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Hello.  This  is  lecture  three  in  this  segment  of  a  course  on  Nanoelectronic  Device

Fabrication  and  Characterization.  And  to  recall  this  part  recourse  deals  with

nanometerials and nanosystems and tries to understand how to deal with them. 

(Refer Slide Time: 00:33)

Now in the last session we were introduced to basic concepts of quantum mechanics, the

Schrodinger equation and the concept of a potential barrier and we began to work with

tunneling concepts and we will continue with that, and then we go and gone on through

so called potential well and quantization of energies, that will be the agenda of today.
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Now,  to  come  back  to  the  basic  precept  of  quantum  mechanics  namely  the  time

independent Schrodinger equation, as we said yesterday it is a second order differential

equation where psi represents the probability amplitude of the so called wave function

that describes the motion of a particle in a quantum mechanical system.

The Schrodinger equation can be written as an operating equation as we said yesterday,

where H is the Hamiltonian operator which is given by minus H square by 2 m delta

square by delta x square plus V x where V is the potential that is a time independent

potential  and  the  solution  of  the  Schrodinger  equation  yields  the  so  called  Eigen

function,  which are solutions to the equation and the corresponding values of energy

which are Eigen values of energy. These are the possible probability amplitudes and the

corresponding energies and therefore, the probability of finding a particle at a position x,

then would be given by the probability integral namely is 0 psi x psi star x d x integrated

over space that should give you unity and the probability itself is given by the product

psi x square modulus.
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Now  to  repeat  the  Schrodinger  equation  is  the  second  order  differential  equation

therefore, a solution for psi requires 2 constants of integration and these are provided by

requiring that both psi and the first derivative of psi or continuous across of any potential

barrier through which a particle might be moving.

Now again to repeat what I have said yesterday psi and d psi by d x that is the first

derivative,  if they are not continuous if they change abruptly at a boundary, then the

implication is that effectively infinite sources of energy might be required and this is of

course, physically unrealistic. Therefore, the requirement for solution uses the boundary

conditions that psi is continuously across a boundary as well as the first derivative of psi

is continuous that gives us 2 constants of integration which allow us to solve for psi

exactly.

So, this is the basic principle of solving the Schrodinger equation in the time independent

case.
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Now let us look at it further, the Schrodinger equation is a linear differential that is the

Hamiltonian  operator  which  we  have  just  shown  here  in  one  dimension  is  a  linear

operator. The implication is that suppose you have solutions psi 1 psi 2 psi 3 which

satisfy this second order differential equation, then a linear combination of psi 1 psi 2 psi

3 such as a 1 psi 1 plus a 2 psi 2 plus a 3 psi 3 would also be a solution of the second

order differential equation. Where these constants a 1 a 2 a 3 etcetera can actually be

even complex numbers, because what is really physically meaningful is only the square

of the probability amplitude. And therefore, you can have the quantities like a 1 to be

complex.

Now, this is called the principle of super position and that is applicable to all kinds of

wave motion and so on. So, essentially is characteristic of a second order differential

equation that is a linear differential equation. So, the principle of super position allows us

to construct various possible solutions out of the linear combination of the solutions that

we might find to the Schrodinger equation. 
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Now  having  dealt  yesterday  with  some  of  the  basics  of  the  quantum  mechanical

principles, now we come to another very important quantum mechanical principle that

you would have heard of namely the Pauli Exclusion Principle. Yesterday we dealt with

the Heisenberg’s un uncertainty principle and the Pauli exclusion principle is another

very important part of quantum mechanics. Now consider 2 identical particles let us say

2 electrons, particle one is in state psi 1 that is this is a particular jargon of quantum

mechanics psi 1 for example, depends on the position of the particle in one dimension.

So, in a particular for a particular value of the position then you call the particle as be in

a state psi 1 where x for example, has a particular value.

So, we call particle to one to be state psi 1 and particle 2 to be state psi 2, now as these 2

particles are identical and they are indistinguishable, it might as well be that particle one

is in  say state psi  2 and particle  2 is  in  state  psi  1 you cannot tell  between those 2

particular  possibilities.  Thus the 2 particle  wave function if you had one particle  the

wave  function  is  psi  1  if  you have  2  particles  then  you  have  a  product  of  those  2

functions psi 1 and psi 2. So, the 2 particle wave function in this case can be written

either as psi 1 psi 2 plus that is psi 1 particle one in that state psi 2 with particle 2 in that

state and psi 1 with particle 2 in that state and psi 2 with particle one in that state as

shown here.



Now, this is a linear combination as we have just said linear combinations are valid wave

functions, but you can either have a plus sign for the linear combination here or a minus

sign for the linear combination. It comes out that whether there is a plus sign or a minus

sign in such a case where we are considering identical particles describing the states of

an identical particle or set of identical particles it makes the big difference whether there

is  a  some of  this  and are  a  differences  of  these two;  these two terms  the  plus  sign

corresponds to.

So, called bosons and the negative sign correspond to so called fermions. Bosons have

integral spin this spin quantum number is a very special quantum mechanical property of

particles. So, if this spin is integral then it is a boson, if this spin is half integral then it is

a fermion you would have learned about in your earlier classes.

(Refer Slide Time: 08:41)

So, we have bosons and fermions particle particles therefore, with odd spins where the

where is quantum of spin is equal to h bar by 2. So, if there is an odd multiple of h bar by

2 for a particle that is if the spin angular momentum of a particle is an odd multiple of h

bar by 2 then it is a Fermion.

An example is electron of course, a famous example whose spin is equal to h bar by 2

electrons are fermions helium 3 nuclei are also fermions this spin there is 3 h bar by 2,

whereas helium 4 helium 3 is an isotope of helium the normal isotope is h bar I mean

helium four. So, this nucleus is a spin of 4 h bar by 2 and therefore, it is a boson.
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Now, as  I  said  momentum  ago  this  spin  or  spin  angular  momentum  is  a  quantum

mechanical phenomenon property, quantum mechanical property with no equivalent in

classical mechanics. Now the Pauli exclusion principle states that 2 identical fermions

cannot  be  found  in  the  same state,  that  is  the  broad  general  statement  of  the  Pauli

exclusion principle. If we consider 2 such fermions with the probability amplitude then

the probability amplitude must change sign when the particles are exchanged that is we

have  written  here,  the  wave  function  for  this  2  particle  system as  we  have  said  in

previous slide.

So, if you have this negative sign between these 2 terms these 2 product terms of wave

functions, then you have fermions as you have said. Now you can see by the form of this

particular wave function that if you exchange these 2 that is if psi 1 r 1 is same thing as

psi 2 r 1 then the product becomes 0 rather the factor become 0 the 2 factors in the sum

they can cancel each other therefore, the wave function becomes identically 0.

So, if there is an exchange of particles between psi between the states psi 1 psi 2 then

you have a 0 wave function and therefore, this is not possible and that means, that the

Pauli exclusion principle statement that 2 identical particles 2 identical fermions cannot

be  found  in  the  same  state  reduces  to  mathematically  this  statement  that  the  wave

function should be of this kind of this particular form and if you exchange those particles

then you would if they are in the same state then the wave function psi r 1 r 2 is 0 and



that  is  not  possible.  So,  that  is  the  mathematical  statement  of  the  Pauli  Exclusion

Principle.
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Bosons on the other hand those that have integral off spins are not similarly restricted;

that is an arbitrary number of bosons can occupy the same quantum state for 2 bosons the

wave function is the sum of these 2 terms as we have discussed earlier and of course,

there is no way this is going to be 0 under these conditions. Therefore, wave functions of

all combination of particles in different states are added which means that there is an

increasing the probability of 2 or more particles occupying the same state and this is the

phenomenon of Bose condensation, which is observed at very low temperatures among

other conditions.

Now, it is important to remember that apart from helium 4 which is an example of a

boson as  we just  mentioned,  bosons the  most  important  class  of  particles  which are

bosons or photons we do not think of photons as having spin, but this spin for photons is

actually plus or minus h bar sorry there is a slight error here is plus or minus h bar

corresponding to the left and right circularly polarized light, we know of polarized light,

but that is the equivalent of a spin for the photon.
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Now, one aspect that I mention in very first lecture is the statistics of nano systems. Now

when  you  are  dealing  with  quantum  particles  then  one  has  to  formulate  quantum

statistics to deal with such particles on some of such particles. From the statement of the

Pauli exclusion principle that we just went through it is clear, that the Pauli exclusion

principle affects profoundly the statistics of an ensemble of fermions because after all no

2 fermions occupy the same state, whereas such as restriction or a constraint does not

apply to bosons therefore, one can see from here although elaboration is necessary and

we will try to attempt that later on, the statistics for ensemble of bosons and fermions

have to  be  different  because  of  this  fundamental  difference  between  the  bosons and

fermions namely the fermions have to obey the Pauli exclusion principle.

As a result quantum statistics is divided into 2 parts, namely Fermi-Dirac statistics which

describes fermions, Bose Einstein statistics that describes bosons we will return to that in

a later part of this segment.
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That is come back to what we are dealing with yesterday in the previous class that is

namely quantum mechanic tunneling where we have said that we have particle with an

energy e which is less than a potential barrier v that it encounters in its motion. 

So on the left of this diagram for x less than 0 we have a particle moving with the energy

e and to the right is a potential barrier of height v which is greater than v. As we said

yesterday under these conditions the particle of the electron let us say in this case with

energy e less than v would simply bounce off the barrier, it will come back that is going

forward this way and then it will just bounce back and go back along the negative x

direction because it cannot among the barrier.
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Now what we did yesterday was to consider this as a quantum mechanical problem and

in the solution to the Schrodinger equation, we found that the solutions are the in the

form of e to the I k x, but in this case k which is defined as square root of 2 m into E

minus V or h bar square this becomes a complex number imaginary number.

Therefore the wave function e to the I k x really becomes now a real function because k

itself is complex and therefore, what we have is A e to the minus ikx I kappa x where

kappa is a real number therefore, what you have is an exponential decay of the function

on the other side of the barrier that is.
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You have here a sinusoidal function as the wave function over here e to the minus ikx

where as on this side what you have is an exponential decay, but still a real solution to

the Schrodinger a wave equation.
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We can depict the solution to the problem of a potential barrier in the following manner

namely on the left side the probability of finding the particle namely the psi square over

here is just e to the ikx minus e to the in into e to the minus ikx, which really is a

constant therefore, the probability of finding the particle to the left of x equal to 0 is

constant as shown here.

Whereas, on other side psi now exponentially decaying function therefore, in quantum

mechanics unlikes in classical mechanics, this particle has its finite probability of being

found in other side of barrier, but the probability of finding it goes down exponentially as

the function of distance on the other side of the barrier. This phenomenon where by a

particle with energy less than a potential barrier that encounters goes to other side with a

finite probability is called tunneling.

In  this  case  we  are  dealing  with  electrons  we  have  electron  tunneling  and  many

phenomenon in quantum mechanics with practical applications depend on such tunneling

phenomenon.
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Can we have a estimate of the distance or which tunneling takes place. Now as we as

said to the right side of the barrier the probability is the square of the wave function

namely a square e to the minus 2 kappa k a 2 kappa x, for x equal to 0 then therefore, this

probability is a squared on the other side let us take a value of x equal to 1 or 2 kappa.

So, we are just want to equate x equal to 1 or 2 kappa, when we do that the probability

for that distance is equal to A square divided by e that is at x equal to 0 the probability is

a square and that x is equal to 1 over 2 kappa then the probability is A square divided by

e.  So, the distance over which the probability  falls  to  one over e of its  value at  the

boundary is one over 2 kappa. 
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Now, actually  the  problem of  the  potential  barrier  is  a  very  important  problem  for

example,  a  very  common  problem  2,  you  have  electrons  in  metals  so  called  free

electrons. The electrons are bound to the metal and they cannot come out because there is

something on is something you would have learned about it as the work function you

have to provide so much energy for the electron to come out of the metal, but even if you

do not provide that kind of energy, there is a finite probability for the electron to tunnel

out of the metal and this estimate over here suppose you take a metal of work function 5

electron volts, then using these numbers here using these equations where kappa is given

by this equation and substituting the value for the mass of the electron and so forth and V

minus E is equal to 5 electron volts, then you can find that 1 over 2 kappa is 0.25, 4 5

angstroms.

That  gives  an  a  feeling  for  order  of  magnitude  of  the  distance  on  which  electron

tunneling can take place in such a common case of free electrons in a metal. So, it is

generally negligible although as we show later, this tunneling of electrons out of a metal

is actually the basis of development of the scanning tunneling microscope we will return

return to that later.
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Let us now come to a problem a very well known basic problem called the particle in a

box problem in a quantum mechanics. It is a colloquial way of representing a problem

whereby you have  a  particle  that  is  boxed what  is  meant  by  that?  It  is  there  is  no

potential within the box, but the box has walls of course, and those walls are infinitely

high. So, we can think of the infinitely high barrier or an infinitely deep potential well in

which the particle is situated. So, this diagram represents the is a schematic diagram of

where you have particle in a box the potential is 0 inside the box.

Now, Schrodinger equation then is becomes simple because V is equal to 0 from x equal

to 0 to x equal to L, and v is infinite outside these boundaries. So, we have to solve the

Schrodinger equation to find the solutions for the problem namely what are the energy

levels that the electron would assume if it is an electron that is confine to this potential

well.
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Now, the barrier is infinitely high and therefore, the electron cannot go outside the box.

So, the particle is confined how does it move within the box what are the energy levels of

the particle within the box.

To do this of course, to know this the Schrodinger equation is resolved by applying the

appropriate boundary conditions.
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The Schrodinger equation for the particle in the box is simplified because v is equal to 0

and that equation is shown here, this is the simple equation for which we have already is



obtained the solution because it this so called free particle. In the previous session we

showed that this solutions are of this form psi x equal to A e to the ikx which is a plane

wave and k is given by this equation is related to the mass and the Planck’s constant, this

is really just a re statement of e is equal to H square over 2 m. So, that is the equation

from which this one comes.

So, now that is recall what is I said while ago, namely the general solution is a linear

combination of waves travelling in the positive and negative x directions e to the ikx is a

solution e to the minus ikx is also a solution therefore, that general solution is a linear

combination of e to the ikx and e to the minus ikx and there are 2 constants A and B.

Now  remember  this  is  a  second  order  differential  equation  therefore,  there  are  2

constants and as we said earlier you can solve for these things by using the boundary

conditions  of  where  psi  is  continuous  and  d  psi  by  dx  is  also  continuous  at  the

boundaries.  So, this is the sort of the text book problem for solving the Schrodinger

equation.
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Now, one can go through the algebra of determining the constants and so on and as I said

this  is  a  text  book  problem,  what  the  solutions  comes  out  to  be  is  that  there  is

quantization that determines a solution, there is a quantization condition that is a solution

are restricted to values of k such that k is equal to an integral multiple of pi divided by L

or k is equal to n pi divided by L where n is equal to 1 2 3 etcetera integral numbers



positive integral numbers. Now let us not that k is inverse length over here one over the

length and therefore, it is a so called reciprocal length or reciprocal wave vector.

Now, from the equation e is equal to h bar square k square by 2 m we get therefore, that

the energy is the particle can have in this box is equal to e n is equal to n square pi square

h bar square over to m L square. So, as I said this is the standard text book treatment of

the particle in the box, where one solves the Schrodinger equation and systematically

obtains the solution.
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There is actually a simpler so called inspection method for knowing the solution let us

say this is instructive. So, we can deduce the solution by inspection.

Knowing the free particle in the box has wave functions of the form psi is equal to e to

the  ikx  as  we  already  said.  Now e  to  the  ikx  has  both  sine  and  cosine  terms,  but

remember that psi must vanish at x equal to 0 and x equal to L which are the boundaries

of the box. Now the cosine function is not appropriate here because the cosine function

does not vanish at x equal to 0 therefore, we can limit our consideration to the function.

So, we can write psi x is equal to A into sin kx, where A actually is determined by the so

called normalization condition that is, you integrate psi x and multiplied by psi star x the

complex conjugate over all of its domain from minus from 0 to L x equal to 0 to L and

that gives you the condition that determines the value of A which is the normalization

factor.



Now, coming back as you said only sinusoidal functions are valid solutions for this and

you see that kL for example, this has to vanish at x equal to L therefore, kL must be equal

to n pi because this is sinusoidal function therefore, the quantization condition becomes

kL is equal to n pi where n is equal to 1 2 3 etcetera. So, we get the same answer k is

equal to n pi divided by L that can be obtained by a more elaborate treatment and of

course, the Eigen values of energy are once again n square x square pi square over 2 m L

square.
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So, these are the Eigen values of energy and see that these are discrete or quantized. The

normalized wave functions as I said can be obtained by going through these integral

where  we  integrate  between  0  and  L  which  is  a  domain  of  this  particle  and  the

quantization this normalization condition yields the constant to A the square root of 2

divided by L therefore, the wave functions or the Eigen functions of the particle in a box

particle in a infinitely deep well are given by psi nx equal to square root of 2 by L sin n

pi x by L where n is integral.
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Now, suppose you consider the difference in energy for such a particle in a box between

2 consecutive levels, as we are said here the energy levels are given by h bar square h bar

square pi square by n square or 2 m L square.

So, the value of e increases quadratically as the quantum number L as it is called this

quantum  number  is  gradually  increased  from  1  to  2  to  3  etcetera.  So,  if  you  take

difference in energy between 2 consecutive levels namely n and n plus 1 then that is

given by 2 n plus one into h bar square pi square over 2 m L square. Now notice that L is

in the denominator therefore, the smaller the value of L that is the smaller the box the

narrower the box then this you get a larger value for the delta E that is a difference

between 2 consecutive levels is greater when the box is narrower. This is a sort of a

qualitative  I  would  not  say  explanation  although  I  have  put  it  down that  way  is  a

qualitative  indication  for  the  finding  that  the  energy gap that  in  the  semiconductors

which you all heard of course, you have learnt in the earlier part of the course this course

the energy gap of a semiconductors increases when the size of the crystal is reduced to a

few nanometers.

So, if you take L to be a few nanometer then you can see that the difference in the energy

levels of consecutive states is larger when L is smaller. So, this is. So, called blue shift in

the band gap of semiconductors which are reduced in dimensions to nanometer levels we

will come back to this in a more systematic fashion at a later time in this.
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Now, let  us  consider  some examples  an  electron  in  different  sized  boxes  that  is  to

illustrate the points I have just made.

Suppose L the size of the box is 1 nanometer, then you can do the arithmetic to find that

En is given by 0.05 into n square in electron volt units. If n is equal to 5 the energy Eigen

energy is 1.25 eV approximately. If n is equal to 4 it is 0.8 eV. Now one point I want to

once again note for you here which I forgot to mention is that the difference between

successive energy levels of a particle  in a box increases as n increases that is as the

quantum number increases successive energy levels are separated by larger and larger

differences of energy.

So,  coming  back  to  this  particle  in  a  box  of  one  nanometer  electron  in  a  box  one

nanometer, the transmission from the level E 5 level to level 4 produces radiation in the

infrared because the difference in wavelength is about 0.65 eV which is in infrared. But

suppose you have go to a macroscopic box one centimeter sized box which is really of

physical experience, we have we have familiar with these sizes.

Then the same formula gives you that En is given by 10 to the power of minus 15 times n

square  in  electron  volt  units,  that  is  at  macroscopic  sizes  of  confinement  so  called

confinement, the energy levels though they are quantized are extremely low and very

closely spaced unless the quantum numbers are very large that is suppose n is a small

number 1 or 2 or 3 or 10 something like that a small number, then you can see that En is



really very small in magnitude almost immeasurably small, but if the quantum number is

large let us say order of 10 to the power of 7 then you begin to approach electron volt

kind of differences in the energy.

Now, coming back to such a case where the energy levels are spaced very closely, but are

still quantized as in the case of macroscopic object what you have here is quantization,

but really extremely small differences between successive energy levels, this is the so

called quazi continuous state of quazi continuous distribution of energies, where even

though there is quantization is essentially impossible experimentally to learn that and

that  is  really  how  Newtonian  mechanics  comes  into  play  for  large  size  object  or

macroscopic objects. We say in Newtonian mechanics that energy levels are continuous,

but really what it is that these energy levels are quazi continuous they were so close to

one another for microscopic objects that they in practice they are continuous.
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Now so for we have dealt with the infinite potential well, the barrier is very large or

infinite the particles simply cannot escape, but there is really a theoretical construct in

practice and in practical situations and problems the potential well to which a particle is

confined is of a finite height that is the potential well or the potential barrier has a height

of V naught, which is not infinite its finite a few volts for example, as in the case of the

work function of a metal.



Now what we learned earlier if you go back to the treatment of the potential barrier, we

saw that in such a case you can have tunneling that is spreads the wave function outside

the barrier even though the barrier height is less than the energy of the particle. So, you

can see that immediately when you have a finite potential well you can possibly have the

wave function spread outside the barrier outside the well. And therefore, a finite potential

well  would be different  from an infinite  potential  well  because of the tunneling that

makes the wave function outside the box finite.
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So, if actually one goes through such a finite barrier of height V knot.

Then the energy level diagram for such a case is altered slightly what is shown here is

the dotted lines show the energy levels of the infinite potential well E naught the ground

so called ground state to E 4 E naught because that  is a next excited states because

remember the energies are proportional to n square. So, if n is equal to 2 the energy is 4

times as much as that of the ground state.

So, these dotted lines represent the energy levels of the infinite potential well when the

potential is finite what I want to denote is that the resulting energy levels which one can

compute through simulations is lower than the energy for the infinite well. Every energy

level is diminished with respect to the infinite potential well the physical reason for that

is that the wave functions spreads outside the barrier on both sides therefore, some of the



energy is dissipated outside and therefore, the energy of the particle inside the box is

smaller than the energy would be for an infinite well.

So, each energy level is lowered with respect to the infinite well.
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Now, there is a very nice book called a picture book of quantum mechanics, in which the

problems of the potential well and so forth are simulated through illustrate the basic and

important  aspects  of quantum mechanics.  What  is  shown here is  the simulation  of a

potential well finite potential well sorry this one is simulation of infinite potential well

where the wave functions for different values of the quantum number n equal to1,  n

equal to 2, n equal to 3, 4 and 5 are all shown as you can see these are all sinusoidal

functions.

The first wave function is just a half sine wave; the second one is a full sine wave and

then 3 halves 2 and 2 and half and so on. So, all of these are sinusoidal functions, these

are the wave functions of the particle in an infinite box infinitely deep potential well. The

bottom part of the simulation shows the variation in the probability of finding the particle

at different part positions within the box remember that the probability is a square of the

wave function.

So, this is the probability amplitude the wave function is the probability amplitude and

this is the probability itself the modulus or the square of the wave function. So, what I



wanted to see here is that the probability for n equal to 1 varies considerably over this

spreads from x equal to 0 to x equal to L. As you increase as you increase the value of n

as you go to higher and higher values of n what I want to denote is that the variation in

the probability of finding the particle within the box from x equal to 0 to x equal to L,

that variation becomes smaller and smaller in amplitude.

So, this as I said is the case for n equal to 5, you can imagine that as you go to higher and

higher  values  of  n  much  larger  values  of  n  let  us  say  100  1000  or  something  this

variation is smeared out essentially to become effectively constant across the potential

barrier within the potential barrier. So, as the wave as the quantum number increases as

the energy level of the particle  increases, because the quantum number automatically

needs higher energy level, as the energy of the particle increases within the box then the

probability of finding the particle within the box is essentially constant throughout the

box that is what the simulation show now.
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Let us go to the case of the potential well of the same width, but different depths. So,

what I have shown here or 4 cases of a potential well each one deeper than the next one.

So, here you have a very shallow potential well deeper, deeper and deeper, but all of

them has a same width L is the same. So, what this is showing is that if the potential well

is finite also very shallow then it can only accommodate one energy level as shown here

only one energy level is possible within this shallow potential well.



But what is really important note here is that this wave function psi x over here the wave

function over here, because the potential barrier is very short pseudo peak means that the

particle  is  not  really  very much confined the wave function  spreads outside the box

considerably has a significant amplitude outside the box and also a significant extent

outside the box. When n equal to 2, you can see that 3 levels or rather when the potential

well  is  less  shallow  when  it  is  deeper  than  the  first  case  then  2  levels  can  be

accommodated and the wave functions still spread outside.

But  that  spread is  now that  amplitude  of  the waves outside the box is  now reduced

compare to the previous case and so on. If you come to a case where the depth is greater,

now 4 levels are accommodated in this one and you can see that the spelling over of the

wave functions outside the potential boxes potential well is now reduced, but I want to

also point out is that for the ground for example, the wave function is confirmed to the

potential well than the wave function of the higher energy levels that is they tunnel out

more outside the box.

Then the ones that corresponds to the ground state of a low quantum number what I want

to point out is that, such wells are finite depth are really practically very important let us

consider  a  well  where are  2 energy levels  that  are  given over  here just  to.  One can

imagine a transition from a particle or an electronic particular at the upper level to the

lower level to the ground state. If the value of the L that is the extent of the potential well

and the depth of the well if they are all appropriate, then this transition between the upper

level  and lower level  in this  2 level  box could then become the basis  of a laser for

example.

So, light emitting devices can be therefore, fashioned out of potential wells of the sort

which can actually they realized in material structures of a special kind and if pump pan

permits we will illustrate some examples of such potential wells and their applications.
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Now, let us consider a different case where you have potential wells and the same depth,

but different widths. In previous case they all had the same width, but different depths.

So, this alternative case is where they have different widths, but the same height or the

same depths you can see that when the well is narrow when is the well is narrow then

there are only this particular case there are only two possible energy levels in this narrow

well has the width of the well is increased what I want to note is that the ground state

energy is steadily reduced.

The ground state energy is high over here compare to the bottom of the well it is now

lower over here even lower even lower and so on that is the minimum energy of the

particle is greater when the confinement is greater confinement greater meaning the well

is narrower. This is a direct result of the uncertainty principle when the confinement of

the that even delta x is small delta p is large as we show yesterday and therefore, delta p

corresponds to  the  momentum of  the  particle  and delta  p  large  means the energy is

greater, that is these are direct illustration of the Heisenberg’s uncertainty principle where

when you squeeze the box. So, to speak when you confine the particle to a greater degree

than you rise the energy levels of the particle.

One can also deal with Rhomber these are simple functions where v equal to 0 within the

box and v is f constant value outside the box. 
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But it is possible to simulate cases where you have a linear variation of the potential

across a length x. So, you can see that you know this is a short of a saw tooth potential

where the potential is increasing along x within the box. So, it is not constant within the

box. So, in such cases one can obtain simulated solutions and you know this have a

functional form that is difference slightly different from the simple case of a where the

potential  is  constant  within  the  box,  but  all  these  are  possible  through  numerical

solutions of the Schrodinger equation applying the right boundary conditions in any case

like this.
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We have here an asymmetric linear potentials this case and a symmetric linear potentials

in this case over here. So, here it is you can see that there is a difference in the nature of

the solutions functional forms are slightly different, but they are largely sinusoidal. 

So, and then once again there are energy levels that are different and what I want to note

is  in  this  case  the  separation  between  the  energy  levels,  successive  energy  levels

decreases with the quantum number. Remember in the case of the infinite potential well

the energy difference increases as n square here it is diminishing with n. So, the case

physical case is quite different.
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This is a linear harmonic oscillator the V equal to k x squared function and the solutions

are as you probably know or e n equal to n plus half n plus half H nu where n is a an

integer positive integer and therefore, the energy levels are equidistant over one another

that is E n plus 1 minus E n is equal to H mu.

So, if you compare this case what you can see is that this is coming close to the case of

the  linear  harmonic  oscillator  where  this  is  actually  constant  in  this  case  it  is  not

constant, but it is becoming so. So, what you can imagine is that one can think of this

linear harmonic potential k x square potential has a kind of a sum.
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As a kind of a sum of this rectangular potentials and then you would have actually see

that the harmonic potential can be approximated through linear piecewise potentials.

So, what we have illustrated is that one can simulate different potentials and learn about

differences between how the particle in a box in different shaped boxes that is you can

have a simple box of the infinite height you can have a finite height potential, where you

have really squared wells vertical wells. So, to speak on the other hand you can have a v

shaped saw tooth shaped to potential and such potentials can be use to stimulate an actual

quadratic potential of the simple harmonic oscillator, where the solutions are well known

the energy levels are quantized and equally spaced with respect to one another.

So, what you have shown today is that the Schrodinger equation can be solved for simple

cases exactly analytically, but in the case more complicated case cases such as this saw

tooth potential and piecewise linear potential and so on the solutions sometimes have to

be approximate and they can be stimulated,  but the solutions for the linear harmonic

oscillator I must point out is actually exact. So, these are exact solutions involving so

called Hermite polynomials as the wave functions for the simple harmonic oscillator. So,

what we have done today is recapitulate the work that was discussed in the previous

section.

Then we have gone on to  discuss  the Pauli  exclusion  principle  and how that  as the

bearing on the statistics that are applicable to fermions and bosons different  kinds  of



statistics of this ensembles of bosons and fermions then we have return to the case of the

potential barrier and illustrated the case of tunneling across a barrier and how tunneling

across a barrier becomes practical and practically important when you have a particle in

a finite potential well as suppose to in a infinite potential well.

So, what you will come back to next time is how such simulations can be used to build

periodic potentials, that is a particle moving in periodic potential  how does it behave

when it is subjected to periodic potential. We will come to that in a next section.

Thank you.


