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Good afternoon, welcome. So, this is now entering lecture 34. And as always, let me begin 

by going over what we covered last time. 

(Refer Slide Time: 00:44) 

 

The title was belief propagation decoding continued, and in reality this was the lecture and 

which we actually started talking about belief propagation. And the perspective I wanted to 

bring in the last lecture was that as far as decoding was concerned the algorithm, the belief 

propagation algorithm is exactly the algorithm, that we used in conjunction with the g d l. 

So, that is for that reason just to remind you that that was the case. And also to make another 

point that we when we use the g d l to decode the 7 4 2 block code. Then I wanted to point 

out that, there was a simple interpretation for every message that was passed on the edge on 

the on the junction tree graph for that particular code. And it had an interpretation in terms 



of beliefs; and in fact, it is that which actually gives us raise to the term belief propagation 

decoding. So, that is how I actually started out. 

So, here what I pointed out was look, if you actually look at this figure over here; then you 

can see that you have messages, let us say that we are in interested in decoding the value of 

this particular code symbol. And then I looked at I tried to give you sense for so overall what 

we are interested in as finding out what is the probability that x 1 was transmitted given all 

the received symbols, and given that the code symbols themselves satisfied parity checks A, 

B and C. 

So, this in itself is a belief, because it is the belief about x 1 based on all the evidence. But 

you are in above that it was interesting that you can also give interpretations to messages 

intermediate messages that also have been can be explained in terms of belief. 
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So, for example when we come down over here, then the message that was passed here, and 

again we are aiming to eventually compute at the objective function here, but even at the 

intermediate step, the message that was be cross this barrier over here was the current belief 

about x 4 based on some evidence. 



What does some mean? Well it is all the evidence which is on this side of the barrier, and 

this most specifically that evidence is where the received symbols y 3, y 4, y 5, y 6, y 7, and 

on top of that we also have that belief that also we also had knowledge of the particular 

parity checks B and C when rolling back even further, if you actually look at the message 

across this barrier again it is a belief about x 4, but this time based upon y 3, y 6, and the 

parity. So, when we talk about belief propagation decoding on the tanner graph, then we 

have doing exactly this method of message passing exactly this way of passing message is 

that we actually carry over. The other question that is in my mind as well, but you know that 

whole theory was actually developed for junction trees, where us suddenly you are in 

porting it now to the tanner graph of an LDPC code. 
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What is the connection? And then I actually pointed out that wait a minute. If you assume, 

so here is your tanner. If you assume that the tanner graph of an LDPC code has a tree like 

neighborhood to depth 2 l. 
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What you mean by that is that if you unravel the tree like this, and this is called the 

computational tree, then every node that you encounters distinct, so that means there are no 

cycles. For example, if this node forded to also pear here; that means, they would be a cycle 

in this graph. Since the nodes are all distinct at least to depth 1, 2, 3, 4 times to it to depth it, 

there are no cycles in the neighborhood of node 21. 

So, when the neighborhood is cycle 3, then I made the point that look if you actually write 

down these parity checks, the way we did for the 7 4 2 code in terms of listing all the 

variable in the series that they actually check parity on. Then you see that in fact, it is a 

junction tree, for example and the way you check it, check for a junction tree is just by 

projection, so let us project it for a instance on variable 17. If you project on to 17, then you 

get the actually your connected graph, which consisting of this four nodes. So, similarly you 

will see that in every instance you get a connected tree, and therefore this is a junction tree. 

Am I right. 

This is the junction tree that one would obtain if one posed the problem of computing this as 

an MPF problem. So we are in fact, under the tree lock assumption in the certain of a g d l 

and of the junction tree, and because of this, we can actually interpret every message that is 

being passed around in the graph as a belief.  



For example here, you would be passing from this node to this node a belief about x 17 

based on their evidence would corresponding to receive symbols 1, 2, 3, 4; and including the 

knowledge that there was a parity check here and a parity check that. So, now that is why it 

is called belief propagation decoding. 

(Refer Slide Time: 06:04) 

 

So, and in I introduce the notation of E 1 E 0 E d v minus 1. So, this stands for evidence. So, 

at a at a generic variable node you get some belief about x t from the channel which I call 

evidence is 0, but then you also get evidence from the other check node which are called 

event E d v minus 1. And what actually goes out is a belief about x t based on the union of 

all these evidence, so that is actually listed here. 
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And more precisely in terms of the g d l, we know that these, because of the way g d l passes 

messages; because at variable node, the g d l would just collect all the incoming messages 

multiply them together and send them all. 
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That is what we are doing here. And this proportionality is included, because well for 

reasons that we seen earlier. Now, we are going to do something slightly different from what 



we did under belief propagation, because we are going to actually interpret rewrite these 

messages in terms of log likelihood ratios. So, in particular here, where as this is a belief 

whenever going to pass on to the ratio of belief, which is a likelihood ratio and then 

dominantly pass to ratios; that is revaluate this remember that under belief propagation we 

are passing our g d l we are passing functions, but now we are evaluating the function at a 

particular value of x t 1 and minus 1 in this case, when you compute the ratio at this 

proportionality constant goes away and well after the equality. So, you have likelihood ratio 

here on the left which is the product of the likelihood ratios. 
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So, then we pass on then we take logs on both sides, and that leads as to a simple expression 

that is the log likelihood ratio at the outcome is simply the sum of the likelihood log 

likelihood ratios at the input, so very clean and simple. 
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So, that expression is well what happens on the check node. Well thinks at a check node 

have slightly more involved, because there is a marginalization that actually take place. So, 

if you will recall at a check node what actually happens is these are in fact, the incoming 

messages, very similar to the types of messages there are incident on a variable node; what 

goes out is also very similar, but the relationship between input and output is like this, 

because they have the marginalization here. 

Because, if you think of this is the g d l, this check node is really a function of several 

variables right. So, at the local domain in the terminology of a junction tree would list all the 

variables. Now, on the other hand you are sending a message to a variable node that has a 

single variable. And therefore, the local domain consisting of a single variable, so between 

here and here you need to marginalize with respect to all of the other variables. So, that is 

the expression over here. 
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Now, once again just as we did in the case of a variable node what we would like to do is we 

would rewrite this in terms of log likelihood ratios. So, how can we do that? Well, so there is 

there is a technicality here we go through some manipulations which have interpret here, but 

when you are when all is sudden done what you actually get is this relationship between 

input and output. You get that the log likelihood ratios at the output are related to the log 

likelihood ratios at the input like this. So, this is where we will actually we pick up our 

lecture from, so because I have gone through this in some detail I am not going to put down 

a summary, but I am just goin g to jump or maybe I will just very briefly very quickly and 

briefly summarize what we did? 
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So, the recap in today is lecture of the last lecture was a discussion of belief propagation 

decoding of LDPC codes. 

(Refer Slide Time: 10:40) 

. 



 

And particularly and relation to message passing along along junction trees along a junction 

tree; and then we expressed a messages or a rather messages and in brackets I will write 

beliefs expressed in terms of log likelihood ratios. 

So, that is our summary and now we want to pick up the third in today’s lecture. Now, today 

is lecture is going to actually talk about something called density evolution. In which is 

really similarly to what we did in the case of Galagus decoding algorithm a, there what we 

did was we first I outline what the decoding algorithm was, and then I have tried as far as 

performance analysis was concern, we were in interested in trying to actually characterize as 

well, if you have to run this algorithm. What is it is performance in terms of the number of 

erroneous messages that are passed. So, we want to do something very similar even here. So, 

because the calculations tend to get little bit mercy what I thought I would to do in this 

lecture was actually prewrite the calculation. I have pre written the lecture, and I realize that 

when you pre out a lecture, the lecture tends to go little bit fast I will try to slow down a 

little bit to compensate, but here is to recap. 

So, at a variable node we intro the conclusion that beliefs the equivalent message passing 

rule in terms of log likelihood ratios at a variable node is simply to take the some of the 

incoming log likelihood ratios including the one that comes in from the channel at a check 

node. 
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Now, at a check node although it was not obvious it is clear and I will just perhaps put this 

down in your last lecture itself from this it follows that therefore tan hyperbolic (l d c by 2) 

is the product j is equal to 1 to d c minus 1 tan hyperbolic (l j over 2). So, that was the tail 

end of last time’s lecture. So, we pick up the thread here. 

(Refer Slide Time: 14:13) 

 



So, we know that the input output ratio at a check node is in terms of the tan hyperbolic 

function alright. So, the incoming are the allies the out coming is l d c. So, you can convert 

this in and say that l d c is therefore, twice the inverse tan hyperbolic function of the 

product. This describes the input output relationships. So, once you know this you already 

know how to actually decode because you know the messages that are going back, and forth 

I have told you how with how messages are passed across variable node and check node and 

you had done. 
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But now, we want to start performance analysis. So, may be just to actually enforce size that 

and you just insert a page and you say I just add a note saying with this with this we are 

done with with the description of belief propagation based message passing decoding of 

LDPC codes. 
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We now turn our attention to performance analysis, and the performance analysis will be 

carried out in terms of will be carried out we had density evolution. So, this is to be carried 

out using density evolution. 
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So, what does that mean? It means that so perhaps I should just say that may I should pass to 

illustrate that a little bit. So, what we mean by that is let see, that you have a variable node 



here, and you have incoming and outgoing messages l 0 l 1 l 1 l d v minus1 and l d v is your 

outgoing message. 

And similarly at a check node and at the check node we have incoming outgoing messages 

which are expressed in terms of log likelihood ratios. And a remember that in here log 

likelihood ratio. So, it say this one l d v is l n of p some variable x t equal to 1 given some 

evidence divided by p of x t equals minus 1 given certain evidence. 
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Now, when we do performance analysis we assume that the all one code word was 

transmitted. So, put that down here in carrying out performance analysis, we assume that the 

all 1 code word was transmitted. Now, we discuss this sometimes earlier when the issue of 

well in general, when you are doing performance analysis of LDPC code. 

We said that look we can always assume that the draw 1 code word was transmitted 

provided we had certain conditions that were made. There is you needed the channel 

symmetric condition to be met, and you needed that there was symmetry in the messages 

that were passed across variable node and you needed symmetry in the messages that were 

passed across a check node. And in fact you can check that that is very easily the case, 

because here… 
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So, let us take a look at there. So, at a variable node at a variable node you have that the 

output messages simply the sum of the incoming messages, variable node symmetry requires 

that if you change the sign of all your incoming messages, the output will also change sign. 

So, that is clearly declared here. So, let says make a note of that by saying that I will remove 

this when here create a little bit space, and put down that note that the variable node 

symmetric condition is met. 

So, the variable node symmetric condition is met. At a check node, what we have is that the 

input output relationship is in terms of the tan hyperbolic, and our check node the check 

node symmetry condition that we actually required was that if you put a sign on each of the 

incoming messages, then the sign on the output should be the product of the incoming signs 

up. Let me see if I can actually pull data.  
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So, remember these are the at a variable node is said that if you multiply all the messages by 

a constant b, which is e the plus or minus 1 then the output also be multiplied. And we just 

check that was true for case of belief message passing based on belief, at a check node you 

need that if the incoming messages are signed with individual signs, then the outgoing 

messages are signed with the product of the signs. And I just want to actually show you that 

thus the keys here. 
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Well whiles that because supposing each of these incoming messages was multiplied where 

sum d, then the way then each of the tan hyperbolic function causes them to be pulled out of 

this, and then again the inverse is similar twice that. Well take a look at the tan hyperbolic 

function which have actually sketched, which is a sketch little bit later here. 

Here is a sketch of the tan hyperbolic function. So, you see that the tan hyperbolic function 

has the same size of the input, and in fact if the input reverse a sign as symmetry the tan 

hyperbolic also reverse a sign. So, what that means in particular over here is a so perhaps I 

will just insert a page here.  
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And say that so can verify that l d c that if you replace each l j by l j times b j by sign, where 

b j is either plus or minus 1 then l d c. The result in l d c is equal to 2 tan hyperbolic inverse 

the product. 
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You can verify that it first of all pulls out here, and in eventually pulls out of this. So, you 

actually get this. And you get and hence the check node symmetry condition is also met. 
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So, coming down here, so now without we have justified in making assumption in carrying 

out performance analysis that the all one code word was actually transmitted, so that is why 

we now. So, we want to do belief propagation decoding and the way you do belief 

propagation decoding was actually say you know what? Every time I pass a message from a 

variable to a check node, I am going to regard the message. So, because this is an iterative 

process, it is an iterative process that is actually carried out on the tanner graph. 
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Here is a tanner graph and in belief propagation decoding what we are doing is, we are 

passing messages back and forth along these edges, and each of this is a log likelihood ratio. 

Now, we will say that a message is incorrect and we know all the code symbols can be 

assumed for performance analysis to be assume to be all one. So, and if your belief is 

correct, then since your belief is the log likelihood ratio over here, if you look over here, if 

in fact, this is positive; that means the probability there it is a 1 given e is greater than the 

probability there it is minus 1 which means that this quantity is greater than 0 right. So, if 

this quantity is greater than 0, then you are going to conclude that well my current belief is 

that is actually a 1, that 1 wins over a minus 1. 

In this sense we are going to look at these message, and look at the sign of these messages; 

if the sign of the message is positive, then we are going to say that is a correct message. If 

the sign is negative, we will actually say it is an incorrect message, but how do we actually 

analyze, how many or what is the probability with this there incorrect or correct. So, what 

we are going to do instead is well, we will actually trying to do something more. 
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Because it is easier will not only examine the sign of these messages will actually examine 

their density function. So, now our interest is in saying well we actually want to see, so I let 

me duplicate this slide and I will put some writing on it. So, let me get rid of some of (( )) 

writing here.  

(Refer Slide Time: 30:40)  

 



This time what we are going to be interested in knowing is not just the likelihood ratios, but 

rather on their densities. So, we are going to be interested in saying well look there is an l 0 

here, that is true but it has a certain density function; there is an l 1 here, and there is an 

associated density function, and similarly over here there is an l 2, and there is a p of l 2. 

And at the output I have an l d v which is associated with a certain l d v and so what we are 

saying on a density evolution is that earlier we were varied about the messages, now we 

have varied about the density function. 

So, knowing the relationship between this variable and this other variables, we want to 

translate our knowledge of that relationship to actually derive these densities in terms of the 

other densities. By the way I am kind of using short form, because normally what you do is 

you would write p x of x, but I am just writing p of x saying that the underline grand 

variable is understood. So, hopefully that is actually clear that is a short form notation. 
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And the same thing here; that is you have an l 1 here associated with the p l 1 and so on. So, 

that is our next task is to actually compute density functions. And I just wanted to introduce 

some or let us do one thing, let me get rid of this page first here we go. 



(Refer Slide Time: 33:30) 

 

So, towards will actually do a few manipulations, before we get to the density evolution 

stage. So, I want to slightly change the order in which I carry out this description. So, let me 

just skip a head and go over here. 
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Let us start the discussion at a variable node and at a variable node, we know that is so I take 

that back. So, I see that my pages are in a certain order. So, rather than confuse you may 



describe them in the order in which they are, let us get back here. So, we were talking about 

carrying out density evolution which says let describe the densities in terms of the incoming 

densities, but before that they has some computations that will be found helpful. So, I am 

going to request your passions, because right now is not completely motivated. 
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But we know that what happen there in terms of the messages is that here, the likelihood 

ratios simply the sum of the incoming likelihood ratios, here it is little bit more complicated. 

Because you have you have that your l d c the incoming and outgoing likelihood relationship 

is through the tan hyperbolic. And that present some challenges, so we would like to 

overcome them, and we will actually do a change of variables. What we will do is we will 

replace the tan hyperbolic function by a pair of a variables, so x will actually keep track of 

the sign of tan hyperbolic of l by 2, but because the tan hyperbolic function monatomic in l, 

and sign preserving the sign of the tan hyperbolic is the same as the sign of l. 

The second is to keep track of the magnitude of tan hyperbolic, and will keep track of it by 

making use of the log function, and it will be convenient to take the negative law. But 

basically what we are trying to do is we are trying to say the reason for this is we going to 

say look at a variable node, we have this very simple relationship in terms of log likelihood 

ratios, here it is more complicated the relationship is terms of the tan hyperbolic. 



So, the first thought that comes to my mind is well why do not we take logs on both sides 

then it will become an addition again. The only problem with taking logs on both sides is 

that this is the quantity that could be the negative or positive. So, you cannot take the log of 

this because when it is negative, it is not even defined. We get on that by saying well let us 

split this into two variables or two functions; one function which carries the sign 

information, and a second function which carries the magnitude. So, that is what is actually 

happening here. 

(Refer Slide Time: 37:47) 
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So, we are x keeps track of the sign and y keeps track of the magnitude, so then our original 

relationships in terms of type of tan hyperbolic. Can you can show there it is simply replace 

to saying that look the sign at the output is so this should be x d c and y d c, let me correct 

that; this is x d c y d c. So, that is the output x, and y’s are related to the input x and y is 

simply by summation. 

And that is not have to see, because each of this is the log of the magnitude. So, since the 

magnitudes are multiplied by logs are added, so that is why have this relationship. And 

similarly the sign you can also verify that this is true, because each of the x i is keeping track 

of the signs of the individual tan hyperbolic and the sign of the overall is in terms of the 

product of the signs. 
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But here, what x d c is doing is it is keeping track of the sign. So, so the onto what do you 

mean the sign function. So, the sign function is defined in a somewhat in a conventional 

way. 
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So, where sign of l is 1 a sorry 0 is for l greater than or equal to 0 and is 1 for l less than 0, 

that is the sign of a say you have to plot this, it would look like this it would be something 



that is 1 in the negative part, and then it would be 0 for the positive part. So, here I am 

plotting sign of l verses l now. What we conventionally think of is the sign might be or is 

rather is what is minus 1 to the power sign of l. 

Because this function is more like the function we would have in mind there is it is 1 here 

and it is minus 1 for negative, but however it is convenient. So, this is a binary 0 1 function 

here, and this is our traditional plus minus 1 more convenient to work in terms of this. So, 

that is the reason while where as in the plus minus form domain, you would simply have 

your multiplication of the signs in the 0 1 domain, it turns out to be an addition. And the 

next thing about it is now that we have addition on both sides on both terms, we actually 

have addition all though one addition is modular to and minus this alright. 
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And this is your sign. Here is l tan hyperbolic when you take the log, you get a function that 

looks like this when you take a negative log, it looks like this the sign is this function. 
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So, then if you want to represent, now in terms of this transformation what is taking place at 

a check node you see that having the incoming log likelihood ratios. Then there is this 

transformation t which takes an l to a x and a y exactly like will actually shown here, that is 

given an l you pass to an x and y using this map. That is where the transformation is actually 

carried out. Similarly, on each of the incoming messages you transform the corresponding 

log likelihood ratio into a a pair of functions. 

One representing the sign and one representing a magnitude and then this check node simply 

has to actually compute the sum according to this expression over here. It is just going to 

compute the sum here, and then after you computed. So, x d c is the modular two sums of 

the incoming x j is y d c is the real sum of the incoming y j is and then you do a inverse 

transformation which takes you back from here to here. 

So, we made this change on the check node from this other picture here, because the picture 

here, involve the tan hyperbolic function, and we wanted to get rid of that so we have this. 
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Now, density evolution says that look in abstract it says that look where as earlier we 

acknowledge that at every variable node you had a map, in is in the initial iteration that is in 

the 0 th iteration when the only input is from the channel the map is from the channel output 

alphabet to your message alphabet, and associated to that because anytime you have a map 

from one variable to another you also map that the density function on that variable towards 

density function on this run variable. This is the corresponding map in terms of the density 

function. 

The distinction between this and this is the presents of this star. We will say that this 

mapping here induces this mapping on the density functions. Similarly, at the l th iteration, 

there is and you can see that here, in terms of messages there is a mapping from the channel 

output alphabet and the message input alphabet to the output message alphabet, and which is 

what this is there are d v minus 1 incoming messages. 



(Refer Slide Time: 43:42) 

 

We assume that the message alphabet along any edge is the same, but that the channel 

income output alphabet could be different. So, this is the mapping that is carried out at a 

variable node and the corresponding mapping in terms of density function is given by this 

put the star only thing is that you see that I actually take I am taking that mapping on the 

density functions. Actually I have a product of density functions here. 

And that is should be some we need to pass that because I mean why do you how you 

justified in taking the product; that seems to employ that your incoming variables are 

random or linear or statistically independent. And that is the case, because you see your 

output here is the sum of this input variables. 
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But if you assume that the neighborhood is tree like right; that means, that if you unravel the 

tanner graph you will get a graph like this. What we want to say point out is that look the 

message that is been passed the message, that is for instance that is being passed here. And 

the message that is being passed here, this message is now a function of all these received 

variables. This message which is a likelihood ratio so this is for instance this would could be 

an l 1 this could be an l 2. and what actually goes out is an l d v there is also a channel input 

which is an l 0. 

So, now each of these inputs, so l 0 is a function only of the corresponding received 

symbols. That is y 21 l 1 is the function of all these received symbols and also a makes use 

of the fact. That there are certain parity conditions that the code symbol satisfied l 2 

corresponds to this branch of the tree. And therefore, uses these received symbol knowledge 

as well as these parity checks. Since the received symbols are independent given the 

transmitted code word these messages are independent, so that is important. 

 So, the incoming messages under the tree like assumption can be assumed be independent 

and this is the reason. Why you actually write the product density function, why you write it 

in terms of the product of the density functions rather than adjoin density function. 



Similarly, at a check node the messages are make from d c minus 1 fold messages and this is 

the corresponding message on the map on the density functions. 
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So, we want to actually say that look I now we are getting down to specifics, we know the 

input output relationship in terms of messages is given by this. What can you say about the 

densities? So, the trick is to actually where to the characteristic function, we take the 

characteristic function here, and because these are independent this expression breaks down 

to the product of individual characteristic functions. 

But, any characteristic function is more or less the Fourier transform apart from a sign. So, 

In fact, let us in order to make it exactly the Fourier transform like simply put a negative 

sign on both sides. So, then the characteristic function as defined in this manner is the 

product of these by independence, and each of this is a Fourier transform. So, what that 

means is that? 
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The density function of the output message can be obtained by taking the Fourier transforms 

of the incoming density functions multiply by them together. Multiplying them together, but 

a symmetry there are all actually identical. So, you can race it to this power then you take 

the fully inverse. 

There with this we were actually accomplished density evolution at a variable node that is 

where able to relate the density function of the output message to the density functions of 

the input. So, that was attentively end list at checks node things are easy, but more 

complicated where is that?  
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Because now here check node look likes this the mapping at a check node is in fact, a series 

of first of all each of the individual messages is passed across a transformation tree, and then 

there after after the check node carries out, it it is map then there is an inverse 

transformation. So, in some sense we have to actually trace the evolution of the density as it 

goes across the transformation. So, that is step one across the check node that is step two and 

then across the reverse transformation. One we now have to keep track of three 

transformations of the density. And that is what will actually did. 
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So, first step there is incoming density incoming log likelihood ratios transform from an l to 

an x and a y, and you can show that if you have given the density function of l, then they 

join density function of x and y is given through this pair of expressions. Why does it look 

like this, because x is a discrete random variable y is continues. So, x can take on values 

either 0 or 1 where as y being continues. So, we break this joint distribution function into 

two parts 1 which corresponds to x equal to 0, and 1 is corresponds to x equal to 1 and we 

get this expression. This involves some change of variables transformations which have will 

not discuss in any great details here. 
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Now what does what is that a accomplish that is accomplished; that means that we now 

know how to actually go from a density. Here given here to a density on the x 1 y 1 now we 

want to go given all the incoming densities on x y to the density on the outgoing x y. Let us 

do that next. 
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So, here let us define a joint characteristic function of x and y in this manner. It is minus 1 to 

the lambda x j e to the minus y j a lambda s. Lambda takes some values either 0 or 1 s you 

can think of s a complex variable as you would in the case of say a Laplace transform. So, 

this can be evaluated by actually evaluating it. Now, this expectation is over both x and y. 

So, x take on value 0 and 1 and y takes on a continue values. So, this expectation evaluates 

to this and so it is an average. 

So, it is an average of all the values of x, but there is only two of them in average over all 

the values of all and that is a continue. So, that why we have a sum and an integral, and you 

can actually see that if you separate the parts corresponding to x equal to 0 and x equal to 1 

that one turn is a Laplace transform of p 0 y. And the second is the Laplace transform of p 1 

y, and then there is the minus 1 to the lambda which separates these two terms now since the 

l j, and hence the x j y j are statically independent. 
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Now, I am going back over here to at the output we can do the same thing and because x d c. 

Now, we call that x d c is equal to the sum of x j (mod 2). So, this expectation evaluates to 

this. So, it is an average y d c is the sum of y j. So, keeping this in mind here it follows that 

you write this out and again by independence this breaks down into the product of the 



individual joint characteristic functions so that. So, what this is telling as is the way you can 

actually. So, let me go back to the perspective lecture this one. 
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So, now we are trying to go from the density functions on the messages that are coming here 

to here, and what we are saying is you can go from these density functions to this as follows, 

you can go from the join density function, you can evaluate the characteristic function. And 

this set for all the inputs then by multiplying them in this way you can actually go to the 

joint characteristic function at the output from, which you can actually take the inverse, I 

mean you can go from joint density function to the joint characteristic function, but you can 

also go backwards. 



(Refer Slide Time: 53:49) 

 

So, how do you actually go backwards if you given the joint character function then we are 

given this expression over here. Evaluate this for lambda equal to 0 and 1 and in terms of 

these transforms you can actually show that you can to cover p x d c y d c 0 y by taking the 

Laplace inverse of the sum divided by 2, and p of x d c y d c 1 y by taking the Laplace 

inverse of the difference. So, in this way you can actually, so that means that now we know 

how to go from a density function here, the density function here using joint characteristic 

function it remains to go across this transformation. 
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So, here is the Inverse transformation. So, we are given these x and y density function of x y 

and me took find the density function of l, again using this particular nature of this 

transformation you can actually show that the density function of the output is related to the 

joint density functions like this. 
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So, with that we were actually completed the entire density evolution, because we were able 

to relate at a variable node. The incoming density is to the outgoing density, check node we 

have to work a little bit harder we have to work in three steps; we could do this at once shot, 

but here we need it to work in three steps; step at b, step at c, and the step at d. We have to 

do density a transformation of density is across t, and then we have to do joint characteristic 

function to derive the density function here, and then do a transformation of density is 

correspond t inverse in here. 

But with the net result that once you apply this you can actually keep track of the density 

functions at either check node or a variable node. And that basically is how you do density 

evolution. When you are doing belief propagation decoding?  

So, I think our timing has been very good, I have got just under the minute left to summarize 

what we did today was we followed up on the earlier discussion on how belief propagation 

is carried out and we went to the harder task of actually saying well now how do we analyze 

it is performance? 

So, we want to keep track of the likelihood there it is going to make errors, which one the 

one method that people know is to actually do this per keeping track of the density function 

of the messages that we are actually transmitting, and this is computationally a little bit 

mercy. I try to take you quickly through that the details are in the write up, but admittedly it 

was a little fast. So, I let you pore over this on your own and we will stop and continue next 

time, thank you. 


