
Error Correcting Codes 

Dr. P Vijay Kumar 

Department of Electrical Communication Engineering 

Indian Institute of Science, Bangalore 

 

 

Lecture No. # 38 

Deductive Approach to Finite Fields 

Good after noon, welcome back. This is now going to be lecture thirty eight, and we are 

approaching the end of our course here, but we still look at little bit of material to cover. So, I am 

going to go about three of our lectures more, and try to give you take it your point, where you 

have reasonable fields for cyclic codes. So, What I done is just speaks (( )) and written out 

lecture thirty eight, and I read through it and that will help us say the little bit of time. Now, let 

us you quickly recap, so what we did last time.  

(Refer Side Time: 01:07) 

 

Last time we were talking about finite fields, and although I label the lecture finite fields 

deductive approach. We really did not get excuse me we really did get the chance to go into the 

deductive approach, we spend most of the time recapping our earlier discussion on construction 

of the finite field, but we completed that. And so the end of the last lecture, we were just ready to 

begin discussing the deductive approach, so where we left of us, but actually provide you the 



construction of the finite fields, and the way we deduct was same that you can always take you 

can the generic construction is like this. (Refer Side Time: 02:02) 

 

You actually look at the set of all polynomials over certain finite field F p, and then you go 

modular and reducible polynomial and this really should be integrated as the collection of 

equivalence classes, where you define two to be equalling, if x divides the difference define this 

is a field and towards the end of the last lecture. What we did was we took an example and in the 

example the characteristics was two the reducible polynomial was x 4 plus x plus 1 and then we 

carried out an should you explicitly, the finite field. In this form where actually should you how 

the elements of the finite field look like. 

  



(Refer Side Time: 02:55) 

 

So, today we will actually go towards deductive approach. I just written out what I just told you 

here. (Refer Side Time: 03:03)  

 

Let us begin with the deductive approach; the deductive approach is very little it says look all the 

time you know is there have a finite field that the finite fields contain q elements. This is the set, 

it is a kind of like a black box, and entire to investigate what is internal structure is like? What 

are do know is that the element form of field that is there are two operations, which we called the 



additions and multiplications. And these operations, these set together these two operations from 

what is called the field, and the other important thing what we know is the number of elements is 

q from those we want to actually deduce the internal structure of the group. What do you mean 

by the fact by using the structure of the field. Why we know that the F q plus must be Abelian 

group, and that if you take this F z along under multiplication. It must satisfy the axioms of 

closure associatively the identity element the inverse commutative. 

(Refer Side Time: 04:10) 

 

And there is also a matter of distributor, and in addition we have that multiplication distributes 

over addition. So, we want to make use of this interact to reduce the structure. We will actually 

start this by looking at the identity element and multiplication. 

  



(Refer Side Time: 04:48) 

 

Let us called at one, now the finite field since it require satisfying all this axioms must contain a 

one, which is a multiplicative identity. But it contains one must it contains one plus one, one plus 

one plus one and so on. There contain 1, 2, 3, and so on, but since this field is finite this list 

cannot continue in definitely at some point there must be a reputation. Because after all infinite 

number of elements cannot be contain in a finite field. Let us say that m is equal to n and without 

loss of variety. We can resume that n is greater than m. Now just keep in mind that when I write 

n, but what I really mean is one plus one plus one in n times. Now, this now let me just say that 

from this it is follows.  

So, from this it follows that n minus m is equal to 0, in the way you should interpret that, because 

when you write n you really mean one added to itself m times. You mean that one added to itself 

n minus m times the collection of n minus m ones when added together most give you 0. This 

motivates the definition for something that is called the characteristic of a finite field. 
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The characteristic of a finite field is smallest integer p, such that when you take p copies of the 

identity element and multiplication, you will actually get 0. Why did you seen there must be 

some integers as that is equal to 0, now I assign let p be the smallest set integer, such that p 

copies of one, when added together will end of being 0, this is called the characteristics. 

(Refer Side Time: 06:56) 

 



The first theorem that we want to actually proved is that the characteristics of finite field is a 

prime, in other words the smallest number of integers copies of one in order together to give 0 

must be a prime. 

(Refer Side Time: 07:18) 

  

How do you prove that well it is a straight forward, supposing in this characteristic was actually 

a times b; that means you took a times b copies of one, and added them together and you obtain 

0. That is equalling to same, but a times b is 0, that if a, b is 0 then it must be that either a is 0 or 

b is equal to 0. But then remember that since you factor p into the form a and b into the product 

of a and b. It must be the both a and b lie between one and p, but then if a is 0 then that 

contradicts the minimality of p, because we said p is the smallest integers such that if you take p 

identity element copies of the multiplicative identity, then we actually get 0. But here you getting 

that a is 0 or b is 0. So, that contradicts the minimality. So that, only we could happen is in fact 

such a factorisation is not possible which tells you the p is a prime number. So, p could be 2, 3, 

5, 7, 11 and so on, but it cannot not be 6, 9 or 12. 

Now so that was the first observation, so what to summarise and what we will actually seen is 

that there is unique prime that is associated to a fine field of q element, and that prime is called it 

is characteristics.  



(Refer Side Time: 08:45)  

 

Now we are going to explore that little bit further, so well we say F q therefore contain 0, 1, 2 all 

there up to p minus 1. And we know that p is 0, which means that if you just, so here is the F q 

and here is the these elements, which is actually a subset of q? Now the arithmetic that we used 

to operate on this element is not the arithmetic, because for example if you had 1 to p minus 1 

you will get 0, because we know that p is 0 in the finite field. What means that the new work 

with these elements, and you under the two operations addition and multiplication, what you will 

be doing is virtually (( )) the operation that you would carry out in a field of p elements, there is z 

p. So, z p is something that you are familiar with, so these are subset of finite field really behaves 

like z p.  
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That means the picture that now that is that inside your finite field F q, you have this sub set 

which is z p. Only thing is that instead of calling of z p we will narrate F p, because preferred 

notation. Now is to use f to denote the finite field, and let the subscribe denote the size. So, that 

means that sitting inside larger finite field, we have a smaller finite field. Let me just make that 

just write here and write the F instead of z.  
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So, now we have larger field containing smaller field. Now in general, it can be shown that 

whenever you have a situation in which, you have two fields E and F in with E containing F. 

Then it can be shown that capitalise E is a vector space over F, this is true in general, so it is not 

for this particular situation.  

So, whenever you have the situation let you have the finite field, E containing the second finite 

field F, it can be shown and it is not difficult to show you just go through the axioms that going 



to defining vector space. So, this is the larger field will be a vector space over the smaller field, 

which means you can think of the elements in the bigger field as if there are vectors of the 

smaller field. Now, in particular that means that in our situation here, that means that the finite 

field of q elements is a vector space over the finite field of p elements, but there is a nutrition 

property that we can call upon here with respect to the vector spaces.  

(Refer Side Time: 11:52)  

 

Namely, that since that you can describe all the elements in the finite field like this; that is you 

can say that you can take a basics for the vector space over the field, so you can take a vector 

space for this vector space over this field, let the basics gamma 1 to gamma m.  

So, I am actually getting n denote the dimension of the vector space, that is why the basics is n 

elements, but that the properties of the basics tells is that every element in the vector space is 

unique expression as a linear combination of the basic elements. That means the element in the F 

q can be written in the form sigma a i gamma i, i is equal to 1 to m and put an underline here, just 

to emphasis the fact that we are thinking of these elements gamma i. So, these really belong to F 

q. these elements are elements of F q except that just emphasis the vector nature of these 

elements. 



I am actually putting a bar under near this. Now, but then the moment you like this and you 

realize that look there are p choices each of this co-efficient, and I can actually count I can say 

look this finite field on left has q elements. On the other hand you look of the size of this set and 

I know that the every search linear combinations is distinct, how many possible linear 

combinations are there? Well p choices for a 1, p choices for a 2, and p choice for a m. The total 

number of them is p to the m, it follows that the size of this finite field is p to the m, but the size 

of the finite field is q, so it must be that q is p to the m. So, it is summarise, but that tells is that 

every finite field F q must have size, which is the form q is equals p to the m some prime p m 

greater than or equal to 1. 

(Refer Side Time: 14:07) 

 

Moreover we can actually say what this primes, moreover p is the characteristic of F q. So, in 

summary every finite field F q must be a size, must be a half size p to the m, where p is a 

characteristics.  

So, it means that you cannot have finite fields for example of size 12, because the 12 is not the 

power of a prime. So, what are the possibilities one of the possibilities, the possibilities include. 

So, q for example could belong to 2 it could belong to 2 square, it could be 3 it could be 3 

square, it could be 2 cube and so on. It could be 5, so always it could be a pair of prime. Now 

after now it deduce the two things first of all that there is a unique prime, that is associated with 



every finite field. And that prime is the characteristics of the finite field, and in terms of the finite 

field, it means that if you take p copies of the multiplicative identity and add them together you 

will get 0. So, that is have you pull of p from the structure of the finite field F q, then the second 

property is that the finite field F q is a vector space over the set 0 to p minus 1, that is said 

actually forms the smaller field F p and since F q is the vector space over F p it must be that q 

must be the pair of prime p.  

(Refer Side Time: 16:05) 

 

Now, what we what to do is we want (( )) into them multiplicative structure of F q, what is that 

mean? We want to focus on multiplication, we are going to talk some much about addition and 

we want to see what we can actually say and the beauty about of this that we are going to build 

up to very simple picture, and you know that is the best of all things. You work very hard, but at 

the end very simple picture of the finite field. And that is the kind of thing would you like to 

have happen, you know want to work very hard and come up to the very complicated picture. 

We will go to work and extracted very simple picture of the finite field. So here, let beta belong 

to F q star.  

Now this star notation here, simply means that we are going to look at F q, but we are going to 

exclude the element 0. In other words F q star is the notation for all the non-zero elements in F q, 

then F q star contains it must contain one which you can regard as beta to the 0. That is beta to 



the 0 here it contains beta, beta square, beta cube, beta to the a, beta to the b and so on, but this is 

an infinite sequence. But the finite field after all is finite. Therefore it is some point you must 

have repetition, that is for some pair of integers a and b with b greater than a, beta to the a must 

equal to the beta to the b, beta to the a is equal beta to the b, but that is equal to saying that beta 

to the b minus a is equal to the 1. Now, what that is telling us is that is you take a non-zero 

element in F q. You can for every search elements there exists some integers such that, if you 

raise beta to the power you will get 1.  

 (Refer Side Time: 17:58)  

 

Now, let to the following definition, the multiplicative order of beta is the smallest exponent e, 

such that beta to the e is 1, because we already know that there is some integers says that beta to 

that integer is 1. So, now we asking what are the smallest integer with that property? And that is 

called the order of beta in F q. Now lemma 1, let beta let F q star have order e let assume that the 

order is an integer e and supposing someone tells you. By the way I just discover beta to the l is 

equal to 1 and this lemma is telling you well the only way that can happen. If when a is the order 

and beta to the l is equal to 1, the only way this can happen a is if e divides l and if e divides l 

this is going to happen. How do we prove that? 
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We do is we take l we know that the beta is order e, so the smallest integer to which the beta is e 

so the l must therefore the greater than or equal to e. So it makes sense to actually divide l by e 

and let is you that v is the remainder and we know that from Euclidian division or from, which is 

are every day integer division algorithm. We know that you can actually divided to get the 

quotient and the remainder and that the remainder is strictly less than e, can only be the larger e 

minus 1. So, now from this we can say that therefore beta to the l is beta to the u is e plus v 

which is beta to the u e times beta to the v, but this can be rewrite as beta to the e to the u times 



beta to the v, but beta to the e is 1 reason being that we defined e is the order of beta by 

definition beta to the e is 1. 

So, that is one time beta to the v which is 1 why is that, because by the hypothesis of the theorem 

beta to the l is equal to 1. So, beta to the l is equal to 1, which implies that the beta to v is equal 

to 1, but waits a minute. When we wrote the expression down when we note it that the v was 

strictly less than e, but I can that b. Because after all we said that the beta is the order e so the 

only way all these facts can be consistent simultaneously consistent if in fact v is actually 0. v is 

0 than this no contradiction, because beta to the 0 is one and when you define the order you 

excludes 0. The multiplicative is smallest so may be is the clarified that there, let us put that in is 

that the smallest non-zero exponent e such that beta to the e is one.  

(Refer Side Time: 21:21) 

 

So, that tells that e divide l again to summarise if beta is order e and beta to the l is equal to the 1. 

The only way that can happen is if e divides l, and (( )) if e divides l this will take place. Now 

there are couple more numbers which are somewhat technical in nature, again I just want to you 

keep you motivated by telling you, that if you are patient in this phase then eventually you will 

come to very simple picture of the finite field. So, number two says that if beta is the order e and 

you raise beta to the power l, then beta to the l has an order e divided by the greatest common 

divisor of l and e.  



Just to illustrate as I just to the site calculation here, so we will actually say that supposing let say 

that e is 15 and l is equal to 10, and what it is saying is that the order of beta to the 10 is 15 

divided by the greatest common divisor of 15 and 10, which is the greatest common divisor of 15 

and 10 is 5. So, this is will end of being 3. 

(Refer Side Time: 23:03) 

  

So, I this was just give you an example, I will not prove this, but I left this exercises for you, and 

the exercises is trade for... Then we come to an interesting element which says that look if beta 

and gamma are two non-zero elements in the finite fields, and let say that a is the order of beta 

and little b is the order of gamma. Then if a and b are relatively prime, that is what this is prime, 

where greatest common divisor is 1. Then beta times gamma has an order is equal to a, b the 

product of the orders, and how do you prove that I think that the proof is actually written down 

here, it is a little bit technical. So, I want actually go through it you can read it on your own, it 

provide it to make a notes more complete, but rather than rush you through the lot of technical 

details. I will try to give you the overall picture and the details are there in the writing. 

Let us try to focus on understanding what the lemma says, it says take two non-zero elements 

and let us says that the orders are a, and b, such that the a and b are relatively prime. Then it is 

saying that the product of the two elements as order equal to the product of the two orders, but 

the key point is that there the two orders are relatively prime. How do you use that? Now where, 



it terms out that you can actually use this to show that amongst all the elements in the F q star. 

Let us say that there is an element beta whose order is the maximum, what is that mean?  

(Refer Side Time: 24:50)  

 

It means that you are looking at the all the elements in the finite field and you looking at all their 

orders, and you want to pick the elements that has the largest possible orders. And let say that 

there is an element beta whose order is the maximum. What is that mean? It means that you are 

looking at all the elements in the finite field, you looking at all the orders and you want to pick 

the element perhaps the largest possible order, and let say the order is beta, and let say the order 

is r. Then the interesting claim that the order of all the other elements in the finite field must 

divide r.  
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For example, if we go back to our lecture of last time, here are the 16 element in the finite field 

of size 15, we notice here that alpha to the 15 is one alpha as the order 15 it terms out the largest 

possible order in the finite field is 15. And interestingly what that the claim saying is that every 

non-zero element, so you exclude this 0, every non-zero element in the field must have order that 

divides 15. 

So, we can actually verify for example that alpha to the 5 is order 3, alpha to the 7 is order 15, 

alpha to the 3 is order 5. So, all these orders actually divide 15 and that is the content of this 

claim. Every elements of the order that is divides r and the distinguishing feature of r is just keep 

in mind and the distinguishing feature of r is that is the maximum order of non-zero element. 

And the again this proof did not here, the proof is again technical. So, actually skip it, but it did 

not in case what you want to follow through with the details, so then what I have been shown 

tomorrow.  
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Now, what we actually shown is this lemma here lemma 3 is used to proof lemma 4, but we used 

to proof the claim. Let me just make a remark here, we will just say that the proof here is via 

lemma 3. So, lemma 3 comes into play in actually proving this claim. Now, we come to other 

lemma and what the lemma says is that well you know earlier you are talking about the 

maximum order of an element, and you called it r will the truth is that if the finite field contains 

q elements, then I can tell you what that the maximum order is.  
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That maximum order is precisely one less than the size of the field. So, another word the 

maximum order here is the q minus 1, which is p to the m minus 1, and that is an agreement for 

an example here in our last lecture, we have a finite field of 16 elements. The finite field look 

like this, contains 0 and all the other elements were pause of some element alpha, this is the very 

simple picture of the finite field that we like to deduce. And what the lemma that we just looking 

out is that in a finite field of 16 elements, the maximum possible order that any element can I 

have this 15. And that what this and what this table is saying is that well alpha here is order 15, 

say it has maximum possible order. We are just we are identify the element of maximal possible 

order. 
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How do you prove that? So, the proof is straight forward let beta have maximum order r, and we 

want to show that this r is q minus 1 or p to the m minus 1. Now, since theta and F q star, if theta 

belongs to F q star then theta must be order dividing r, which means that the theta to the r is 

equal to 1, which means that the theta is 0 of the polynomial x to the r minus one. But theta is 

just any arbitrary element in F q star that means for every non-zero element in F q is a 0 of x to 

the r minus 1. But the fundamental theorem of algebra tells that if you take a polynomial of 

degrees r it can have no more than r 0s in the field. 
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Therefore, it must be that the r is greater than or equal to p to the m minus 1, other than if you 

consider 1, beta, beta square increasing powers of beta. Again for some pair a b beta to the a 

must equal beta to the b with beta with b minus a less than or equal to p to the m minus 1, 

because the finite field contains only p to the m minus 1 non-zero elements. So, by the time we 

reach p to the m minus 2, you achieve the maximal possible counts thereafter any elements that 

you get must be repeat of some earlier element and therefore it must be true. That the difference 

between b and a must be less than or equal to p to the n minus 1. 
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Therefore, the maximal order must be less than or equal to p to the n minus 1, because this here 

is equivalent to saying that the beta that beta with the b minus a is equal to 1, beta to the p, b 

minus a is equal to 1, but r is the order. So this must be greater than or equal to r so b minus a. 

We know that from this sequence here that b minus a is less than or equal to r p to the n minus 1 

and r must be less than or equal to this.  

Therefore r is less than or equal to the p to the n minus 1, but we just show that r is greater than 

or equal to it so the conclusion is r is equal to p to the n minus 1. Now it is possible that went 

little faster than you might have light, but the m result is easy to keep in mind is just say that 

look. If you are looking at all the elements non-zero elements in the finite field, you look at all 

their orders and you pick the largest order of a non-zero element that number is precisely 1 less 

than the size of a of the field. 
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So, the corollary at with this, now we have a very simple picture of the finite field. The picture is 

that first of all every finite field contains an element whose order is q minus 1. Let us call that 

element alpha, in terms of alpha F q has very simple representation as being the union of 0 

together with all the non-zero elements in the field and every one of them can be represented 

uniquely has some power of alpha, where the power i ranges between 0 and q minus 2, because 

there are q minus 1 there must be q minus 1 elements in here. That is our beautiful representation 

of the finite field and important definition here.  

We will frequently speak about make reference to a primitive element of a finite field. So, an 

element alpha whose order is equal to q minus 1, in other words whose order is the maximum 

possible is called primitive element of the finite field. So, the word primitive is used in the sense 

that it can be used to generate all the other elements in the field. It is primitive in the sense there 

is a basic element from which you can build all other elements. 
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You can see that here except apart from 0, all the non-zero elements in the field can be obtained 

simply by taking the various powers of alpha. Now let us look at an example, so supposing this 

was the example that we looked at the last time. So, the p was two the reducible polynomial is x 

4 plus x plus 1 and we can eager regard this is a excuse me, a collection of equivalence classes, 

and use alpha to denote the equalling class of x or alternately one can actually regard alpha is an 

imaginary element, that is satisfying the alpha 4 plus alpha plus 1. What that does is that if you 

keep this in mind, when you can you do not have to keep carrying this around. 
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Because your element alpha has an sense this condition that you are doing arithmetic modular x 

4 plus x plus 1 in built, because alpha 4 plus alpha plus 1 is equal to 0, this is more practical. 

Here again is an example calculations, so you can see that as you take the various parts of alpha, 

modular making use of this relationship, you can derive and you find that you get 6 all the 

distinct elements in the finite field. And not only that you recover them and two representations. 

One representations is the one in which the non-zero elements are powers of alpha, which is this. 
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The other representation is one which every element in the finite field is a polynomial in alpha of 

a degree is less than or equal to 3. You can notice that everything eventually reduces to a 

polynomial of a degree less than or equal to 3 with binary co-efficient, and you know that 

number of polynomials, whose degree is less than or equal to 3 is 2 to the 3 plus 1, which is 16. 

Next what we want to actually talk about now that we build up the simple picture of the non-zero 

elements in the field. We want to build up to different picture and may be what I will do is to 

motivate this and let me introduce the page here. 
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So, what I want to do here is give your preview of what you trying to do next. Now we went to 

look again. So, I will say minimal polynomials and also by example, and in this example you are 

going to have characteristics to f(x) is x 4 plus x plus 1 are a finite field of F q is going to be F 2 

x mod x 4 plus x plus 1, and we know that an alternative way of looking at it is that F q is 

precisely the set of all polynomials a i alpha to the i, i is equal to 0 to 3 with the a i or either 0 or 

1, where alpha is by the definition the equalling classes of x in f 2 x mod x 4 plus x plus 1 and 



hence satisfies alpha 4 plus alpha plus 1 is equal to 0. Now, it terms out that if you can organise 

the elements in the finite field in the following way you can take the elements 0. 
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You have 0, you have 1, you have alpha, alpha square, alpha 4, alpha 8, alpha cube, alpha 6, 

alpha 12, alpha 9, alpha 5, alpha 10, alpha 7, alpha 14, alpha 13, alpha 11. This is the collection 

of all elements in the finite field, and it first claims look like the rather peculiar way of 

organising it does not seen to have any structure. 

But we actually see what the structure is? First of all we want to identify with, so these this is a 

bunch of 4 elements, it terms out that all these elements share the same minimal polynomial. 

What is that minimal polynomial? Here you may think of this as being your beta and here what I 

am going to put down is an beta of x. So, it terms out that the beta of this is x likes. This is x plus 

1, here you have x 4 plus x plus 1 4 plus x cube plus x square plus x plus 1, x square plus x plus 

1, x 4 plus x cube plus 1. So, this is the structure in terms of minimal polynomials. And of course 

we knew that every element has a minimal polynomial, and we already knew that alpha had 

minimal polynomial, I meant we knew that the alpha has 0 of x 4 plus x plus 1.  

So, what this is telling you is that alpha is as this is minimal polynomial, but it chases the 

minimal polynomial with all these other elements. You can actually interpret that as telling as 



that in fact what is true is that x 4 plus x plus 1 can be factored according to alpha x plus alpha x 

plus alpha square x plus alpha 4, and then you also have x plus alpha to the 8. So, that means that 

these collection of 4 elements are precisely the 0s of this, and you can write down a similar 

statements (( )) get to of this line, so that you can see things more clearly. So, the similar 

statements can be made about all these other collections so that means that the 4 0s are these are 

precisely this. So, we are leading up to this, so we have this feather nice structure for the finite 

field. What characterises of the polynomials that appear on the left are two things. One is that 

every one of these polynomials is reducible, that means it cannot be factored. Secondly if you 

look at the degree of if you have degree 1, and you have degree 4 and you have degree 2; in 

terms of that every reducible polynomial, whose degree divides four appears here, so where does 

four coming to the picture 

Therefore, comes into the picture, because after all we are dealing with the F of 2 to the 4, and it 

is those 4, that is actually causing these degrees to be either 4 or else interestingly divides as 4, 

and this is always going to the case. So, if you have F of p to the m and you write down the 

minimal polynomials of early elements in the finite field you are going to get polynomials over 

of the whose degree divides m and you going to get all of them.  

(Refer Side Time: 45:04) 

 



 

And so along with these you also have the companying statement that since we know therefore x 

to the 16 minus x is x times x plus 1 times x square plus x plus 1 times x 4 plus x plus 1 times x 4 

plus x cubed plus 1 times x 4 plus x cube plus x square plus x plus 1 you is a dot in here. So, that 

means that you can factor x to the 16 minus x into the product of reducible polynomials, this 

reducible polynomials have the property that the degrees divides 2 to the 4 and 4 comes, because 

16 can be expressed as 2 to the 4.  

So, in fact it may be better for us to actually write these 16 over here, I just to emphasise that fact 

just write this as 2 to the 4, that is the picture that we trying to build up to...  

 

 

 

 

 

 

 



(Refer Side Time: 46:22) 

 

So, now having motivated the discussion of minimal polynomials, let us go ahead and look at the 

how would introduce this. So the way we started by discussion on minimal polynomials. Let us 

to say let every element non-zero element in F q is the 0 of x to the q minus1. We have to see 

this, because the maximal order is excuse me, a small type of here this really is x to the q minus 

1 minus 1. 

We know that the maximum order is q minus 1, and that the every element has order dividing 

that consequence of that is that every non-zero element to the finite field is 0 of x to the q minus 

1. Only element missing in this description is the 0, but 0 is a 0 of x itself, so by multiplying this 

by x. We can make now the uniform statement that every element of f q is the 0 of the x to q 

minus x. Now given an non-zero element given an element in the finite field, there is an 

associative polynomial of which that element is 0, so that then it makes sums to actually define 

the minimal polynomial m beta of x of beta of F q star is the smallest degree manic polynomial 

of which beta is 0.  
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We know that the every element is 0 of this, but may be this is not the smallest degree 

polynomial of which that element beta is 0. Let us look for that and that is called the minimal 

polynomial of beta and it is written as m sub beta of x. So, in our just concluded an example, 

these were these polynomials m beta of x. We had all of these, these are the smallest degree 

polynomials. For example, you asked what is the smallest degree polynomials approach alpha to 

the 6 to the 0, then we answer is this, and this would be m beta of x from m beta alpha to the 6 
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The first lemma says that look m beta of x is reducible aware must that be, because supposing 

the minimal polynomial was not reducible, and there it could be factor into the product of two 

polynomials, each of whose degree is less than the degree of m beta. Then, because n beta f beta 

is 0, that means that the product of the f beta and g beta is 0. So either one of them must be 0, but 

these polynomials of degree is less than the degree of m beta, but we already said that this is the 

minimal polynomial.  

This is the least degree polynomial of which beta is the 0, so that is the contradiction. So, only 

conclusion that we can drag there is therefore it must be it cannot be that we can fact m beta of x, 

so it must be reducible. So, the minimal polynomial is always reducible, and in fact we actually 

saw that, because already told you that in this listing here, all the polynomials that you seeing 

here are reducible, let lemma just told us what that must always be the case. Then the second 

lemma is that look supposing you have the minimal polynomial m beta of x and supposing you 

somehow find out that f of beta is 0, then the only way that can happen is if m beta of x divides f 

of x. There is the minimal polynomial of beta in a way is very possessive, because it says the 

only polynomials which when evaluated at beta will give 0 or those polynomials which m beta of 

x divides. 
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How do you prove that basically, we use the Euclidean division algorithm you takes this f(x) of 

which beta is surpassingly is 0. So, that is the hypothesis of the lemma then we use the Euclidean 

division algorithm divided by m beta to get a remainder f(x) is a x times on beta of x plus b x. 

Now a x here is the quotient and b x is the remainder. We know that the beta x is 0, which means 

that a beta and beta beta plus b beta is 0, but since this is the minimal polynomial of beta we 

know that this is 0. So, this can only happen is b beta is 0, then we again look this b of x has a 

polynomial, because you are doing division whose degree is strictly less than the degree of m 

beta of x. 

Now even this polynomial is 0 or it is not, if it is not a 0 polynomial then it would contribute the 

minimality of the degree of m beta x, because n beta of x is supposedly the smallest degree 

polynomial of which beta is a root is a 0. But you just discover the b of x has beta x is 0 and it is 

degree is lesser. So, only possibility is that b(x) is actually b is 0, but then the b(x) is 0 and you 

look at this is equation, you see that m beta of x must divide f(x), and that is the claim of the 

lemma, you will put this claim is used at a way, because we already known that every non-zero 

element is as 0 of x to the q minus x just few minutes ago, we held on this that every element of 

the finite field is 0 of the x to the q minus x. 
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But we just proving that the only way that can happen is if the minimal polynomial divides the x 

to the q minus x. So, what happening is that we shown, that the minimal polynomial of every 

element in the finite field divides x to the q minus x.  
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So, that is where we are perspective minimal polynomials, so just to recap. So, in this lecture 

what we done is we first left out the multiplicative or structure of the finite field. We are actually 



going through the deductive approach to the finite fields. The first thing we establish is that 

given a finite field of size q, there is an integer called the characteristics. And that characteristics 

is prime first of all then the size of the finite field must be the power of the characteristic is true, 

and then the finite field contains the primitive element. That is an element such that it is powers 

generate all the non-zero elements in the finite field, and such an element is called the primitive 

element. So, that allows you to have the very simple picture of the finite field in your mind; one 

and which the finite field appear simply as the powers of some special element alpha which is 

called special element alpha, you can see the 16 element front out here. 

So, in general we assign that this would be the structure of the finite field. And after that then we 

said look we can organise the finite field the elements in non-zero elements in finite field. 

Actually all these elements in the finite field in a different way we can kind of classify them and 

group them together, according to the minimal polynomial; that is the minimal polynomial being 

the smallest degree polynomial of which that element is 0. So, here are the 16 elements in the 

finite field of size 16, here are the associative minimal polynomials. 

Now, we shown that each of this necessarily reducible, that each of this is necessarily divides x 

to the 16 minus x in general x to the q minus x. We will shown that and that is about, we are 

against the other thing that we also know has the reduction is that look. If you take the x to the q 

minus x, we know that it is 0s are all the elements in the finite field; on the other hand the 

elements in the finite field are 0s of minimal polynomials. So, clearly these relationships between 

these polynomials and the minimal polynomials, it is going to take the little bit more effort in the 

next class by us to actually show that this is the case there is in fact that if you multiply all the 

minimal polynomials together after finite field you will get x to the 16 minus x.  
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So, I will said here this is the preview may be as should emphasise that and put that in the 

statement here. So, let me write down preview, the preview of minimal polynomials. I think this 

is the good place to stop, so we will continue and it one take as the very much long to find up our 

discussion on finite fields and that point we can talk start talking about cyclic codes. So, thank 

you. 

 


