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Lecture No. # 41 

Estimating the Parameters of a Cyclic Code 

Now, I think that we will just be able to conclude the course in the next lecture. So, this is 

our penultimate lecture. So, let us just go over what we covered in the last class.  
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Now, what I have done is, I have taken the last lecture; and so this is an internal thing, I 

would like to make these notes for 40 and 41 blend into a single file. So, does not really 

matter, if you have access to the file; in either case, but now I rather than separate the 

lectures, I have combined them. And I have actually given it a slightly different title from 

what I had given it before. So, the title is a transform approach to cyclic codes. And so what 

we did last time, just to hit the highlights of our last lecture was basically we said, look we 

are going to discuss cyclic codes, and our view point of the cyclic codes is going to be from 

a, from the point of view of transforms. The particular type of transform is called the finite 

field transform.  



So, first we said, well we need a little bit of machinery, in order to start talking about the 

transforms; and we needed that in particular that element alpha; so if you have a code over 

an alphabet of size q, and the block length is N, then you need to find a finite field that 

contains your original field, that contains an element of order N; because your original field 

may not contain such an element. So, you have to expand the size of your field. Once you 

did that, you have the element alpha, then we went ahead and defined the finite field 

transform. 

And then we went about examining its properties, such as linearity, cyclic shifts, inversion, 

convolution, conjugacy. Once we had understood or reasonably, had a reasonable 

understanding of, excuse me of the transform, then we went went back, and said our 

interests is in cyclic codes; by which we meant we are interested in block codes, having the 

property that they are linear, and they are cyclic; they are closed in their cyclic shifts. And 

we were adapting a transformed view point of these codes. So, towards that and I think we 

just about got started over there. So, I think... So, let me take up the discussion on cyclic 

codes and lead you a little bit slower through that since will be continuing the discussion, 

discussion in the present lectures. So, here is our, here are some of our slides on cyclic 

codes. So, we defined what it means to be a cyclic code.  
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And then we put an equivalence relationship, so we said that when we take a codeword and 

we look at its transform. Then the subscripts lambda, which appear in the transform we will 

regard as frequencies.  
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So, then we define an equivalence relationship on the frequencies, which led to organising 

them according to cyclotomic cosets. So, here is an example. Then the smallest element in 

each coset is called its coset leader. Then we defined the notion of a closed set of 

frequencies; that is the set of frequencies is a closed set, if it is closed on the multiplication 

by q modulo N. And an easier way to actually picture this is that, the closed set is precisely 

the union of cyclotomic cosets, a set of q cyclotomic cosets mod N. So, then I... So then so 

that for example here, if we go back here, then any closed set is just the union of these 

cyclotomic cosets.  



(Refer Slide Time: 04:24) 

 

 (Refer Slide Time: 04:34) 

 

Then, we introduced the notion of the null spectrum of a code. The null spectrum of a code 

is those collection of frequencies, at which every code has transform value equal to 0.  
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And, I gave you an example here, and said that actually, this is the general picture of cyclic 

codes; that is, that you organise a given a cyclic codes, given an alphabet size q, given an 

element N, you find a field that contains the primitive element alpha; then you organise the 

frequencies according to these cyclotomic cosets, the q cyclotomic cosets mod N. And then, 

you pick the closed set as the union of certain of the cyclotomic cosets, for example, you 

might pick the union of these two, and then you say I am going to insist that my code words 

have transform value equal to 0 on these elements; and outside these, I do not care, because 

of conjugacy, if you insist that the transform is 0 at frequency one, then it is automatically 

going to be 0, at all these other frequencies. 

And so the design of cyclic codes in some sense, it just a matter of, either including, or 

exclusive, excluding, cyclotomic cosets from inclusion in the null spectrum. So, that is why, 

there are only 32 codes for example, having block length 15, over the finite field of two 

elements. That is about where we had left off. So, I think, what I will do is, I will begin our 

lecture, let me just insert page and put in a quick summary.  
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So, this is rather quick; is a rather quick summary of what we did last time. We looked at 

finite field transforms. The first, first was the expansion of the finite field to find an element 

of order N. Then we gave the formal definition of the transform. We looked at its properties. 

We started discussing cyclic codes, we discussed cyclotomic cosets, closed sets. So, I think 

these two got interchanged in their order here. So, perhaps, let us make a note of that, in 

terms of the order in which we discuss them. And then, finally, we introduced the notion of 

a null spectrum.  
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Now, we want to proceed with the theory of the cyclic codes, and our goal, as the title says, 

is to actually estimate the parameters of a cyclic code. So, what do we mean by the 

parameters? Well, the block length is clear; the alphabet size and the block length are clear, 

clear. So, what is of interest, are the other parameters, namely the dimension of the cyclic 

code, and its minimum distance. So, those are the two things that we are going to target in 

this lecture.  
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So, the first result, we will show today is that, the null spectrum of the cyclic code is a 

closed set. I remember, what we mean by the null spectrum of the cyclic code is that, it is 

those collection of frequencies, where every code word has transformed that evaluates to 0. 

So, we will, the proof actually starts from there. So, here, if lambda belongs to the null 

spectrum of the code, then that implies that, c hat of lambda is 0, for all code words. That is, 

if c hat of lambda is 0, then, c hat of lambda raised to the q th power is 0. Again, by the 

conjugacy relationship, c hat of lambda raised to the q th power is c hat of lambda q; the 

reason being that your code word belongs to the ground field. Whenever you have a code 

word that belongs to the ground field, its transform will satisfy the conjugacy relationship. 

So, that forces this equal to 0. But then, so this means that, if lambda belongs to the null 

spectrum, so does lambda q; and hence, this is a closed set. 
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So hence, the null spectrum of a code is a closed set. Second lemma, then... So, what we 

actually said is, given a code, we said, we are going to let this set of all frequencies, where 

the code word transforms evaluate to 0, then that is a closed set. There is a converse, sort of 

converse of this that says look, supposing on the other hand, if I started out with a set of 

frequencies, which was closed under the conjugation. So, this is the closed set of 

frequencies, and if I then define my code to be all n tuples n tuples, whose transform 

evaluates to 0, at all frequencies contained in S, then that in fact, is a linear cyclic code. So, 

it is, it is kind of a converse. So, it says that I can start from a code, and I can go to a closed 

set, or I can start from a closed set, and I am led to a linear cyclic code. 
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So, let a of t and b of t be code words; then so that means, that a hat of lambda, b hat of 

lambda are both 0s, for all lambda in the closed set. But then, that is also true, if I take a 

linear combination of them, where theta belongs to F q. And, so that means that, but then by 

the linearity property of the transform, this quantity here, is the transform of the a t plus 

theta b t. So, that means that, if a t and b t are code words, so is a t plus theta b t. So, that 

proves that your code is linear, which is not surprising. So basically, we have used the 

linearity of the transform, to prove that the code is linear.  
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Next, if the code, if c t is a code word, so, it only remains to actually prove that this code is 

not only linear, but it is also cyclic. So, we have to now worry about cyclic shifts. So here, 

supposing c t is a code word, and you define a t to be a cyclic shift of c t, and you take the 

transform of a t that is alpha to the lambda tau c hat of lambda. But then since c hat of 

lambda is 0 for all lambda in S, so is a hat of lambda. But then, you defined your code word 

as a set of all vectors, whose transform is 0 on S, right; and so that the automatically means 

that, a of t, that, it means that, a of t is also a code word and therefore, the code word, 

therefore the code is cyclic. 

So we basically, the way we have proved this, is just by using the property of the finite field 

transform and the cyclic shift; you just get a multiply it, the transform values are just 

multiplied by some constant. So, it does not change the fact that, the transform is 0 at a 

certain frequencies. For this reason, the code is closed under the cyclic shifts.  
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Now, just a reminder here, reminder slide here to say that in all the subsequent discussion, 

we will be working with the set of parameters, the standard parameters. So, this is the 

common setting; q will always denote a power of a prime; and then, N will be a reference to 

the block length, and we will always have that, q and N are relatively prime. m, the smaller 

m is going to be order of q modulo N, and c will be a cyclic code of block length N over F q. 
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So, in this setting, we are going to define something, that is called a basic sequence. A basic 

sequence of frequency lambda naught, where lambda naught lies between 0 and N minus 1, 

is a sequence satisfying that B hat of lambda is 1, whenever lambda is either lambda naught, 

or else a conjugate of lambda naught, meaning that, it is some part of q times lambda naught 

and it is 0 everywhere else.  
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For example, here is the case when... So, this is the case, when q is 2 and N is 15, and m is 

equal to 3, in this case; that should be, m is equal to 4, pardon me. So, supposing I pick 

lambda naught to be 3, then what I want to illustrate is, a basic sequence of frequency 

lambda naught; meaning its transform value is 0 everywhere, except at frequencies 

corresponding to lambda naught and its conjugates. 

So, that means that, this B of t is sequence has transform, which is 0 on all these cosets and 

it is 0, every, under all cosets, other than the cosets corresponding to 3. And here, it is 1; and 

the conjugacy also tells us that, its value at 6 is 1 to the q is, 1 times, 1 to the q, which is still 

1, and so on. So, it actually takes on the same value for every element within a coset. It takes 

on 1, the value 1, for all the elements in this particular coset, and it takes on the value for 

everywhere else. Once again, that is because if B hat of 3 is 1, then, B hat of 6 is B hat of 12 

equal to B hat of 9 is 1; because B hat of 6, recall I will put this on this side here, B hat of 6 



is, B hat of 3 square. So, for this reason, if B hat of 3 is 1, then B hat of 6, which is its 

square, is also 1. So, this is going to clutter this. So, let me raise this.  
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Now, the next lemma says that if c so it is now, now we are exploring the connection 

between closed sets and and cyclic codes, further. So, let C be a cyclic code, whose null 

spectrum is given by this. Then, it is telling you that really, there is only one code, that can 

have this null spectrum; namely, it is that code, which corresponds to all vectors, all n tuples 

over F q, whose transform values are 0 at every frequency in the null spectrum. So, we 

started out by saying, C is some subset of F q to the N, whose transform values are 0, at all 

frequencies in the null spectrum. But it turns out that, the linearity and cyclic properties that 

C possesses cause C to, in fact, be precisely, the largest possible collection of vectors that 

you could have, when you just impose the constraint on the transform values.  

So, in this sense, given a null spectrum, there is a unique code that is associated to it. And in 

particular, the basic sequence of frequency, every frequency lambda, that are not in the null 

spectrum, belongs to the code. So, that is, that is a side comment; I think I will ignore that 

for now. I do not believe the way I am presenting it, that we will call upon it. If I need to, I 

can always come back to this. The proof is in the appendix. So, I want actually go through 

that.  



So, once again, let us recap the 3 lemmas that we have. The first lemma, the first lemma 

says that, the null spectrum of a code is a closed set. The second lemma says that the set of 

all vectors, whose null set is a closed set, whose null spectrum is a closed set, is actually a 

linear cyclic code. The third one says, where I can actually say something stronger; in fact, I 

can actually say that if you tell me that a code has a certain null spectrum, I can actually tell 

you, which code it is because there is essentially, just a single code for a given null 

spectrum. And that is precisely, the set of all n tuples which possess the null spectrum; 

because, that forms the cyclic code. And, it turns out that, any cyclic code within this null 

spectrum is essentially, this one.  
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So, not surprisingly, when you put these together, you have this important null spectrum 

theorem, which says that there is a one-to-one correspondence between cyclic codes over F 

q of block length N and closed sets of frequencies.  
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So, what is the correspondence? The correspondence is just this, that on the left side, what 

you have is the collection of all cyclic codes of block length N over F q. So, let us note that; 

by the way, I just remind, whenever I say cyclic code, I do mean, linear and cyclic; that is 

the common usage. So, the linearity is sort of taken for granted. So, when you talk about a 

cyclic code, you really mean a linear cyclic code. And on the right side here, what I have is 

the collection of all closed sets. 

So, these are the two sets on both sides; and then to show the one-to-one correspondence, 

you just pass from a code to a closed set, by just looking at its null spectrum. Given a code, 

you identify the null spectrum; we know that from one of our earlier lemmas that it is a 

closed set. And, so that makes this mapping actually make sense, and it is one-to-one and 

onto, because of the properties that we have proved in lemmas 1 to 3, because I mean, how 

do you, what you have to show is that, it is onto and one-to-one. To show that it is onto, you 

have got to show that, a given closed set, that there is cyclic code associated to it. But that is 

clear, because you just look at the set of all vectors, whose, which, whose transform value is 

0 on that closed set and you will get a linear cyclic code. And furthermore, that cyclic code 

will have null spectrum, exactly the closed set that you started out with. So, it is onto, and it 

is one-to-one, because two different codes cannot have the same null spectrum; we have just 

seen that, the null spectrum, for a given null spectrum, this is essentially one code. So, it is 



really a consequence of lemmas 1 to 3, above. But the important thing is that, we are clear 

that, clear about what this one-to-one correspondence is. 
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Let me just, again go back to this earlier example we had. And so once again, now I think, 

you will perhaps have a slightly better understanding of what I was saying earlier; earlier, I 

was saying that, look picking a cyclic code is exactly the same, as picking a bunch of 

cyclotomic cosets and saying I am interested in all those vectors, whose transform values are 

0, for every frequency, which is in the union of those cyclotomic cosets, that we just picked. 

So, in terms of that particular, the selection of null spectrum here corresponds to a double 

error correcting BCH code, right. Good. Now, that we have this correspondence between 

cyclic codes and closed sets in the frequency domain.  
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We can now start talking about the parameters of these codes. So, the parameters that are of 

interest are two; one is the dimension, and the second is the, and the second property that is 

of interest is its minimum distance. And this theorem actually is telling us that that the 

dimension is precisely the set of frequencies outside the null spectrum. So, since the null 

spectrum is of size N S, the dimension is N minus the size of N S. So, I think, let me just 

make a correction here; that should read N S; N S C. The proof is in the appendix; perhaps 

what we will do is, we will just look at an example.  
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So, here is an example. This is our familiar example by now. q is 2; N is 15 and our null 

spectrum has been chosen to be the union of these two cyclotomic cosets. The null spectrum 

has to be a closed set. So, it has to be the union of cyclotomic cosets; we have chosen these 

two. So, that is indicated by the presence of these zeroes. This star means that, the transform 

value here can be either 0, or non-zero; and you give it full freedom. And the theorem that I 

had just, we just read out, read out just now. This theorem says that the dimension is simply 

the number of frequencies that do not belong to the null spectrum. So here, there are 15 

frequencies in all; 8 of them belong to the null spectrum. So, the number of frequencies 

outside is 4 plus 2 plus 1 is 7. So, the dimension of the code is actually 7, in this case. 
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Then, we have a weight theorem. So, the two parameters that we were interested in, one is 

the minimum, the dimension of the code; the second is the minimum distance. So, now, we 

are trying to establish the minimum distance of the cyclic code. So, the weight theorem says, 

let c of t be an n tuple whose Hamming weight is w. Now, it is not necessarily, a code word 

is just any n tuple. So, this is a rather general property. Then then, I am just thinking that, 

perhaps I should change the notation, from c of t to a of t, so that, there is no confusion and 

it is clear that, this applies in general. So, let me make that small change; let a t belong... So, 

this is a, a, a, a. 

So, let a t be any vector whose Hamming weight is w. Then, its transform value satisfies the 

linear recursion of degree w, in the frequency domain. So, what is that mean? It means that, 

it means precisely what this equation says here; that is, you can recover the transform values 

at any frequency lambda, by looking back in the past, at the past w values of the transform. 

So, a hat of lambda is some linear combination of a hat of lambda minus i, for i ranging 

between 1 to w; and, these coefficients u i are in F q to the m. once again, in the interest of 

moving along, I have left the proof in the appendix. What we will do is, however see an 

application of this here.  
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So, this is a key theorem in cyclic codes and it says that, supposing C is the cyclic code over 

F q of length N, where N and q are relatively prime, and let us assume that the null spectrum 

contains a stretch of consecutive frequencies; that is, you have a starting point m 0, m 0 plus 

1, up to m 0 plus d minus 2. So, the number of consecutive 0s, in this particular case, is d 

minus 1. So this is, obviously, a subset of the set of all frequencies; actually, this should 

have been N minus 1; let me correct that. And here, this freedom in choosing m 0, so m 0 is 

some integer and d is some integer, also an integer, which is greater than or equal to 2.  
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And so, excuse me. It says here that, m is the multiplicative order of q mod N; but since that 

does not appear in the theorem now; I am just going to delete that.  
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So, the assertion of the theorem is that, the minimum distance of the code is, in this case, 

greater than or equal to d. So, just a quick remark here, and not a part of the theorem, but, 

just quick comment. And d is called the designed distance of the code, and so, the minimum 



distance of the code is at least d; and therefore, the parameters of the code, the block length 

is N; that is obvious; the dimension is N minus the size of null spectrum; we covered that in 

the previous theorem; and, the minimum distance is greater than or equal to d, which is the 

content of this theorem.  
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The proof is actually, quite straight forward, as we will go through with it. So, since C is a 

linear code, it is enough to show that the minimum Hamming weight of the code is greater 

than or equal to d. This we proved in connection with binary codes. We showed that a 

binary, in the case of the binary codes, the minimum distance is equal to the minimum 

Hamming weight. But that is, also, that proof also extends to the non-binary case; that is, the 

minimum Hamming distance of a linear code over any finite field, that is whose symbol 

alphabet is any finite field, has the property that the minimum Hamming weight is equal to 

the minimum Hamming distance; the minimum non-zero Hamming weight is the minimum 

Hamming distance.  

Now, supposing you have a code word, and let us say that its Hamming weight is w; and let 

us assume that w is greater than 0; because, we are trying to estimate the minimum distance 

and we know that, the code contains the all zero code word. When, we talk about minimum 

Hamming weight, we are interested in the minimum non-zero Hamming weight. So, we will 



assume that, the w is greater than 0. Then, our earlier lemma, that we just read out, says that, 

says that the theorem says that, if the, if a vector has Hamming weight w, then, its transform 

satisfies the linear recursion of degree w.  
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So, because of this, therefore, C hat of lambda satisfies the linear equation of this form; C 

hat of lambda is the sum i equal to 1 to w, C hat of lambda minus i u i, for all lambda. So, in 

particular, what that means is that, if you put lambda equal to m 0 plus d minus 1, what, 

where did I get that from? Well, all that I am doing here... So, maybe, I can actually, at this 

stage, draw a picture, before continuing with the proof. So, let me insert a page here. So, the 

picture is like this.  
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So, let us look at your transform, C hat of lambda, and let us say that these are your indices, 

you start with 0, 1, and then somewhere you encounter m 0 m 0 plus 1 m 0 plus d minus 2 m 

0 plus d minus 1 m 0 plus d on upto N minus 1. Let me see, if I can group this pattern. So, 

let us say, these are the frequencies and when you look at C hat of lambda, C hat of lambda, 

we know that since this is the null spectrum, this is included in the null spectrum. So, it is 

contained in the null spectrum of the code. Because of that when you look at C hat of 

lambda, you see, you are going to see a 0, a 0 and a 0.  You are going to see, d minus 1, after 

here, yes, sorry about that; I, the string of consecutive 0s only runs from m 0 to m 0 plus d 

minus 2; let us go back and check that. So, you see that, it goes from m 0, all the way up to 

m 0 plus d minus 2.  

So, we know that the transform is 0 out here, and in general, we do not know, what the 

transform values are outside. So, I can actually put some star values in here. But we do 

know that C hat of m 0 plus d minus 1. So, if you pick, in particular, C hat of m 0 plus d 

minus 1; let me do one thing; let me pick this relationship and bring it down, so that we can 

talk about it, while looking at the figure; here.  

So, let us look at this expression here; and so picture this, that you are saying that, the 

transform value at frequency m 0 plus d minus 1 is some linear combination of the ones that 



came before it; the w terms that came before it; but if w is less than d then since you are 

going back up to m 0 plus d minus 1 minus w, this is atmost m 0 plus d minus 1; you are 

going back into the past, the earliest, or the smallest index is, this minus d minus 1. So, the 

w can be atmost d minus 1, since we are assuming it is less than d. So, this come out to m 0; 

so that means that what we have actually shown is that, if it has weight w, then, this value 

must be the linear combination of this 0s, which means that this entry must be 0. Now, you 

move over here. This one must be a linear combination of the preceding, preceding I guess, 

d minus 1 terms, and it is again 0 and so on.  

So, what it says is that if you have a string of d minus 1 consecutive 0s and you have a linear 

recursion whose degree is d minus 1 or less, then you are going to, this string of 0s is going 

to extend all the way round, until you get the all 0 code word. So, what that proves is that 

every code word must have Hamming weight w, which is greater than or equal to d; because 

the only way it can have a Hamming weight less than or equal to d minus 1 is, if it is in fact, 

the all 0 code word.  
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And that proves that, which contradicts our assumption that, w is greater than 0. Therefore, 

w is greater than or equal to d, and hence, d min of the code is greater than or equal to d. So, 



that completes our derivation of the parameters of the code. Now, we have the parameters of 

the code under control. Next what we will do is, let us examine two classes of codes.  
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We will look at an example of BCH codes. So, BCH class of codes falls into the class 

associated with this theorem. So, BCH codes turn out to be codes, having a null spectrum, 

which contains a consecutive set of frequencies. Here, q is equal to 2 and N, 

so, for the primitive case, N is of the form 2 to the m minus 1. So actually, if you start out, 

that is I should start out... Supposing, I said that, it is 2 to the e minus 1, then this means that 

the multiplicative order of or actually, let me put back the m here; if N is 2 to the m minus 1, 

and then you ask, what is the multiplicative order of q mod N, and then, you will see that, it 

is actually equal to m. So, this implies that the multiplicative order of q mod N is equal to m. 

So, I will leave that as a small exercise for you to check is quite straight forward. And so, 

and then, the null spectrum is, the null spectrum of the code is required to, is required to 

contain these consecutive string of frequencies.  
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Therefore, a BCH code, therefore such therefore, binary BCH codes have parameters, have 

parameters; N is equal to 2 to the m minus 1 and the dimension is N minus the size of the 

null spectrum, and d min is greater than or equal to d. Now, it turns out that, it turns out a 

popular choice choice is m 0 equal to 1. So that means, your consecutive...Therefore, in 

which case, your null spectrum contains 1, 2, all the way up to m 0 plus d minus 2, which is 

d minus 1. So, you have a consecutive stretch of 0s from 1 to d minus 1. Then, let so what I 

am trying to get at is the following. Here, in describing BCH codes, I have given you the 

length and the minimum distance, and I have left the dimension expressed in terms of the 

complement of the null spectrum.  

The catch here is, we do not really know what the null spectrum is; because all that we know 

is that, it contains these frequencies; we do not exactly know what it is. So, that leaves a 

question mark over the dimension of this code. Now, you cannot completely erase that, but 

what you can do is, in this particular case, you can estimate, or atleast (( )) on the dimension 

of this code as follows. So, let us say that m 0 is 1, and in which case, the string of 

consecutive 0s, actually ranges from 1 to d minus 1, 

which can be rewritten, which can be rewritten as 1, 2, all the way upto 2 t, if d is equal to 2 

t plus 1; because typically, when you are looking for error correction, then, your minimum 



distance is 2 t plus 1. For example, if you, if you want to correct 2 errors, you will make 

your minimum distance 5 and so on. So, this is a popular situation that you are likely to 

come across. So, what can you say in this case? Then note that, note that in the 2 cyclotomic 

cosets, cosets, I will make it clearer; let me call this, in the q cyclotomic cosets mod N, i e, 

in our case, this simply amounts to, the 2 cyclotomic cosets mod 2 to the m minus 1.  

(Refer Slide Time: 47:38) 

 

The size of a cyclotomic coset is at most m. Let me explain why that is but let us just look at 

the example that we had earlier. Here we go. So, you see that, here q is 2, N is 15. So, N is 2 

to the 4 minus 1. So, that parameter m, in this case... 
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I may as well write it down here. The parameter m was equal to 4, and you can see here that, 

the cyclotomic cosets, none of them is larger than 4; because no matter where you start, if 

you keep multiplying the powers of 2, eventually when you reach 2 to the 4, you will get 

back to where you started, because 2 to the m minus 1, 2 to the m, mod 2 to the m minus 1 is 

1. For that reason, your cyclotomic cosets are never going to be bigger than m.  
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So, let us...Since lambda 2 2 to the m mod N is equal to lambda 2 to the m mod 2 to the m 

minus 1, which is equal to lambda. So, that means that if you start from lambda, and keep 

multiplying by powers of 2, after m steps, you are going to be back where you started. So, 

your cyclotomic cosets cannot contain more than m lambda. So, what you will do is, you 

will go a lambda, you will go a 2 lambda, you will go 4 lambda and then, at most, you might 

end up with 2 to the N minus 1 lambda; but at the next step, you will, you will come back to 

the lambda. So, the size of your cyclotomic coset can never be more than m. So, that is one 

thing to keep in mind. And so that is, that is observation one. The second observation, 

remember that we are looking for, we are trying to estimate the size of the null spectrum, 

which contains these 2 t consecutive 0s. The second observation is that, the second 

observation is the following: 
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If k in 1, 2, upto 2 t is, is even, excuse me, if k is even, let us say that, k is equal to 2 l, then, 

then l is already in this set; and, k and l belong to the same cyclotomic coset. So, I should, 

let me write this differently; and k comma l, belong to the same cyclotomic coset. So, what 

that tells is that, therefore, therefore... So, what you are saying here is that look I have 2 t 

distinct elements here, and I am worried about, I want to keep my, see that, the fact that I 

have 2 t consecutive 0s, guarantees my minimum distance is 2 t plus 1; but, now, how large 

do I have to make my null spectrum to guarantee the presence of these 2 t consecutive 0s; 



and the point is that, you only have to ensure that, the odd integers in this, belong to the null 

spectrum; because the even ones come for free, because of the fact that, if you are picking 

cyclotomic coset, so, if you pick l, you will also be picking 2 l, to that cosets.  
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Therefore, it suffices, it suffices to ensure that 1, 3, 5, all the way to 2 t minus 1, are a subset 

of the null spectrum of the code; but the number of these is only t, right; because you start 

with t equal to, there are only two, this set is of size, this set is of size t; this set here, is of 

size t.  
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Therefore, therefore, the null spectrum need be no larger than m times t. Therefore, the 

dimension of the code, which is the size of the complement of the null spectrum, is greater 

than or equal to 2 to the m minus 1 minus m times t. For this reason, you will actually see 

that, the parameters of a BCH code, described in this way...This is how you typically find 

the parameters of the BCH code described.  
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And, our earlier example here, was of the same flavour because this (( )), this code here, was 

actually a BCH code of minimum of distance 5; because, in that case, you would insist that, 

they would be, the consecutive 0s would be 1, would be, 1, 2, 3 and 4; and by, just by 

ensuring that, 1 and 3 belong, you ensure that 1, 2, 3, 4 belong; so, the minimum distance is 

5. So, in this particular case, our t was equal to 2. So, the size of the null spectrum was at 

most m t, which is 8 in this case. Therefore, the dimension of the code is at least 7. This is an 

example of the very same statement, and I am just going to quickly copy this slide over to 

that page, where we were at. 

But perhaps I should just summarise. So, what we have done is that we have actually looked 

at... So, we had started out by looking at cyclic codes from a transform domain perspective, 



and so, we defined this quantity called the null spectrum of a code; we made the link 

between cyclic codes and the closed sets of frequencies strong by showing there is a one-to-

one correspondence. And then, we said ok, now that we know how to design cyclic codes in 

the frequency domain, what can we say about the parameters; and the minimum, the 

dimension is easy; it is just the number of frequencies outside the null spectrum.  

The minimum distance is complicated, but what we can do is, if we ensure, there are certain 

string of frequencies, which are consecutive, belong to the null spectrum, that the minimum 

distance is one more, is at least one more than the length of that string. So, that is, that is 

kind of the BCH construction of cyclic codes. So, we use that to estimate the minimum 

distance. And what was behind that estimate is, what I called the weight theorem, because it 

turns out that, if a vector in the time domain has Hamming weight w, in the frequency 

domain, its transform satisfies a linear recursion of degree w, and that is what enabled us to 

prove that. So, in the next class, what we will do, next and final lecture, we will define Reed 

Solomon codes and then, quickly locate, how one actually decode this codes. So, we will 

stop at this point. Thank you. 


