square. Now, the same thing is true 

for W(k) minus 1 norm square that is W(k) minus 2 norm square plus X k minus 2 norm 

square plus X k minus 1 norm square and so on. So, if I recurs on that ultimately I get W 

0 norm square plus X i norm square I is equal to 0 to k minus 1. Note that this is X 

brackets i. This is the i th x I picked while going down the things which has the i th time 

I had to correct right. So, this X within brackets i would be one of the X 1 to X n. I do 

not know which one but, that happened to be the i th time I corrected the W as I kept 

going again and again over the features. So, I get W(k) norm square given by this. 
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Without loss of generality as assumed W 0 is equal to 0. We can do the same proof 

without that, but there are only finitely many vectors X i so each of them have some 

length some norm. So, let M denote the maximum norm of all the X i’s now, we have 

W(k) norm square is W 0 norm square plus this. So, because the W 0 is 0 and maximum 

of X i norm square is M. This simply becomes k times M. So, norm of W(k) whole 

square is bounded above by k times a constant so it increases linearly with k. So, if the 

perceptron algorithm keeps making error sometime or the other as I keep going again 

and again on the samples so that the iteration counts keeps increasing then the norm of 

W(k) keeps increasing linearly with k. This is one relation that we got. 
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We will get one more once again under the algorithm W(k plus 1) is equal to W(k) plus 

X k. Hence, W(k) can be written as W(k) minus 1 plus X k minus 1. Now, W(k) minus 1 

can be written as W(k) minus 1 plus X k minus 1 plus X k minus 1. This should be, I am 

sorry this is X k minus 1 and so on you recurs you get W 0 plus i is equal to 0 to k minus 

1 X i. Please note that this k minus 2 is actually k minus 1.  

So, using under this algorithm W(k) is simply W 0 plus i is equal to 0 to k minus 1 X i. 

This is not surprising because every time we are adding the X. Some X 1 of the feature 

vectors which happened to be incorrectly classified is added to W. So, at any given time, 

the current W is simply sum of sum of the X i those X i’s that I have picked up and made 

which are incorrectly classified added to W 0 of course. W 0 is taken to be 0. So, while 

this is not really important for us in the proof as such of this relation is important.  
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This relation also tells us one thing extra namely that this shows that W(k) is always 

some linear combination of the feature vectors. 
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Each of X brackets i is one of the feature vectors while I do not know which one 

ultimately this sum will be some linear combination of the feature vectors. So, at any 

given time W(k) is a linear combination of the feature vectors. Hence, my separating 

hyperplane because we will ultimately going to show this algorithm minus separating 

hyperplane would be actually a linear combination of feature vectors. While that fact is 



not really important in this proof that the separating hyperplane will be a linear 

combination of feature vectors will become useful to us later in the course, so I have just 

mentioned it, but anyway let that be. 
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Now, so far we have not used the fact that we are assuming data to be linearly separable 

because we are assuming data to be linearly separable there exists a w star such that x 

subscript i transpose w star is greater than subscript i. When use this specific i th training 

sample x within brackets i is the as i am going down the feature vector down the training 

sample keep picking feature vectors that is the i th time I made a correction. So, that can 

be any of these X’s but, this X subscript i transpose is feature vector. So, for each of the i 

is equal to 1 to n X i transpose w star is greater than 0 such a w star exists. Now, let 

gamma be minimum over all these X i transpose w star now because each of them is 

greater than 0 this gamma will also be greater than 0. 
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Now, we had W(k) is this is anyway 0. So, if I prove 2 W(k) transpose w star that will be 

sum of X i transpose w star. 
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So, W(k) transpose w star is sum of X i transpose w star and we know each of this is at 

least gamma they are k of them. So, this is greater than equal to k gamma. So, we show 

that W(k) transpose w star is greater than equal to k gamma where once again this is 

gamma is some quantity greater than 0. So, this greater than 0 so it showed two things 



one is norm W square is norm W(k) square is bounded above by k times a constant and 

now W(k) transpose w star is bounded from the other side by k gamma. 
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Let us put all these together because this k gamma is positive we also know k square 

gamma square is less than or equal to this whole square. So, first we have k square 

gamma square less than equal to W(k) transpose W star Whole Square. This is an inner 

product as you know the inner product between two vectors is bounded above by these 

squares of the individual norm this so called Cauchy’s horizon equality. So, W(k) 

transpose w star whole square is bounded above by W(k) norm square plus W star norm 

square and then we know W(k) norm square is bounded above by k times M. So, this is 

W star norm square into k times M. So, if these iterations keep going on that is if 

misclassifications of the feature vector keep going on right then this has to be satisfied. 

For all k so, this should be true for all k if the algorithm keeps updating the weight vector 

without any limit. 
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So, what we have showed so far is if the algorithm keeps updating W(k) without an 

upper limit on k, then I should have the satisfy, but this I cannot satisfy because the left 

hand side is growing as k square. Right hand side is growing only as k so irrespective of 

the values of gamma M and W star k must come when this k no long will be satisfied. As 

a matter of fact I know what dividing by k we know that this can be true only till k less 

than some quantity W star whole square M by gamma square, which means the 

corrections cannot go on forever. After this k the corrections have to stop if the patterns 

are separable. 

Hence, the algorithm finds a separating hyperplane in finitely many iteration, it is a 

remarkable result. We showed that this very simple minded algorithm which just does 

some local corrections of rotating the hyperplane clockwise or counter clockwise around 

the origin. Just to locally take care of the current sample will stop after finitely many 

iterations with and if it stops it has to be a separating hyperplane. If the training data is 

linearly separable, of course the training data is linearly separable it is given by a being a 

w star such that this gamma exists. 
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So, what we have showed is that the perceptron algorithm finds a separating hyperplane 

in finitely many iterations. Finitely many because k cannot go beyond this number, this 

number is some finite number. M is the upper bound on the norm of all the X i W star is 

the separating hyperplane and gamma is the minimum W star transpose X i over all i 

which must be positive because w star is a separating hyperplane. So, what we showed is 

that perceptron algorithm finds a separating hyperplane if it exists in finitely many 

iterations, but of course we do not know the bound on the iterations. To know the bound 

on the iterations we need to know W star as well as gamma M we know because we 

know X i’s, but we neither know W star because we do not know gamma.  

So, while the proofs tells me that it has to stop infinitely many iterations I cannot 

calculate the bound which means in a particular case I do not know how many iterations 

to run the algorithm. Only thing I am guaranteed is if the training data is linearly 

separable and if I run the algorithm for enough time I will always converge with a 

separating hyperplane. It is better the fact that I cannot calculate the bound the proof 

shows that our simple error correcting procedure is effective which is remarkable this is 

arguably the first provably correct learning algorithm you know 1962. If the data is not 

linearly separable then in general the algorithm will not stop that means it will go into an 

infinite loop. So, if the data is linearly separable I know sometime or the other it will stop 

and give me a separating hyperplane. But if the data is not linearly separable then I 

cannot even guarantee that the algorithm stops. 
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This is the algorithm under the notation that all the y is equal to 0 patterns set multiplied 

by minus 1 the proof can be the proof that we did also takes care of many generalisations 

for example, I am allowed to put a step-size here you finish up adding X k if I put eta 

times X k it is still all right because as long as eta is positive everything in the proof goes 

through. Also we did not really assume anything specific about how patterns are picked 

for concreteness we say patterns are picked one by one. But you can pick patterns in any 

which way. For example, in one pulse you can pick them from left to right another pulse 

you can pick them from right to left absolutely no problem. As long as you keep picking 

all patterns repeatedly we do not leave out anything so that when corrections stop we 

know that all the patterns are classified correctly as long as you keep picking all patterns 

repeatedly we can use any reasonable order of picking patterns. 
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So, many such variations can be justified from the same proof, there are couple of other 

issues in the algorithm, we let us quickly go through them the algorithm as presented is 

termed incremental or online algorithm what does that mean. We essentially use one 

example at a time as I say picking. So, you give me one example so, I can ask somebody 

else to give me an example from the training set. 

So, we use only one example at a time in principle I do not need to store all the example. 

If I have a stream of example coming and they are statistically such that if I keep doing 

these corrections sooner or later everything will be correctly classified or if the stream 

repeats itself. So in principle I can learn from a stream of examples without storing them 

that is what is meant by incremental. I do not need all the examples in the main memory 

for example, as I push to this we can have a batch version where I can keep all the 

examples with me and then do the corrections. For example, what I can do is I can make 

one pass all examples with the same W, k keep track of our all the wrongly classified 

examples and then effect all the corrections. So, now k will not be iterations like earlier 

but, now k keeps track of the passes over the data my first pass over the data I keep track 

of all the X’s that I incorrectly classified and then do only one short correction. 
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So, for example, I can have it like this let us say as earlier we assumed that X i with y i is 

equal to 0 multiplied by minus 1. So, I essentially looking for a W’s as the W transpose 

X i is greater than 0. So, at a given pass gate pass of the data W, k transpose X if W(k) 

transpose X j less than 0 put j in a set called S k. So, S k contains the indices of all the 

training samples which are incorrectly classified by the current W. Now, I can have a 

batch version which simply means after the k-th pass over the data W is updated by W(k 

plus 1) is W(k) plus sum of all the X j’s over the set S k. 

So, I had k 1 W(k) with which I classify all the patterns remember which are all the 

patterns which are wrongly classified add all those X j’s to this W(k) this is called a 

batch version of the perceptron algorithm intuitively this should also work and we will 

show why this should work by looking at a different perspective. Earlier we looked at a 

perceptron as in error correcting thing locally correcting errors that is the incremental 

algorithm. 
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We look at the batch algorithm as a simple optimization procedure as you have seen 

during the Baye’s classifier. We can rate algorithms, we can rate different classifiers 

through some risk functions which are some figure of merit for the classifier and then 

minimize that figure of merit. so, for each W like that we can define a figure of merit j, 

let us call that figure of merit j, j of W is minus of W transpose X j where j goes over all 

W j is said that w transpose X j less than equal to 0. 

So, given any W, I will find out what are all the X j’s that it wrongly classifies and then 

add all those W transpose X j’s and put a minus sign outside and that is the figure of 

merit for w. So, more things it wrongly classifies j is larger, but it does not tell me the 

number of wrongly classified because it actually adds this W transpose X j of all the 

wrongly classified ones. First let us notice that if W star is a separating hyperplane then 

for all X j W star transpose X j will be positive and the sum will be 0 there will be 

nothing in this sum so, j of W star will be 0. Secondly I am adding W transpose X j only 

when W transpose X j is less than equal to 0 and I put a minus sign here. So, j W is 

always greater than 0, for any W or this is separating hyperplane for all possible vectors 

W, j of W is greater than 0. So, I can simply minimize j of W to get the best W. 
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So, we can learn this separating hyperplane by minimizing j so, we want to minimize this 

function how do I minimize. I can use a simple gradient descent on the objective 

function so, what will be a gradient descent W(k plus 1) is W(k) minus some step size 

eta times gradient of this function j evaluated at the current value W k, this is the 

standard gradient descent algorithm. what is the gradient of this with respect to W is 

simply summation of X j’s so, that will be W(k) plus eta times summation of X j all j’s 

so, that W(k) transpose X j are less than 0. So, this is same as j belonging to S k as we 

called earlier so, this becomes plus because of this minus sign in my definition of j which 

means a gradient descent on this on this criterion function is the batch version of 

perceptron. 

So, this criterion function is called the perceptron criterion function and the perceptron 

algorithm the batch version can be seen to be minimizing this criterion. So, perceptron 

algorithm can also be viewed as simply a gradient descent on a nice reasonable criterion 

function and hence it should perform well. We can either look at it as locally correcting 

or we can look at it as minimizing a well defined criterion function ok. 
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So, let us sum up the perceptron is a very interesting device it is a simple weighted sum 

and threshold and it is also a learning machine it is a neuron model. Most of our brains 

computing elements are called neurons and at a simple level certainly at the level 

neurons are understood in 60s are a very good model for a neuron. A neuron simply as 

many inputs and it takes a weighted sum of its inputs and thresholds it at some point to 

decide whether it is going to have a 1 output or a 0 output. 
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Now, as a matter of fact as we have already mentioned these X’s can be phi i of X, there 

can be any fixed functions. Originally the perceptron algorithm is proposed as a model of 

how we learn visual pattern recognition. So, the way we can think of it is that, this is 

actually a phi of X so, in front of our retina there might be some visual pattern and we 

are inbuilt with some feature detectors. So, that d such feature detectors let us say given a 

particular pattern each of them will have some values we have built with those feature 

detectors, the feature detectors not built assuming that we need to differentiate between 

ambassador cars and maruti cars and differentiate between you know dogs and cats or 

whatever. 

So, whatever we have built, born with or inbuilt so, given that we have some fixed 

feature functions which are inbuilt. If I give an examples then the idea is can I learn, can 

my neurons learn the weights in the weighted sum so, that I can learn to categorize that is 

what the perceptron algorithm does. So, originally a perceptron algorithm is proposed as 

a model of how we learn visual pattern recognition the phi’s can be viewed as inbuilt 

feature functions the and the other thing is the algorithm only needs local computations 

because to update W, I add x which means to update this weight I only need to know this 

value. 

So, it is locally available so, even though there might be many connections here each 

weight can update itself by locally knowing the value here that is also a an interesting 

this thing. so, the model is first one of this so called neural network models for learning. 

So, we will stop there for the perceptron algorithm next class we will see how to go 

beyond perceptron to be able to take care of cases where data is not linearly separable. 

We will start by what I have just done we look at the perceptron algorithm again just the 

final bit of perceptron and then go beyond that.  

Thank you. 

 


