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Transform Approach to Cyclic Codes 

Here, I am going to say good morning today, because I am taping this lecture in the 

morning; usually I tape in the afternoon. So, there is a little bit of a change here. So, this is 

our forty eighth lecture, and the lecture series is supposed to run to about 40 lectures, but I 

might go 1 or 2 lectures over just to make sure that I complete the material. So, the title of 

today’s lecture is a transform approach to cyclic codes. 
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So, what that means is that, we worked very hard in trying to understand finite fields, 

because that is the mathematical background you need to be able to understand cyclic codes. 

And now finally, we have reached that point where we are ready to start studying the codes 

themselves. 
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But, as usual, I will begin with a quick overview of what we discussed last time. So, here is 

our lecture from last time and the first thing we actually did was we finished completed our 

discussion on the minimal polynomial, where we showed that minimal polynomial has 

degree, where we discussed the degree of the minimal polynomial, and noticed that it has the 

degree m, only when it is the minimal polynomial of a primitive element. 
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So, let me as I do this, let me put down the summary. So, we completed our discussion, then 

the next topic that we moved on to on finite fields, so we did a little bit of jumping around in 

the last lecture. We talked about subfields of a finite field, that is and this picture over here, 

gives you an excellent overview. It tells you that the subfield’s structure is completely 

determined by this exponent over here. 

So, here you have 2 to the 12, and so the subfields that it contains are of the form 2 to the m, 

where m divides 12. And the other thing that we did was along, as an aside we also 

discussed a useful lemma, which says that if you take x plus y and raise it to the p eth power, 

you get x to the p plus y to the p. So, then we say subfield structure; then we did this lemma; 

then we also tested carried out a test for membership in a subfield, which is that for example, 

if theta to the p to the d is theta, then it belongs to F p to the d.  

And then we, I sketched very briefly, the proof that, finite fields of every size p to the m 

exists, for every prime p and every m greater than or equal to 1; and, what I did was, 

because I wanted to make sure that I do not get bogged down in discussing finite fields, I put 

the detailed proofs in the appendix. So, as you go through your notes, please look through 

the notes; you will find that whatever theorem we have stated here, is again stated in the 

appendix, and followed by a complete proof.  Then I actually stated a useful lemma, a 

theorem, which says that, if you take the, if you are looking at particular finite field x to the 

p to the m, then the polynomial x to the p to the m minus x, factors into the product of the 

irreducible polynomials, whose degree divides m. 

So, we will put that down also. So, that was our next observation and after that, we showed 

that, any two finite fields of the same size are isomorphic. What isomorphic means is that, 

basically, the two fields are the same, except that, what you call an element here, maybe 

different. 
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For example, you might call an element beta here, and in that other field, it might appear as 

alpha cube; but provided, you recognize that, beta is the same as alpha cubed and you follow 

through, then you will find, the fields are exactly the same; they add in the same way; they 

multiply in the same way. 

So, I will put that down. Then after that, we discussed the add 1 table of a finite field; and 

what the add 1 table allows you to do, it basically allows you to work with the elements, 

with the representation of the elements of the finite field in exponent form. So, you can 

regard the finite field as powers of some primitive element alpha, and just learn how to add 

and multiply in that domain; and, that makes it much easier. We also discussed theadd 1 

table. Then we talked about cyclotomic cosets and so I introduced the definition of 

cyclotomic cosets, and I think that, it is best illustrated by this example here. So, these are 

the 2 cyclotomic cosets, mod 15. So, basically, anything in which ais 2 to the, some power 

times b, then they are equivalent.  

 So, 1, 2, 4, 8, 16 mod 15 is back to 1. So, these are the cyclotomic cosets. They are basically 

equivalence classes under the corresponding equivalence relationship. And then we also 

talked about the coset leaders, the smallest element in a cyclotomic coset is called the coset 

leader. 
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Then, there is a theorem and we will not actually prove it here, which says that, the minimal 

polynomial of an element beta, is precisely, the product of all linear factors of the form x 

minus beta to the p to the l, where l goes from 0 to d minus 1. So, what is this d? Basically, 

what this d here is, is that d is the smallest integer such that, beta to the p to the d is beta; 

that is F, the finite field of size p to the d is the smallest subfield in F p to the m of which 

beta is an element; proof is in the appendix. 
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So, let us put that down, and the, the powers of beta of the form beta to the p to the l are 

called the conjugates of beta. So, what this theorem also tells us is that the the conjugates of 

beta also share the same minimal polynomial, because they are zeroes of the same 

polynomial. And after this you have the appendix. 
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That basically was the last lecture. Now, getting back, so that I guess concludes our 

summary. I did want to break up the previous lecture into points (( )) to rather lengthy 

lecture. Now, let us move on to today’s lecture, and here, our interest is really in, is in cyclic 

codes. 
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So, remember, right in the beginning, we talked about block codes. So, our interest is back 

in block codes, except, we are interested in a particular class of block codes known as cyclic 

codes, and we will actually give a formal definition so on. And, the, the codes, now are no 

longer binary; that they are codes over a finite field of size q, where q is the power of p. 

And, there is an additional conditional that comes about, just because without this, the 

theory will become much harder. So, this is for the purpose of tractability, you also require 

the q and N be relatively prime. 
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So, our first goal and the reason for this will become clearer a little later, is to find the 

smallest field. So, you are starting off with a finite field F q; that is the field over which you 

want to build your code. So, it is not, if it is binary, q would be equal to 2. But it may not be 

binary. For example, the class of Reed-Solomon codes; these codes are not binary, and in 

fact, the non-binary nature of those codes, gives them their strength. This, let us say, is the 

alphabet over which you want to build your code, for whatever reason. We will call this the 

ground field. It turns out that, in order to develop the theory of cyclic codes, what you need, 

it is a rather peculiar condition, that is, you need an element alpha, whose multiplicative 

order is N; that is the smallest power of alpha which gives you 1 should be N. 

Now, it could be that, this field itself contains such an element alpha, but often, that is not 

the case; in which case, what you can do is, you can actually start with the smaller field, and 

you can build up to a larger field. You can go up from here to here, and you can be sure that, 

there is a larger field that contains this field, which contains the desired element alpha. So, 

that is our goal, is to find this bigger field. And, the way you find it is quite easy, because 

what you do is, you say, wait a minute, what I can do is I can take 1, q, q square, q cubed, q 

to the k, q to the l and keep going; and, I do this modulo N. For example, if q was 2, and (( )) 

1, 2, 4, 8, and so on, and I would do this modulo N; if N was 15, I would go 1, 2, 4 and 8 

and stop. But in general, I would just keep going. Now, since there are only NN residues 



modulo N, N at some point this series must repeat. Two elements must be the same modulo 

N. So, perhaps I should emphasize that, and write, this is true modulo N; some 2 powers 

must agree. 
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Now, without loss of generality, we can assume that, l is greater than k; so that is equivalent 

to saying that, q to the l minus k is equal to 1; again again, this is mod mod N. So, then now 

that we know this, it is meaningful to ask this question, what is the smallest power of q, such 

that, q to the m is equal to 1 mod N. 
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Once you found the smallest integer m, then that particular m is called the multiplicative 

order of q mod N. It sounds a little bit mysterious, why would you keep doing this? The 

reason is, the focus is on this equation, over here. This equation is key; because what you are 

really going to do is, you are going to exploit this equation. What this, remember, our hunt is 

for this element alpha, whose multiplicative order is N; so that is what we are actually 

hunting for.  
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And, what we have here, is this expression; but that, this expression is telling us that, N 

divides q to the m minus 1, and that is important, because it tells us that, in the finite field F 

q to the m, and we know that, finite fields of every size of this type exist, because q itself is 

some power of a prime. So, q to the m is also some power of a prime, and therefore, a finite 

field of this size is exists. So, this finite field contains an element of order N, why is that? 

Well, because you know, let us say, let beta be a primitive element of this finite field; then 

the order of beta is q minus 1. So, if you raise beta to the power q minus 1 by N, then this 

element alpha will actually have order N. 

So, that is the reason for actually working this hard. So, again, just to quickly recap, our goal 

was, you want to build cyclic codes over this field, which we called the ground field; but it 

turns out that, in order to develop the theory, you need the presence of an element alpha, 

whose multiplicative order is N.  
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So, you are forced to enlarge the size of your field and go to a bigger field, which contains 

the element that you are actually looking for… Let us keep going. Example, for example, 

when q is 2 and N is 15, then the smallest power of 2, which will give you 1 mod 15 is 4, 

because 2 to the 4 is 16, which is 1 mod 15. And here, it turns out that, you can simply, you 

need an element of order 15 but the primitive element in F 2 to the 4, is itself of order 15. 

So, there, that does it for you. The second pause, the second example which often crops up 

with Reed-Solomon codes is that, q is a power of p and N is q minus 1. Note that, the 

condition that, N and q are relatively prime is satisfied, in which case, you are looking for 

the smallest power of q, which is equal to 1 mod N, but since q is m plus 1, that is just m 

equal to 1. In this case, you do not need to enlarge your field, and you can find the element 

alpha that you are looking for, within the ground field itself, and you can choose alpha to be 

beta, where beta is any primitive element of the ground field. So, this situation is 

characteristic of Reed-Solomon codes, whereas this is characteristic of BCH codes. Now, 

now we are actually going to discuss and perhaps it is worth highlighting this. 
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So, I will write finite field transform; so we are beginning a new topic, finite field transform. 

So, what in in in respect to this topic, what our previous topic was all about was, actually 

trying to find that element alpha, because in constructing the transform, we will need this 

alpha. So, here is the definition of a finite field transform. 
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Let q, let q and N be relatively prime; let m be the multiplicative order of q mod N; let alpha 

be an element of order N, in F q; let a t, t goes from 0 to N minus 1, be a vector of length N 

over F q to the m; then if you set a hat of lambda… So, you look at this expression over 

here; this is called the finite field transform of this, a F t. Now, if you look at this and think 

about it, there is a lot of resemblance with the discrete Fourier transform; but I leave it to 

you, to make that connection. 
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So, also, this element that we were looking for alpha, appears here. So, then the finite field 

transform is defined according to this expression. So, this is the finite field transform, and so 

we will be working with this expression many times in the course of this lecture. And 

analogous to the way you develop properties of the discrete Fourier transform or the Fourier 

transform, or the Laplace transform or the z transform, let us look at some properties, that 

this transform enjoys. 
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The first property is that of linearity. What do we mean by that? We mean that, if you take a 

vector a sub t and let us say that, it has a transform a hat and if b t, it has a transform b hat of 

lambda, then if you take a t plus theta times b t, what is theta, where your a and b…Now, in 

this discussion, a and b, all belong to the larger field; there is a ground field and there is a 

big field; the ground field being F q and the big field being F q to the m. Here, all our 

discussion is about the big field, F q to the m. So, a of t and b of t are sequences in the big 

field and theta also belongs to the big field, then the transform of this sequence here, which 

is a linear combination of a and b, has this transform, (( )) a t is replaced by a hat of lambda, 

b t by b hat of lambda. So, that is linearity, and this is easy to prove. So, I will just leave this 

to you, to show as an exercise; it is straight forward. 
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It is a simple exercise. Another property, and this property is important, because after all our 

discussion is about cyclic codes. So, now we want to understand, how the finite field 

transform behaves under cyclic shifts; meaning that supposing you have a sequence a of t 

and you are aware of its transform, which is a hat of lambda. Now, you construct a second 

sequence, b t which is a cyclic shift of a of t by tau; that is the t th element here is t minus 

tau th element of a. Now, one point to note here is that, when you subtract t minus tau, you 

are doing this modulo N. So, that is important, that it is because without this modulo N, it 

would simply be a shift; but because it is mod N, it is called a cyclic shift. So, in the sequel 

now from now onwards, whenever we do arithmetic in the subscripts… 
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So, we might say 2 t, or 3 t, or t minus tau, or t 1 plus t 2; in the subscripts, the subscript 

arithmetic will always be modulo N. In the sequel, we will always assume that, subscripts of 

either a or a hat, that the arithmetic is always computed mod N, and we will simply write a 

of t minus tau in place of this more cumbersome expression.  
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Now, let us see what happens when we have a cyclic shift. So, when you take a cyclic shift 

and you take its transform, now what I have done is, I have replaced b t by a t minus tau; I 

am going to break this up into lambda t minus tau and lambda tau; I am going to pull this 

out, because it is not a function of t; and then I have this expression here; and, I got from 

here to here, simply by replacing t minus tau by s; and again, this is mod N, reason being 

that, alpha is an element of order N. So, all exponent arithmetic is naturally mod N. Now, t 

ranges from 0 to N minus 1, and it is not have to see that, as t ranges over 0 to N minus 1, so 

does s, for any fixed value of tau, because you are doing arithmetic mod N. 
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So, change the variables, you have this; and now, if you look at this, this is nothing, but of 

the expression for a hat of lambda. And so that tells you that, if a of t has transform a hat 

lambda, then its cyclic shift has transform alpha to the lambda tau times a hat lambda; and 

this is very similar to the expression that you have, in the case of the discrete Fourier 

transform. There, it is probably, something like, e to the minus j 2 pi F tau times a hat of F, 

but it is the same kind of relationship here. One other point to note is that, in our definition 

of the transform, we use the plus sign; we use the plus sign here, whereas, with Fourier-

Laplace transforms, you typically encounter a negative sign; but of course, that is not a 

problem, as long as you are consistent, that works just as fine. It would work fine, even if 



you define your discrete Fourier transform that way; it is just a matter of convention; so here 

we choose to use the positive sign. 
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Then, there is an inversion formula, as you might expect; if you can go from the time 

domain to the frequency domain, you would expect that you should be able to come back; 

that is what the inversion formula tells you, that you can invert the expression a t by 

computing this expression over here.  

So, this is very similar to the way you would compute it, in the case of the discrete Fourier 

transform. Now, I have given a proof over here, but the proof is straight forward. It is 

completely analogous to the discrete Fourier transform, and in this proof, you use the fact 

that alpha has multiplicative order N; because if alpha did not have that property, this proof 

would not work. But I have said that, I think, I am going to skip this proof, so that we can 

keep our momentum. So, the inversion formula, very similar to the case of the discrete 

Fourier transform; there is that, where you had a plus in the forward transform, you have a 

minus now. 



(Refer Slide Time: 23:13) 

 

And then you have an additional scale factor. Now, this N inverse is really, you should 

interpret this as the inverse of N, in the finite field F q to the m. 
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Then, there is also a convolution relationship, again completely analogous with the way it is 

with the discrete Fourier transform. If a of t has transform a hat lambda and b of t has 

transform b hat lambda, then if you take the convolution of these two sequences, and the 



convolution is given by this expression; now, once again, when I write this is a cyclic 

convolution, because this t minus tau is interpreted modulo N; so perhaps, I should 

emphasize that. So, let us do that. 

(Refer Slide Time: 26:41) 

 

So, let us write cyclic, so cyclic convolution. So, under cyclic convolution, what happens is 

that, the transform of the result is nothing, but the product of the individual transforms; and 

again, completely analogous to the discrete Fourier transform case. I have left the proof as 

an exercise. So, we have gone through four properties so far, we have seen linearity; we 

have seen cyclic shifts; we have seen the inversion formula and we have looked at 

convolution. 
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Then, there is another property, that of conjugacy. Now, conjugacy is really something that 

you already encountered before, in, in connection with the discrete Fourier transform; except 

that it looks a little different. Basically, what conjugacy is saying is that, look, when you 

take the discrete Fourier transform, you are taking you can take the transform of complex 

signals, just as easily as you can take the transform of a real signal, because even though 

your signal may be real, the discrete Fourier transform may be a complex waveform.  

But for the particular case, when the function itself is real, then the transform domain, the 

transform of a real signal satisfies a certain conjugacy property, namely, something to the 

effect that, F star of F is F of minus F; so there is a certain relationship in the transform 

domain, that comes about, because your time domain signal happens to be real. So, exactly 

the same thing happens here; meaning that up to now, we have been working entirely in this 

field, which I have called the big field, that is, your, your vector a t, all these symbols were 

in the big field, the transform a hat lambda, all the symbols were in the big field. But now, 

we are going to actually investigate, well, what happens if actually my original signal a t had 

symbols in here? And, in fact, in practice, that is the case we are going to consider, because 

our interest is primarily in cyclic codes, but the alphabet is F q as I mentioned earlier, right. 

So, you are really interested in here; you are forced to work with this big field, simply 

because you would not be able to take transforms in this field simply, because you do not 



have an element of order N in the ground field; you have to go to a bigger field. And so what 

happens? Then, so supposing a of t belongs to F t for all t; that is this sequence lies entirely 

in the ground field, what can we say about that transform? So, that is the conjugacy 

relationship. 
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It turns out that, in this case, the conjugacy that results is this; if you look at the transform a 

hat, evaluated at lambda q, then that is the same as a hat lambda, but raised to the power q. 

Again, lambda q is a computation that you are doing in the subscript, and, as I have pointed 

out, either with the sequence, or its transform, whenever you do arithmetic in the subscript, 

this is computed modulo N. And, it turns out that, so what this is saying is that, if my 

sequence lies entirely in the ground field, then the transform satisfies this conjugacy 

constraint. But the converse is also true, namely that, if I have a sequence whose transform 

satisfies this conjugacy constraint, then that sequence must actually be in the ground field. 
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Now, before proceeding further, I have a couple of slides which say, you know, I keep 

saying that, the subscript arithmetic is modulo N, and, there is an alternative way of thinking 

about it, which might make it easier to picture, and that is, that you think of all your 

sequences a t, now up to now we have thought of a of t; for example, as a vector, whose 

length is N; same thing with the transform; but you can instead think of these, as periodic 

sequences. 
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So, this is the alternate picture, that is, you think of your sequences being periodic with 

period N. Then it is automatic that all subscripts are computed modulo, all subscripts 

arithmetic is modulo N, because this is really the N eth term in the sequence. But since a N 

is a 0, that is the same as computing the subscripts mod N. This is the other way to think 

about it; that is, that really, although you are working with only a fragment of the sequence, 

that fragment is, has all the information, because it is one complete period of the sequence; 

same thing in the transform domain. 
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Now, you might say that, do I not have to worry about consistency here? You do not, 

because here is the definition of the transform, and if this is periodic, you are wondering, is 

this periodic, but you can check, because if you add N to this, then you will be adding N to 

that; since alpha has order N, you will find out that, a hat of lambda plus N is the same as a 

hat of lambda; maybe I should just add… So, let me reword this slightly. Since alpha has 

order N, alright.  
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With that, now, let us get back to our, our conjugacy relationship. So, remember that, what 

we are trying to actually say is to prove that, if a of t lies completely in the ground field, that, 

in the frequency domain, in the transform domain, we have this conjugacy relation; so let me 

formally call this the conjugacy relation, alright. So, we want to prove this. 
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And, so this is quite straight forward. So, so let us start with this expression and we will 

reduce it to this form. So, a hat lambda q, you just follow along with the definition; so in 

case of lambda, we have lambda q. But then you can regard this as alpha to the lambda t 

raised to the q th power and also recognizing that, a t, remember a t belongs to the ground 

field, and a t to the q is therefore, a t; because this is the test for membership in a subfield, if 

you remember; that, a t belongs to the subfield F q, if and only if, it satisfies the property 

that, a t to the q is a t. So, we did this in the last lecture, and I… We reviewed that today. So, 

that means that, you can take this, replace this by a t to the q and therefore, regard this whole 

thing as being raised to the q eth power. And, since q is the power of the characteristic, you 

can take this q completely outside this summation. But what is left inside is nothing, but a 

hat lambda. So, that proves that, a hat of lambda q is a hat lambda raised to the q eth power.  
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Now, for the converse, so the converse tells you, well, supposing the conjugacy constraint 

holds, then am I assured that, the sequence belongs to the ground field, and the answer is 

yes. But again, I think I will just let you read through it on your own, in the interest of 

making up some time. Basically, the way you show that, this implies that the sequence is in 

the ground field, is to apply the membership test. What you try to do, is show that, a sub t to 

the q is a sub t again. And so this is your starting point, and then after some messaging, you 

can actually bring it to the point of a sub t, which proves that, it is in the ground field. So, 



the important thing to keep in mind here, is that, is that, a sequence a of t is in the ground 

field if and only if, its transform a hat of lambda satisfies the conjugacy relationship, that is 

given here. 
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Now, we are ready to talk about cyclic codes. So, this was our goal and I think that, 

everybody listening to this lecture has been remarkably patient. But that is the way it goes; 

the big barrier to understanding cyclic codes is finite fields, and we have just gone through 

finite fields. 

So, now, we are ready to actually discuss this, and with requisite background in finite fields, 

the theory actually is quite straight forward. So, first of all, what do we mean by cyclic 

codes? So, of course, we are talking about cyclic error correcting codes and these are block 

codes. The other thing which is not apparent from the name is that, this code is a linear code. 

So, people talk about cyclic codes all the time. At the back of their mind, they really mean 

linear cyclic codes; but since cyclic codes are almost invariably linear, in practice, people 

just, I guess, out of laziness, just call them cyclic codes. So, you should understand, and we 

will do the same in this class. We will assume that, cyclic codes is a reference to linear 

cyclic codes. So, what is the definition? So, a linear cyclic code of block length N is a 

collection of N- tuples, such that, two properties hold. One is of course, it must be a linear 



code; so it must satisfy the linearity constraint, which says that, if c t super script 1, c c t 

super script 2; so let me just correct that; that should have been ordinary 2, Arabic numeral 

2. 
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So, if c t 1 and c t 2 are two code words, then their linear combination must also be a code 

word; must also belong to the code. So, if each of these is a code word, then their linear 

combination is also a code word. This theta here, belongs to F q. Now, our codes are over 

the ground field. So, linearity involves scaling by elements in the ground field. And, if you 

just think about it, what you are really checking is that, c is a vector space over F q. In fact, 

it is the subspace of F q to the N, and this is nothing, but the subspace test. So, that is the 

first condition that you need to meet, that is, it is the linearity condition. The second 

condition that you need to meet is one of cyclic shifts. You need to verify that, if c of t is a 

code word, then some, every cyclic shift is, cyclic shift is kind of like a wraparound shift, is 

also a code word. 
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So, here, in this code word, when you put t equal to 0, you get c of minus tau; but since 

arithmetic is mod N, that c of N minus tau; or, if you think about it as a periodic sequence, 

you will come to the same conclusion. So, what we require is that, if this code word belongs 

to the code, then every wraparound cyclic shift of this code word also belongs to the code; 

that is, the code is closed under the cyclic shifts. 
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So, that is the definition of a cyclic code. And now, what we will do is, we will go ahead and 

analyze these codes. And it turns out that, a very convenient means of analyzing them, is 

using the finite field transforms. My, my own exposure to this view point came from, came 

many years ago from a noted coding theorist Lloyd Welch. Nowadays, it is a…The other 

proponent of this view point is Richard (( )), and you can find this discussed in his text 

books on coding theory. Now, given a code word c t, we define…So, now, I would, I am 

going to specialize our transform theory to the case of cyclic codes. So, given a code word in 

a cyclic code, we define the transform of c of t, in this way. So, it is the usual definition, 

where alpha has order N in F q to the m, in which m is the multiplicative order of q mod N. 
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So, there is nothing new here. We already understand how transforms are defined. We 

understand that, if your sequence is in F q, in order to find an element of order, of order N, 

you have to go to a larger field F q to the m. So, we are completely familiar with all of this. 

Yes, so this is just saying something that is obvious; that is, while the code symbols belong 

to the ground field, the transform coefficients, in general, lie in the big field. 
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Now, in this context, we will regard c hat of lambda as the transform coefficient, I guess, I 

need to rewrite this is a little bit; is the transform coefficient of c of t at frequency lambda. 

Let me try moving this one last time; there we go. So, it is the transform coefficient of this at 

frequency lambda. 
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So, we are going to interpret the subscripts of c hat as frequencies, in the ordinary way you 

would do in the discrete Fourier transform. Now, it turns out that, it is convenient. So, we 

discussed cyclotomic cosets in connection with a finite field. So, there is something, there 

are cyclotomic cosets that also show up here. They are slightly different in terms of their 

parameters, but the definition is more or less the same. So, in this connection, what we do is, 

we define two frequencies to be equivalent, lying between 0 and N minus 1; if one is, if 

lambda 2 is lambda 1 times some power of q; and again, this arithmetic is computed modulo 

N. This can be verified to be an equivalence relationship and in just the way, I remember, 

when we discussed the p cyclotomic cosets mod p to the N minus 1; there, I wrote down the 

three, I had three lines which actually showed that, the reflexive, the symmetric, and the the 

transitive properties were satisfied. You can, in exactly the same way, you can verify that, 

those three properties are satisfied here as well.  

So, what that means is that, this is an equivalence relationship and a key property of 

equivalence relationship is that, it partitions the set of all frequencies. So, you think of the 

lambdas as being frequencies. So, it says that, the frequency domain is now partitioned into 

equivalence classes. Each of these equivalence classes is called now, a cyclotomic coset. So, 

the corresponding equivalence classes are called the q cyclotomic cosets mod N. Here is an 

example. 
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So, supposing q is 2, and N is 15; so this is going to be our favorite example, favorite set of 

parameters. Then these, you should think of these, as now being frequencies. So, these, all of 

these, should now be regarded as frequencies. These are the various frequencies lambda. 

And now, we have an equivalence relationship, in which, in this particular case you defined 

lambda 1 equivalent to lambda 2, if lambda 1 is equal to some power of 2 times lambda 1 

times lambda 2 mod N. So, that is our equivalence relationship in this particular case, and if 

you work it out, you will see that, these are the equivalence classes that you get. In this case, 

they also happen to be the p cyclotomic cosets mod p to the m minus 1. But when you 

introduce cyclotomic cosets in connection with finite fields, then you are always dealing 

with p cyclotomic cosets mod p to the m minus 1. With cyclic codes and the transform 

domain like this, the, you are a little bit more free to choose these parameters, because N 

need not be p to the m minus 1, although it is the case here. So, for example, N may have 

been, in this particular instance, 5 for example; it is perfectly ok for N to be five. 

So, anyway, these are the 5 cyclotomic cosets and the convention is that, when you have a 

cyclotomic coset, the smallest element, the smallest representative, or the smallest element 

in each of the cyclotomic cosets is called the coset leaders. So, each row is a cyclotomic 

coset and the smallest element is the first; that is how it is conventionally written. So, these 

are the various coset leaders, and that is your expansion here. Then there is the obvious 

statement, that if there are kappa cosets, with n I elements in the i eth coset, then the sum of 

the n i will give you N.  
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So, for example, here, this coset has of size n 1 equals 1, n 2 equals 4, n 3 equals 4, n 4 

equals 2, n 5 equals 4 and the sum of all of these is 15. That is just introducing some 

notation. So, just to quickly recap. 
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What we have done so far is, say, look, our interest is in cyclic codes; we defined what it 

means to talk about the cyclic codes. We said that now we are going to apply our transform 



theory to the code words; that is, I am going to have a code word; I am going to treat that as 

my time sequence, and then I am going to compute its transform. And then in the transform 

domain, we are going to actually divide the frequencies into equivalence classes, which are 

called cyclotomic cosets. Now, the reason for doing that, excuse me, or the motivation is, 

because of the conjugacy constraint; remember, we had the conjugacy constraint that, if the 

code word belongs to the ground field, then the transform actually, the transform values 

satisfy the conjugacy constraint, and that brings in lambda q, given lambda. So, it turns out 

that; that is the reason why we are interested in this cyclotomic cosets; but we will see a 

little bit more of this pretty soon. Now, we come to, now we are slowly winding up a way, to 

actually saying, look, I have given you a definition of cyclic codes, but in essence, I can give 

you a simpler definition of cyclic codes, in the transform domain. 

So, that is why we had it. So, a subset S of the integers from 0 to N minus 1 is said to be a 

closed set of frequencies, provided, if lambda belongs to S, then q lambda must also belongs 

to S. So, that means that, these are, you typically think of these as conjugates, lambda and q 

lambda. So, if lambda belongs to S, then q lambda must also belong to S. Now, you can 

actually verify that, this forces the closed sets to be the union of cyclotomic cosets. Why is 

that, because let us go back to our example here. Supposing, I was trying to construct a 

closed set, and I happen to pick 3, and I said, I want 3 to be my closed set, but because the 

set is closed, I am forced to include 6, 12 and nine. So, when I include 3, I am actually 

bringing along the entire cyclotomic coset. Supposing, I next choose 2; I am forced to bring 

1, 2, 4 and 8, because 2 times 2 is 4, times 2 is 8, times 2 mod 15 is 1. So, I am forced to 

bring along this entire cyclotomic coset. For this reason, closed sets are the union of 

cyclotomic cosets. Now, we come to our key concept, that of the null spectrum.  
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So, given…So, there, the null spectrum is something that is associated with the cyclic code 

and it turns out to characterize the cyclic code. So, let C be a linear cyclic code of block 

length N, over the finite field of q elements; then the collection of frequencies…So, this N S 

here, stands for the null spectrum; then the null spectrum of the code is the collection of all 

those frequencies lambda, having the following property. Of course, since the code words 

are of length N or period N, if you think of them as periodic sequences, the lambda is lying 

between 0 and N minus 1. And now, the requirement is that, you take all those frequencies 

having the property that, every code word in the code has a transform value of 0, at this 

frequency. So, that is why it is called the null spectrum. 
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The null spectrum is the collection all those frequencies, where the transform value of every 

code word in a code is 0. So, that is called the null spectrum of a code. It turns out now that, 

the null spectrum of a cyclic code is a closed set. In other words, you can actually construct 

cyclic codes very easily, because all that you need to do it turns out, is, let us go back to our 

cosets, here. So, supposing, for instance, I was designing a cyclic code here, and it turns out 

that, you can actually design cyclic codes in a very simple way. Maybe, what will I do, is let 

me just copy the page and insert it, where I can use it; here we go. So, I will just edit this 

little bit; some of this is unnecessary on this page; here we go.  
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So, if I wanted to design a cyclic code here, as it turns out, then all that I need to do is, 

specify a certain null spectrum. You know that the null spectrum is a closed set; that is, the 

set of all frequencies, where all the code words have transform value 0; that is a closed set, 

we will show; and so I can design a cyclic code, by just looking at the, each of these cosets 

and saying 0, and not zero. 

So, for instance, I can design a cyclic code in here, by just saying, I am going to choose this 

0, 0 and then I am going to put stars here; meaning that, I am not going to impose the 0 

value here; and then it turns out that, the presence of these two 0s implies that, this set over 

here, is then the null spectrum of the code. And, it turns out that, designing a cyclic code is 

as easy as that; it is just picking a certain union of cyclotomic cosets and declaring that to be 

the null spectrum. And then you, the result is a cyclic code and we will show that. Of course, 

the big question is, is how good is your cyclic code. So, there you have to think a little bit 

more, and there is a certain result, that simplifies the design of cyclic codes; a very simple 

result, and we will come to that. But the point 

I want to make is that the transform domain approach gives you this complete simplicity; I 

mean, it cannot get any simpler than this; that you are saying that, all that a cyclic code is, is 

just a collection of vectors, whose transform values are zeroes, at a closed set; that is, at 



every frequency in the union of a certain collection of cyclotomic cosets. So, that also 

means, for example, that if you are constructing cyclic codes which are binary, because q is 

2, of length 15, then the total number of such cyclic codes is precisely 2 times 2 times 2 

times 2 times 2, which is 32, because for every cyclotomic cosets, 

You can either choose to include it into the null spectrum or not. So, that gives you a binary 

choice, and there are 32 possible choices with that, and each one of them gives you a distinct 

cyclic code. And that completely describes all cyclic codes, whose block length is 15 and 

whose alphabet is binary. Now, which are the good ones amongst those, well, we will come 

to that. We have just about a minute left and the first theorem, the first lemma result is that 

the null spectrum of a cyclic code is a closed set; and I have already mentioned it. We will 

begin our next lecture by actually proving this. I think this might be a good place to stop. 

Thank you. 

 


