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Hello. This is the next session of this third segment of the course on Nanoelectronics

Device Fabrication and Characterization.  And as  I  outlined last  time,  this  segment  is

concerned about nano material systems and making an attempt on to  understand what

concepts are necessary to deal with nano systems. Now, what I will do this time is to

recap what we did in the previous session.

(Refer Slide Time: 00:47)

And then go on to the basic concepts of quantum mechanics because it is necessary; as I

mentioned last  time to  use quantum mechanics to  deal with small scale systems. And

within the quantum mechanical aspects of this segment, we will deal with the Schrodinger

equation, the potential barrier and tunneling concepts and also deal with what happens

when a particle is in potential well and quantization of energy that takes place under these

circumstances.

Now, what we get in the last class is really to try to first define nano systems and then we

went on to point out that quantum mechanics is necessary to deal with such systems. And

actually also statistical mechanics because while quantum mechanics is necessary to deal



with a nano particle or  let  us say a quantum particle like an electron,  a nano system

typically consists  of  thousands,  hundreds  and  thousands  of  these  nano  particles.  So,

therefore, it is necessary to deal with statistical mechanics aspects of such systems.

(Refer Slide Time: 02:05)

Therefore what we did last time was to point out that quantum mechanics must be used to

describe systems when they are sufficiently small and how small these should be depends

on the strength of  the  interactions involved among these particles.  So,  you can have

clusters of atoms, quantum dots, electronic properties of nano wires and thin films and so

on; all dealt with as quantum systems.

There is a concept that I mentioned last time; I will repeat it although we will deal with

that in the next class namely the density of states; that is the number of energy states per

unit energy interval typically in electron volts, that determines how many processes in the

world of this small are determined or how these process are determined.

So, the density of states is an important aspect of dealing with nano systems. So, the very

functional form of the dependence of the density of states on energy changes with the

dimensionality. As I  have mentioned last  time, you can have nano systems with the 0

dimensions, 1 dimensions, 2 dimensions and 3 dimensions therefore, the density of the

state depends on the dimensionality of these systems.



(Refer Slide Time: 03:24)

Now, as I said one has to deal with also this part systems where you might have hundreds

or  thousands of  these  quantum particles  together  in an nano system.  While quantum

mechanics dominates the behavior  of atoms,  statistical mechanics is necessary and its

pertinent  to  understanding  the  behavior  of  ensembles  of  these  atoms and  molecules.

Therefore, the science and technology have nano systems is where there is an intersection

of the behavior or complex systems with that of quantum behavior.

Therefore quantum mechanics and statistical mechanics have to be used together to deal

with these systems. As I said a nano systems they consist of tens of, thousands of atoms

and each of them is a quantum mechanical system and how quantum mechanical a system,

how microscopic a system depends on the strength of interactions as I already mentioned.
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So,  what  you should do  this  time is to  understand some basic concepts  of  quantum

mechanics. All of you would be familiar right from much earlier classes that you have

taken; that energy is absorbed and emitted in packets called quanta or a quantum.

Now, this was the basic discovery of Planck’s more than 100 years ago and what he said

was energy is packed in a quantum and the energy in such a quantum is given by E is

equal to h nu, where h is the Planck’s constant whose value is 6.63 into 10 to the power

minus 34 joule second and nu is the frequency of the radiation involved. Now again early

in your learning you have found or you learned about the Bohr's theory of atom and you

have learned how by confining a particle; in this case an electron into a region of space in

this case around the nucleus of the hydrogen atom; such confinement leads to  energy

quantization that is the electron in such a system, such a an environment can only take

discrete values.

Unlike what would happen in Newtonian mechanics, where there is no such restriction

and energy supposed to be continuously variable for a particle; moving in under any force

field. So, that is the distinction between the quantum concept and the classical concept

which is dealt with in the Newtonian mechanics.
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Now, a primary aspect of the development of quantum theory was the postulate of de

Broglie; who said that if you consider a freely propagating particle then its position can be

predicted by associating with it a wave of wavelength lambda given by h over mv, where v

is the speed of the particle, m is its mass and h of course, is the Planck’s constant. So,

what you have here is a relationship between a particle in the Newtonian sense with the

mass m and wave motion because lambda the wavelength is associated with a wave. 

So, these two are earlier considered to be incompatible that is particle motion and a wave

motion and de Broglies concept brings them together. So, lambda the value of lambda is

related to the question when this system to be considered quantum mechanical? And when

is it classical?
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So, this can be illustrated actually by considering an electron as an example of a quantum

particle or by applying the de Broglie rule to the electron whose mass is 9.1 into 10 to the

minus 31 kg and a charge of 1.6 into 10 to the minus 19 coulombs.

And if you subject it to a potential of 50 kilo volts as typically happens in an electron

microscope example, then it gains energy and that energy is given by E is equal to half mv

square and that is equal to q into v, where q is the charge of the electron and v is the

potential across which it has been taken; namely 50 kilo volts. So, if you do the arithmetic

you find that the velocity of the electron under these conditions would be about 1.3 into

10 to the power 8 meters per second. 

And therefore, the momentum which is m into v turns out to be 1.2 into 10 to the power

minus 22 meter kg per second. Since lambda the de Broglie wavelength of the electron is

the ratio of the Planck’s constant of the momentum then, arithmetic tells us that lambda is

of the order of 5 into 10 to the power of 12 meters or about 5 pico meters. Now, it is

important to keep in mind; when we look at these numbers, it is a very small distance very

small length; 5 into 10 to the power minus 12 meters is a very small length and therefore,

a very small sizes for a particle.

But the size of the electron, there are different ways to estimate it; the size of the electron

is of the order  10 to  the minus 16 meters.  Therefore,  what  you have see is that  the

wavelength of the wave associated with the electron that has just gone through a potential



difference of 50 kilo volts is much larger than the size of the electron itself; the physical

size of the electron itself.

In other words the de Broglie wavelength associated with an electron of this energy is

significantly greater than the size of the electron itself. Therefore, you can see that the

application of quantum mechanics in this case; probably should be significant or it must be

necessary because the de Broglie wavelength associated with the electron is; so, much

larger than the size of the electron itself. Again by extending the argument, suppose you

think of a nano particle and think of its size or rather the mass of that to be of the order of

let us say a pico gram; 10 to the power of minus 12 gram.

Now, if you try to calculate the wavelength of the de Broglie wave that is associated with

that, you will see that it is a much smaller number than the de broglie wavelength of the

electron because the mass is in the denominator. Therefore,  when the mass is greater

lambda becomes much smaller therefore, if you have a pico gram of material with about

the same energy, then you will find that the wavelength of that is orders of magnitude

smaller than the size of the particle itself.

Therefore, what it illustrates is that when the wavelength associated with a particle or a

physical object  is much smaller than its dimension,  then quantum mechanics does not

apply and in such a case; it is valid to treat the particle using Newton’s laws of motion.

So, that is a kind of an order of magnitude argument for where one has to  deal with

quantum mechanics.
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Now, what are the key concepts? Some of the key concepts I should say because I will

deal with some of them today and some of them tomorrow. What are the key concepts of

quantum mechanics? One is that the particle behavior or motion can only be predicted in

terms of a probability; that is quantum mechanics shows how to make such probability

predictions of the motion of a particle; that is subject to quantum mechanical laws.

This is the contrast with Newton’s laws where, it is not a question of probability it is a

question of certainty, you can predict where for example, the moon will be in the orbit

around the earth on a given day that is how you are able to predict the precised time and

date  of  an  eclipse  for  example.  Therefore,  that  kind  of  certainty is  possible  because

quantum mechanical considerations do not apply to large objects, where the de Broglie

wavelength is very much smaller than the size of the object.

Now, further  the distribution of the particles predicted  through the tools of quantum

mechanics; as I said you know we really talk about probabilities and therefore, we have to

talk about distribution of these probabilities. So, therefore the distribution of this particles

is wave like, so there is a concept which we will have no time to go through in this short

segment of the course. The concept is a particle is to be associated or described as a wave

packet. So, it is a wave like distribution that represents a particle in quantum mechanics.

Now  as  I  already  said  the  de  Broglie  wavelength  associated  with  the  probability

distribution  of  macroscopic  particles  large  objects  is  so,  small  that  the  quantum

mechanical effects are not a parent and certainly not observable with any tool that we



have today.
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Another important aspect of quantum mechanics is the Heisenberg uncertainty principle;

again  something  that  you  would  have  come  across  earlier  in  your  schooling.  One

statement of the Heisenberg uncertainty principle; which is actually in inequality is delta x

into delta p is greater than or equal to h bar by 2.

Now, h bar which is really the Planck’s constant divided by 2 pi has a special significance

in quantum mechanics therefore, we shall generally use h bar instead of h. So, what this

equation  is  saying  is  that;  there  is  a  limit  to  the  precision  with  which  one  can

simultaneously determine delta x and delta p; that is the uncertainties in momentum and

the position of a particle. That is you cannot have 0 for both, you cannot have 0 for delta

x and 0 for delta p at the same time, there is a minimum uncertainty associated with both.

And if you increase the uncertainty in; rather if you try to make the measurement of the

position precise then the uncertainty in the momentum goes up correspondingly in such a

way as to keep the inequality intact. So, this is a direct result of what you said earlier

namely that in quantum mechanics, one describes particle motions through probabilities

and not certainties. Therefore, the Heisenberg uncertainty principle is an integral part of

the foundation of quantum mechanics.

Now, again to illustrate this consider an electron in hydrogen atom which is confined to a

region let  us  first  consider  the  first  Bohr  orbit,  the  size  of  that  orbit  is  1  angstrom



approximately that is a bohr radius multiplied by 2. Therefore, there is an uncertainty in

the position of the electron around the nucleus of the order of 1 angstrom; therefore, delta

x is of the order of 1 angstrom. 

Using the uncertainty principle then we see that the minimum delta p is h divided by 4 pi

delta x; using the above inequality and that transferred to be 5.3 into 10 to the minus 25

kilogram meter per second. And therefore, the uncertainty in the velocity which is delta p

divided by m is of the order of 5.8 into 10 to the 5 meter per second; that actually gives us

an order of magnitude of the velocity of the electron as it moves around the nucleus under

its electrostatic force. So, what is actually says is that a particle that is confined to a small

volume has a  large momentum.  Now what  we have shown here is delta  p,  we have

calculated delta p here as about 10 to the minus 25 kilogram meter per second.

If we use that momentum to calculate the energy of the electron through the formula e is

equal to p square by 2 m; to get an order of magnitude what you will find is that the only

the  arithmetic  view what  you  will  find is  that,  the  energy of  the  electron  in such a

circumstance where it is confined is easily find to be of the order of several electron volts

which we know to be true from our Bohr theory. Therefore, what this shows is that using

the uncertainty principle, it is possible to calculate the order of magnitude of energies that

quantum mechanical particles would have under certain known circumstances.

(Refer Slide Time: 18:07)

Now, recall that the uncertainty principle is really the product of delta x and delta p and



the product is greater than or equal to the Planck’s constant. Recall that the units of the

Planck’s constant is energy multiplied by time; joule second; therefore,  this suggests I

have used the wrong word here, I said this reveals; I should say this suggests. Another

form of the uncertainty relationship which we could write as delta e into delta t greater

than or equal to the Planck’s constant, delta e representing joules and delta t representing

second together farming the units for the Planck’s constant.

Now, consider an electron that undergoes a transition across a band gap of 4 electron

volts in some semiconductor. You know semiconductors have band gaps, we will written

though that later. Consider an electron that undergoes an electronic transition across the

band gap of a semiconductor whose band gap is 4 electron volts. Therefore, delta e in this

case can be taken to be 4 electron volts. So, if you do not know for example, whether the

electron is in the upper band or the lower band; therefore, data e is equal to 4 electron

volts. 

Using the uncertainty relationship we can see that therefore, delta t which is h divided by

delta e according to the uncertainty relationship; turns out to be of the order of 10 to the

power minus 15 seconds or  one fempto second. Therefore,  what  this says is that  the

lifetime of an electronic transition across a band gap of 4 electron volts is of the order of 1

femtosecond. That is the uncertainty in the energy of a particle observed for a very short

time; 1 femtosecond is very great. 

Therefore, what another formula the uncertainty relationship is that if you try to measure

the energy of a quantum particle within a very short period of time. If you try to make an

observation if its energy make a measurement of its energy over a very short period of

time then the result that you get of the energy is uncertained by a large proportion. Again;

that means, that you cannot determine the energy of a quantum particle precisely; unless

you make the measurement over very long periods of time; that is what it means.
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Now,  coming  back  to  the  probabilistic  behaviour  of  quantum  particles  that  is  the

probabilistic  behaviour  that  quantum  mechanics  asserts  for  particles  in  the  quantum

mechanical regime. The values of the probability amplitude are now postulated to  be

given by a wave function; represented typically by the Greek letter psi which is a function

of the position r and time t. So, this is analogous to the Newtonian concept of how you

can define a particle by its position as a function of time. So, you follow the motion of a

particle by saying where it is going to be as a function of time.

So, this is an analogous concept where we have a probability amplitude; we will come

back to why it is called the amplitude momentarily; that is given by psi of r and t. And r

and t define where the quantum mechanical particle is in time and space. An important

aspect of quantum mechanics; again as a departure from classical mechanics is that psi can

be a complex function. Because what you have said earlier is that psi is the probability

amplitude, again by a certain interpretation of quantum mechanics due to max born. the

meaning of the meaning of psi lies in the probabilistic interpretation of quantum mechanics

which means that the modulus of psi squared, the wave function squared is the quantity

that represents a probability of finding the particle at a position r; at a time t.

Now as I said, the wave function is a complex quantity; it can be complex therefore, psi

square modulus of psi square is really the product of the complex conjugate of psi and the

real psi.  Therefore,  what  you have here is the real quantity; so,  the even though the

probability amplitude can be complex psi square, the probability of finding the particle at a



given position, at a given time is a real quantity.

Now, it is possible that this psi r and t is actually just psi r; where it is independent of t

that is the probability of finding the particle is independent of the time for a given position

r. In that case what you have is a stationary system. In that case what you get is psi is

equal to psi r. That is the probability of finding the particle at a position r is independent of

time; such a system is a stationary system.

(Refer Slide Time: 24:54)

Now, continuing the concept of the wave function what I wrote in the previous slide is the

wave function where it is a function of r which is a three dimensional position vector with

you know Cartesian coordinates x, y and z, but to simplify things we can consider the

wave function as a function of x only; in one dimension.

And if you write psi is equal to psi x without the t there; then you have a stationary wave

function. It is a simple fact that such a particle has to be found somewhere; that is you

would have the particle somewhere in the universe. Therefore, if x for example, or varies

all over the place that is you go from minus infinity to plus plus infinity for example, and

you integrate  this probability function psi star  into psi r  if we integrate  this, then the

integral should be equal to unity because that says the probability of finding the particle

somewhere is exactly equal to 1.

In one dimensions, this becomes minus infinity to plus infinity integral of psi star x is equal

to 1. So, this is how one defines the certainty of finding the particle somewhere within the



domain of interest.
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Another basic aspect of quantum mechanics is the Schrodinger equation. The Schrodinger

equation is the equivalent of the Newton’s law of quantum mechanics and it applies to

wave  functions  or  the  probability  amplitude  of  a  quantum  particle.  Now  just  like

Newton’s laws,  the  Schrodinger  equation  is  a  postulate.  So,  you  one  cannot  derive

Schrodinger equation. Although, how it takes on the forum it does has its roots in the

development of classical mechanics in the later stages.

Now in one dimension this Schrodinger equation has this form, where the first term is a

second derivative in space. So, minus h bar square by 2 m; delta square psi delta x square

and at the second function or the second term has the potential function V x t is the time

dependent potential to which this particle is subject. So, it is moving under this potential

and the right hand side has the time derivative of the wave function multiplied by i and h

bar. So, this itself the presence of i the square root of minus 1, once again asserts that this

is a quantum mechanical system where you can have complex functions.

Now this is so called time dependent Schrodinger equation because on the left hand side

you have a derivative with respect to space and the right hand side you have a derivative

with respect to time therefore, it is the time dependent Schrodinger equation.
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However, it is possible to  deal with and actually more common to  deal with the time

independent Schrodinger equation. If the potential V x t does not dependent on time, then

as I said you would have a particle in a stationary state. If the potential is independent of

time then the solution to Schrodinger equation which describes the motion of the particle,

they are time independent therefore, you have a stationary state. In such a case one can

write psi as the product of a time independent part and a time dependent part. So, we

write psi x t as psi of x into phi of t because now the potential function V x t is just V x

independent of a time; then the Schrodinger equation becomes.

If we go back to how the Schrodinger equation was in the previous side and we substitute

psi x t as psi x into phi t, then it is the Schrodinger equation then becomes; as shown here

you get a separation of the spatial part on the left hand side and the time dependent part

on the right hand side. So, the left hand side is independent of time and the right hand side

is independent of x. Now they are equal, if they are to be equal then they both must be a

constant.

So, on the left hand side you have a time independent part; on the right hand side you

have a time dependent part both of them are being equal, then they are equal to a constant

with respect to time and space. So, this is the energy of the system; why it is called the

energy and so, on? Is a part as I said of Hamiltonian mechanics and so on; we have no

time to go into that, but this turns out to be the energy of the system.
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So, we take the right hand side and therefore, we write we can write the time dependent

part equal to e; the constant that is the energy of the system. So, this is a simple first order

time dependent differential equation and the solution is such that  therefore,  psi if you

solve this is simple equation; psi then becomes psi of x into e to the minus i into e by h bar

into t, where e because we have a quantum system e is equal to h bar omega.

Because this is what Planck postulated earlier, so e is equal to h bar omega. Therefore,

one  has  a  simple sinusoidal function  for  the  wave function  more  here.  Now psi x t

therefore, is the product of psi x; the space dependent part multiplied by exponential that

is the time dependent part; notice that this is a complex function.

Therefore the complex conjugate gives us a change of sign in the exponent therefore, the

product of psi and pi star, the complex conjugate becomes a real function psi xt squared

actually  psi  x  squared.  So,  what  you  see  here  is  that  this  probability  is  there  for

independent of time; that is what we have now is the stationary state, the probability of

finding a particle in a given position is independent of time, we have a stationary state. So,

this is the simple consequence of being able to separate the variables because the potential

is independent of time.
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Now, again we equate the left hand side in the Schrodinger equation which was the space

dependent part to e and when you do that what you get this equation; is the equation at

on this line the time independent Schrodinger equation minus h bar square divided by 2 m

second derivative of psi plus v into psi is equal to e into psi. So, this is the famous time

independent Schrodinger equation.

This can be written for shorthand as h of psi x equal to e into psi x, where h which is the.

So, called Hamiltonian operator is the second derivative differential operator represented

by minus h bar square over 2 m, second derivative of with respect to space plus V x. So,

this Hamiltonian is therefore, set to operate on the wave function and the result of that

operation of this second derivative operator on the wave function is for us to get the wave

function back with the energy as its factor.

So, the solution to the Schrodinger equation therefore, yields what are known as Eigen

functions that is; functions that give us exact solutions to the Hamiltonian operator and

Eigen energies that is the exact energies that such a quantum mechanical system would

have. So, what one typically does in quantum mechanics is to solve the time independent

Schrodinger  equation  for  a  known potential.  For  example,  you may have a  constant

potential, you may have a potential such as; the hydrogen atom where it is the central

potential, you could have a simple harmonic oscillator where you have a corresponding

potential for V and so, on.



Therefore the primary object of quantum mechanics is to solve the Schrodinger equation

for a given potential. And sometimes of course, you actually approximate a potential in

order to be able to solve a physical problem as often happens.
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Now, let us consider a particle in a constant potential that is V x is equal to V, it is not

space dependent, then the Schrodinger equation is simplified you have minus h bar square

about 2 m, delta square; delta x square phi x plus V  into psi x is equal to e into psi x. It is

rearranged this way, where you have the second derivative that  is equal to  the wave

function multiplied by a constant; e is a constant to be found, V is the potential and these

are m and h are constants for a given particle. 

The solution for this is straight forward as long as for example, in this case the solution is

A into e to the i k x; where k is given by k square is equal to 2 m into e minus V' divided

by h power square; so this is a simple sinusoidal function. So, what we have a solution for

the motion of the particle is through the wave function psi x, which is the sinusoidal

function. That is the motion of a quantum mechanical particle in a constant potential that

is time independent, position independent is just a sinusoidal wave.

Now k as you see here is related to the potential and the mass of the particle. Now k into

x because it is in the exponent k x is dimensionless; therefore, k must have a dimension

that is the inverse of the dimension of x and its position. Therefore, this is the; so called

reciprocal vector; x is the real vector real space. So, this k belongs to the reciprocal space



which you would have come across for example, in x ray diffraction.

Now, looking at the form of the equation for k square; k is real or imaginary, depending

on whether E is greater than equal to V or is greater than V or E is less than V. So, the

motion of the particle therefore,  depends on the relative value of the energy that  the

particle may have with respect to the constant potential in which it is moving. A simple

case of the constant potential is where V is equal to 0; in that case E is you can see here

from this equation; if v is equal to 0, then e is equal to h bar square k square over 2 m.

(Refer Slide Time: 39:11)

So, in such a case you have a simple expression for energy and if energy is also written as

p square over 2 m, where p is the momentum; we can then see that p the momentum can

be written as h bar k. So, there is a direct relationship between the momentum of the

particle and the wave vector of the particle or the reciprocal vector of the particle.

Now  recall  that  in  the  earlier  case,  where  we  have  a  time independent  Schrodinger

equation psi x t is psi into exponential E to the power of minus i into E by h bar t; e by h

bar is just omega. So, what we have is psi x into t x t is equal to psi x into E to the power

of minus i omega t.  So,  we bring that  over here to  write the general solution for the

Schrodinger  equation for  a particle with moving under  zero  potentials; so called free

particle.

So, you have the space dependent part which is A e to the i k x; a sinusoidal function with

respect  to  space and the  time dependent  part  is also  sinusoidal.  Therefore,  the  wave



function of a free particle has the form of a wave both in time and space. Now note that p

is equal to h bar k and k is equal to actually 2 pi a by lambda and therefore, what you get

is  p  is  equal  to  h bar  h divided by lambda which is  the  de  broglie  relationship;  so,

everything is consistent.
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We can proceed next to dealing with the very important concept of quantum mechanical

tunneling, which is an illustration of the solution of the problem of a particle with energy

E; that is trying to surmount a barrier of potential V; V being greater than E. So, that is

represented in this diagram; so, a particle is moving towards a potential barrier whose

height. So, to speak is greater than the energy that the particle processes.

The barrier is erected at x equal to 0; now in classical mechanics this particle let us say an

electron with energy E that faces a potential barrier of V greater than E; would simply

bounce of the barrier that is think of this is a projectile, it comes here finds the barrier

cannot surmount the barrier. So, it just gets back; goes back considering that you have an

elastic collision. Now what this quantum mechanics tell us about what happens in such a

case.
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Now, quantum mechanics imposes boundary conditions that  lead to  solutions different

from the classical one. Now, what are the boundary conditions? That is remember what

you are dealing with in quantum mechanics are solutions in the form of the probability

amplitude namely the wave function.  In such a case,  what  should really happen with

respect to the solution? What are the conditions that the solutions should satisfy? 

The boundary conditions are psi is continuous across the barrier; that is if you take the

barrier, if you take the wave function just to the left of the barrier and a wave function just

to  the right of the barrier, they should be continuity. In other words you are thinking

about continuous function as in the case of mathematical analysis. So, I want analytical

continuity for the wave function for values of x just less than 0 and just greater than 0.

And also the derivative of the wave function should also be continuous across the barrier;

that is once again the derivative of psi with respect to x to the left of the barrier should be

the  same as  a  derivative just  to  the  right  of  the  barrier. So,  we  are  talking amount

continuous  psi  as  well  as  continuity in this  first  derivative  of  psi.  So,  these  are  the

conditions that a quantum mechanical solution should satisfy.

Now, why these conditions? Why these conditions is that; suppose the wave function was

discontinuous at  the barrier at  x equal to  0.  Suppose the first  derivative of the wave

function was discontinuous at x equal to 0; that is there is sudden jump in psi across this

barrier and there is a sudden jump in the derivative of psi across this barrier. What that

implies is that, you would have to provide; since the derivative for example, can be infinite



across  the  barrier  because  that  is  the  second  derivative  becomes  infinite  if  the  first

derivative discontinuous and the first derivative becomes infinite if the wave function is

discontinuous at this boundary.

Now such discontinuities  are  singularities  really mean that  there  must  be some large

amount  of  energy  infinite  amount  of  energy  that  would  be  responsible  for  such

discontinuities. In real physical situations, that are not the case therefore, the boundary

conditions for the solution of the problem would be typically that psi is continuous across

the barrier and the first derivative of psi is continuous across the barrier.

Now, one thing I forgot to say along the way is that the Schrodinger equation as we have

written here is a second order differential equation. Now because it is a second order

differential equation, the solution to that or the integration of the equation to get solutions

would involve two constants. So, you have to determine two constants to have complete

solution for the second order differential equation. And those two constants would then

be determined by these boundary conditions that we just defined.

That  is our  two boundary conditions that  the solution must  satisfy and there are two

constants  should  be  determined.  Therefore,  it  is  possible  using  these  conditions  to

determine the solutions to the Schrodinger equation uniquely. Now, let us look at the case

of the barrier height being greater than E; then k is equal to square root of 2 m into E

minus V divided by h square. Now E is less than V therefore, what we now have is an

imaginary quantity. So, k is now an imaginary quantity; i into square root of all this.

Therefore, the solution to the Schrodinger equation which if you remember this spatial

part of it is just E to the i k x that solution now has A into psi e to the i k x; now you have

a an imaginary quantity multiplied by i, so that becomes a real quantity. Therefore, what

you have is the solution for x as A into psi E to the minus; kappa x where kappa is the

quantity in the square root; it is a real quantity.

So, what you have is not a sinusoidal wave function for the solution, but you have an

exponentially declining because k is positive, what you have is an exponentially decaying

function. So, when you have a particle going across a barrier of this art then what you

have is a case where; over here where E is less than V, you have sinusoidal variation for

the solution.

But across the barrier because of continuity conditions, it falls exponentially down on the



other side. So, you have a an exponential decay of the wave function on the other side of

the barrier that is; x greater than 0. Now remember that in classical mechanics, the chance

of this particle being on the side of the barrier is 0. The fact that the wave function is non

zero  on  this  side,  even  if  it  is  exponential  declining;  it  means  that  there  is  a  finite

probability, the wave function is essentially square root of probability as we said because

probability is given by psi squared.

Therefore, a non zero value of the wave function on this side of the barrier means that

there is a non zero probability of the particle being here. So, this phenomenon where in

quantum mechanics  a  particle  with  what  would  be  an  insufficient  energy in classical

mechanics  is  able  to  surmount  a  barrier  that  is  larger  than  its  energy;  this  is  called

tunneling, which is a very very important part of quantum mechanics. 

There are actually devices that operate on the concept of tunneling and there are very

important measurement instruments, you would have heard about the scanning tunneling

microscope the STN, which actually opened the era of nano sciences, nano technology, so

that depends on the concept of tunneling.

So,  this  arises  from the  Schrodinger  equation  and  the  boundary  conditions  that  are

necessary to be imposed on realistic physical systems that obey quantum mechanics. So,

we will stop here and we will continue next  time after reviewing these concepts,  but

before we leave for the day; what I would like to say is that we have tried to over here

introduce the basic concepts of quantum mechanics. Some of the basic concepts I should

say because we are not come to a couple of others. And use that to tell us how the motion

of  a  particle  in  a  quantum  mechanical  system  is  to  be  calculated;  the  Schrodinger

equation. And a simple example of the Schrodinger equation almost to the first example

that  gives us a; an unusual result,  a characteristic result  of tunneling which is a very

important part of quantum mechanics.

Thank you.


