Error Correcting Codes
Prof. Dr. P Vijay Kumar
Department of Electrical Communication Engineering
Indian Institute of Science, Bangalore

Lecture No. # 34
Density Evolution under BP Decoding

Good afternoon, welcome. So, this is now entering lecture 34. And as always, let me begin

by going over what we covered last time.
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The title was belief propagation decoding continued, and in reality this was the lecture and
which we actually started talking about belief propagation. And the perspective | wanted to
bring in the last lecture was that as far as decoding was concerned the algorithm, the belief

propagation algorithm is exactly the algorithm, that we used in conjunction with the g d I.

So, that is for that reason just to remind you that that was the case. And also to make another
point that we when we use the g d | to decode the 7 4 2 block code. Then | wanted to point
out that, there was a simple interpretation for every message that was passed on the edge on

the on the junction tree graph for that particular code. And it had an interpretation in terms



of beliefs; and in fact, it is that which actually gives us raise to the term belief propagation

decoding. So, that is how I actually started out.

So, here what | pointed out was look, if you actually look at this figure over here; then you
can see that you have messages, let us say that we are in interested in decoding the value of
this particular code symbol. And then | looked at I tried to give you sense for so overall what
we are interested in as finding out what is the probability that x 1 was transmitted given all
the received symbols, and given that the code symbols themselves satisfied parity checks A,
B and C.

So, this in itself is a belief, because it is the belief about x 1 based on all the evidence. But
you are in above that it was interesting that you can also give interpretations to messages

intermediate messages that also have been can be explained in terms of belief.
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So, for example when we come down over here, then the message that was passed here, and
again we are aiming to eventually compute at the objective function here, but even at the
intermediate step, the message that was be cross this barrier over here was the current belief

about x 4 based on some evidence.



What does some mean? Well it is all the evidence which is on this side of the barrier, and
this most specifically that evidence is where the received symbolsy 3,y 4,y 5,y 6,y 7, and
on top of that we also have that belief that also we also had knowledge of the particular
parity checks B and C when rolling back even further, if you actually look at the message
across this barrier again it is a belief about x 4, but this time based upon y 3, y 6, and the
parity. So, when we talk about belief propagation decoding on the tanner graph, then we
have doing exactly this method of message passing exactly this way of passing message is
that we actually carry over. The other question that is in my mind as well, but you know that
whole theory was actually developed for junction trees, where us suddenly you are in

porting it now to the tanner graph of an LDPC code.
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What is the connection? And then | actually pointed out that wait a minute. If you assume,
so here is your tanner. If you assume that the tanner graph of an LDPC code has a tree like
neighborhood to depth 2 I.
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What you mean by that is that if you unravel the tree like this, and this is called the
computational tree, then every node that you encounters distinct, so that means there are no
cycles. For example, if this node forded to also pear here; that means, they would be a cycle
in this graph. Since the nodes are all distinct at least to depth 1, 2, 3, 4 times to it to depth it,

there are no cycles in the neighborhood of node 21.

So, when the neighborhood is cycle 3, then | made the point that look if you actually write
down these parity checks, the way we did for the 7 4 2 code in terms of listing all the
variable in the series that they actually check parity on. Then you see that in fact, it is a
junction tree, for example and the way you check it, check for a junction tree is just by
projection, so let us project it for a instance on variable 17. If you project on to 17, then you
get the actually your connected graph, which consisting of this four nodes. So, similarly you
will see that in every instance you get a connected tree, and therefore this is a junction tree.
Am | right.

This is the junction tree that one would obtain if one posed the problem of computing this as
an MPF problem. So we are in fact, under the tree lock assumption in the certain of a g d |
and of the junction tree, and because of this, we can actually interpret every message that is

being passed around in the graph as a belief.



For example here, you would be passing from this node to this node a belief about x 17
based on their evidence would corresponding to receive symbols 1, 2, 3, 4; and including the
knowledge that there was a parity check here and a parity check that. So, now that is why it

is called belief propagation decoding.
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So, and in | introduce the notation of E 1 E 0 E d v minus 1. So, this stands for evidence. So,
at a at a generic variable node you get some belief about x t from the channel which 1 call
evidence is 0, but then you also get evidence from the other check node which are called
event E d v minus 1. And what actually goes out is a belief about x t based on the union of

all these evidence, so that is actually listed here.
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And more precisely in terms of the g d I, we know that these, because of the way g d | passes
messages; because at variable node, the g d | would just collect all the incoming messages
multiply them together and send them all.
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That is what we are doing here. And this proportionality is included, because well for

reasons that we seen earlier. Now, we are going to do something slightly different from what



we did under belief propagation, because we are going to actually interpret rewrite these
messages in terms of log likelihood ratios. So, in particular here, where as this is a belief
whenever going to pass on to the ratio of belief, which is a likelihood ratio and then
dominantly pass to ratios; that is revaluate this remember that under belief propagation we
are passing our g d | we are passing functions, but now we are evaluating the function at a
particular value of x t 1 and minus 1 in this case, when you compute the ratio at this
proportionality constant goes away and well after the equality. So, you have likelihood ratio
here on the left which is the product of the likelihood ratios.
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So, then we pass on then we take logs on both sides, and that leads as to a simple expression
that is the log likelihood ratio at the outcome is simply the sum of the likelihood log

likelihood ratios at the input, so very clean and simple.
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So, that expression is well what happens on the check node. Well thinks at a check node
have slightly more involved, because there is a marginalization that actually take place. So,
if you will recall at a check node what actually happens is these are in fact, the incoming
messages, very similar to the types of messages there are incident on a variable node; what
goes out is also very similar, but the relationship between input and output is like this,

because they have the marginalization here.

Because, if you think of this is the g d I, this check node is really a function of several
variables right. So, at the local domain in the terminology of a junction tree would list all the
variables. Now, on the other hand you are sending a message to a variable node that has a
single variable. And therefore, the local domain consisting of a single variable, so between
here and here you need to marginalize with respect to all of the other variables. So, that is

the expression over here.
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Now, once again just as we did in the case of a variable node what we would like to do is we
would rewrite this in terms of log likelihood ratios. So, how can we do that? Well, so there is
there is a technicality here we go through some manipulations which have interpret here, but
when you are when all is sudden done what you actually get is this relationship between
input and output. You get that the log likelihood ratios at the output are related to the log
likelihood ratios at the input like this. So, this is where we will actually we pick up our
lecture from, so because | have gone through this in some detail 1 am not going to put down
a summary, but I am just goin g to jump or maybe I will just very briefly very quickly and

briefly summarize what we did?
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So, the recap in today is lecture of the last lecture was a discussion of belief propagation
decoding of LDPC codes.
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And particularly and relation to message passing along along junction trees along a junction
tree; and then we expressed a messages or a rather messages and in brackets | will write

beliefs expressed in terms of log likelihood ratios.

So, that is our summary and now we want to pick up the third in today’s lecture. Now, today
is lecture is going to actually talk about something called density evolution. In which is
really similarly to what we did in the case of Galagus decoding algorithm a, there what we
did was we first | outline what the decoding algorithm was, and then | have tried as far as
performance analysis was concern, we were in interested in trying to actually characterize as
well, if you have to run this algorithm. What is it is performance in terms of the number of
erroneous messages that are passed. So, we want to do something very similar even here. So,
because the calculations tend to get little bit mercy what | thought | would to do in this
lecture was actually prewrite the calculation. I have pre written the lecture, and I realize that
when you pre out a lecture, the lecture tends to go little bit fast I will try to slow down a

little bit to compensate, but here is to recap.

So, at a variable node we intro the conclusion that beliefs the equivalent message passing
rule in terms of log likelihood ratios at a variable node is simply to take the some of the
incoming log likelihood ratios including the one that comes in from the channel at a check

node.
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Now, at a check node although it was not obvious it is clear and | will just perhaps put this
down in your last lecture itself from this it follows that therefore tan hyperbolic (I d ¢ by 2)
is the product j is equal to 1 to d ¢ minus 1 tan hyperbolic (I j over 2). So, that was the tail

end of last time’s lecture. So, we pick up the thread here.
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So, we know that the input output ratio at a check node is in terms of the tan hyperbolic
function alright. So, the incoming are the allies the out coming is | d c. So, you can convert
this in and say that | d c is therefore, twice the inverse tan hyperbolic function of the
product. This describes the input output relationships. So, once you know this you already
know how to actually decode because you know the messages that are going back, and forth
I have told you how with how messages are passed across variable node and check node and

you had done.
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But now, we want to start performance analysis. So, may be just to actually enforce size that
and you just insert a page and you say | just add a note saying with this with this we are
done with with the description of belief propagation based message passing decoding of
LDPC codes.
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We now turn our attention to performance analysis, and the performance analysis will be

carried out in terms of will be carried out we had density evolution. So, this is to be carried

out using density evolution.
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So, what does that mean? It means that so perhaps I should just say that may | should pass to

illustrate that a little bit. So, what we mean by that is let see, that you have a variable node



here, and you have incoming and outgoing messages 101111 1d v minusl and I d v is your

outgoing message.

And similarly at a check node and at the check node we have incoming outgoing messages
which are expressed in terms of log likelihood ratios. And a remember that in here log
likelihood ratio. So, it say this one | d v is | n of p some variable x t equal to 1 given some

evidence divided by p of x t equals minus 1 given certain evidence.
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Now, when we do performance analysis we assume that the all one code word was
transmitted. So, put that down here in carrying out performance analysis, we assume that the
all 1 code word was transmitted. Now, we discuss this sometimes earlier when the issue of

well in general, when you are doing performance analysis of LDPC code.

We said that look we can always assume that the draw 1 code word was transmitted
provided we had certain conditions that were made. There is you needed the channel
symmetric condition to be met, and you needed that there was symmetry in the messages
that were passed across variable node and you needed symmetry in the messages that were
passed across a check node. And in fact you can check that that is very easily the case,
because here...
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So, let us take a look at there. So, at a variable node at a variable node you have that the
output messages simply the sum of the incoming messages, variable node symmetry requires
that if you change the sign of all your incoming messages, the output will also change sign.
So, that is clearly declared here. So, let says make a note of that by saying that | will remove
this when here create a little bit space, and put down that note that the variable node

symmetric condition is met.

So, the variable node symmetric condition is met. At a check node, what we have is that the
input output relationship is in terms of the tan hyperbolic, and our check node the check
node symmetry condition that we actually required was that if you put a sign on each of the
incoming messages, then the sign on the output should be the product of the incoming signs

up. Let me see if | can actually pull data.
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So, remember these are the at a variable node is said that if you multiply all the messages by
a constant b, which is e the plus or minus 1 then the output also be multiplied. And we just
check that was true for case of belief message passing based on belief, at a check node you
need that if the incoming messages are signed with individual signs, then the outgoing
messages are signed with the product of the signs. And I just want to actually show you that

thus the keys here.
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Well whiles that because supposing each of these incoming messages was multiplied where
sum d, then the way then each of the tan hyperbolic function causes them to be pulled out of
this, and then again the inverse is similar twice that. Well take a look at the tan hyperbolic
function which have actually sketched, which is a sketch little bit later here.

Here is a sketch of the tan hyperbolic function. So, you see that the tan hyperbolic function
has the same size of the input, and in fact if the input reverse a sign as symmetry the tan
hyperbolic also reverse a sign. So, what that means in particular over here is a so perhaps |
will just insert a page here.
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And say that so can verify that | d c that if you replace each | j by | j times b j by sign, where
b j is either plus or minus 1 then | d c. The result in I d c is equal to 2 tan hyperbolic inverse
the product.
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You can verify that it first of all pulls out here, and in eventually pulls out of this. So, you

actually get this. And you get and hence the check node symmetry condition is also met.
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So, coming down here, so now without we have justified in making assumption in carrying
out performance analysis that the all one code word was actually transmitted, so that is why
we now. So, we want to do belief propagation decoding and the way you do belief
propagation decoding was actually say you know what? Every time | pass a message from a
variable to a check node, I am going to regard the message. So, because this is an iterative

process, it is an iterative process that is actually carried out on the tanner graph.
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Here is a tanner graph and in belief propagation decoding what we are doing is, we are
passing messages back and forth along these edges, and each of this is a log likelihood ratio.
Now, we will say that a message is incorrect and we know all the code symbols can be
assumed for performance analysis to be assume to be all one. So, and if your belief is
correct, then since your belief is the log likelihood ratio over here, if you look over here, if
in fact, this is positive; that means the probability there it is a 1 given e is greater than the
probability there it is minus 1 which means that this quantity is greater than 0 right. So, if
this quantity is greater than 0, then you are going to conclude that well my current belief is

that is actually a 1, that 1 wins over a minus 1.

In this sense we are going to look at these message, and look at the sign of these messages;
if the sign of the message is positive, then we are going to say that is a correct message. If
the sign is negative, we will actually say it is an incorrect message, but how do we actually
analyze, how many or what is the probability with this there incorrect or correct. So, what

we are going to do instead is well, we will actually trying to do something more.
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Because it is easier will not only examine the sign of these messages will actually examine
their density function. So, now our interest is in saying well we actually want to see, so | let

me duplicate this slide and | will put some writing on it. So, let me get rid of some of (( ))

writing here.
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This time what we are going to be interested in knowing is not just the likelihood ratios, but
rather on their densities. So, we are going to be interested in saying well look there isan |1 0
here, that is true but it has a certain density function; there is an | 1 here, and there is an
associated density function, and similarly over here there is an | 2, and there is a p of | 2.
And at the output | have an | d v which is associated with a certain | d v and so what we are
saying on a density evolution is that earlier we were varied about the messages, now we

have varied about the density function.

So, knowing the relationship between this variable and this other variables, we want to
translate our knowledge of that relationship to actually derive these densities in terms of the
other densities. By the way | am kind of using short form, because normally what you do is
you would write p x of x, but I am just writing p of x saying that the underline grand
variable is understood. So, hopefully that is actually clear that is a short form notation.
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And the same thing here; that is you have an | 1 here associated with the p | 1 and so on. So,
that is our next task is to actually compute density functions. And I just wanted to introduce

some or let us do one thing, let me get rid of this page first here we go.
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So, towards will actually do a few manipulations, before we get to the density evolution

stage. So, | want to slightly change the order in which | carry out this description. So, let me

just skip a head and go over here.
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Let us start the discussion at a variable node and at a variable node, we know that is so | take

that back. So, | see that my pages are in a certain order. So, rather than confuse you may



describe them in the order in which they are, let us get back here. So, we were talking about
carrying out density evolution which says let describe the densities in terms of the incoming
densities, but before that they has some computations that will be found helpful. So, I am

going to request your passions, because right now is not completely motivated.

(Refer Slide Time: 36:00)

F AW & 7P ™.

: Dens i
%/H} Fedibs
= ld\, # (%)

But we know that what happen there in terms of the messages is that here, the likelihood
ratios simply the sum of the incoming likelihood ratios, here it is little bit more complicated.
Because you have you have that your | d ¢ the incoming and outgoing likelihood relationship
is through the tan hyperbolic. And that present some challenges, so we would like to
overcome them, and we will actually do a change of variables. What we will do is we will
replace the tan hyperbolic function by a pair of a variables, so x will actually keep track of
the sign of tan hyperbolic of | by 2, but because the tan hyperbolic function monatomic in I,
and sign preserving the sign of the tan hyperbolic is the same as the sign of I.

The second is to keep track of the magnitude of tan hyperbolic, and will keep track of it by
making use of the log function, and it will be convenient to take the negative law. But
basically what we are trying to do is we are trying to say the reason for this is we going to
say look at a variable node, we have this very simple relationship in terms of log likelihood

ratios, here it is more complicated the relationship is terms of the tan hyperbolic.



So, the first thought that comes to my mind is well why do not we take logs on both sides
then it will become an addition again. The only problem with taking logs on both sides is
that this is the quantity that could be the negative or positive. So, you cannot take the log of
this because when it is negative, it is not even defined. We get on that by saying well let us
split this into two variables or two functions; one function which carries the sign
information, and a second function which carries the magnitude. So, that is what is actually

happening here.

(Refer Slide Time: 37:47)

ELYS I
ErE-EE®

(TP | v

R

I (Olv\t\

& -\

So, we are x keeps track of the sign and y keeps track of the magnitude, so then our original
relationships in terms of type of tan hyperbolic. Can you can show there it is simply replace
to saying that look the sign at the output is so this should be x d ¢ and y d c, let me correct
that; this is x d ¢ y d c¢. So, that is the output x, and y’s are related to the input x and y is

simply by summation.

And that is not have to see, because each of this is the log of the magnitude. So, since the
magnitudes are multiplied by logs are added, so that is why have this relationship. And
similarly the sign you can also verify that this is true, because each of the x i is keeping track
of the signs of the individual tan hyperbolic and the sign of the overall is in terms of the
product of the signs.



(Refer Slide Time: 38:57)

o 1 et e T

PELE TR

S EEEEEEES
? P

AY

But here, what x d c is doing is it is keeping track of the sign. So, so the onto what do you
mean the sign function. So, the sign function is defined in a somewhat in a conventional

way.
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So, where sign of | is 1 a sorry 0 is for | greater than or equal to 0 and is 1 for | less than 0,
that is the sign of a say you have to plot this, it would look like this it would be something



that is 1 in the negative part, and then it would be 0 for the positive part. So, here I am
plotting sign of | verses | now. What we conventionally think of is the sign might be or is

rather is what is minus 1 to the power sign of I.

Because this function is more like the function we would have in mind there is it is 1 here
and it is minus 1 for negative, but however it is convenient. So, this is a binary 0 1 function
here, and this is our traditional plus minus 1 more convenient to work in terms of this. So,
that is the reason while where as in the plus minus form domain, you would simply have
your multiplication of the signs in the 0 1 domain, it turns out to be an addition. And the
next thing about it is now that we have addition on both sides on both terms, we actually

have addition all though one addition is modular to and minus this alright.
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And this is your sign. Here is | tan hyperbolic when you take the log, you get a function that
looks like this when you take a negative log, it looks like this the sign is this function.
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So, then if you want to represent, now in terms of this transformation what is taking place at
a check node you see that having the incoming log likelihood ratios. Then there is this
transformation t which takes an | to a x and a y exactly like will actually shown here, that is
given an | you pass to an x and y using this map. That is where the transformation is actually
carried out. Similarly, on each of the incoming messages you transform the corresponding

log likelihood ratio into a a pair of functions.

One representing the sign and one representing a magnitude and then this check node simply
has to actually compute the sum according to this expression over here. It is just going to
compute the sum here, and then after you computed. So, x d ¢ is the modular two sums of
the incoming x j is y d c is the real sum of the incoming y j is and then you do a inverse

transformation which takes you back from here to here.

So, we made this change on the check node from this other picture here, because the picture

here, involve the tan hyperbolic function, and we wanted to get rid of that so we have this.
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Now, density evolution says that look in abstract it says that look where as earlier we
acknowledge that at every variable node you had a map, in is in the initial iteration that is in
the O th iteration when the only input is from the channel the map is from the channel output
alphabet to your message alphabet, and associated to that because anytime you have a map
from one variable to another you also map that the density function on that variable towards
density function on this run variable. This is the corresponding map in terms of the density

function.

The distinction between this and this is the presents of this star. We will say that this
mapping here induces this mapping on the density functions. Similarly, at the | th iteration,
there is and you can see that here, in terms of messages there is a mapping from the channel
output alphabet and the message input alphabet to the output message alphabet, and which is

what this is there are d v minus 1 incoming messages.
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We assume that the message alphabet along any edge is the same, but that the channel
income output alphabet could be different. So, this is the mapping that is carried out at a
variable node and the corresponding mapping in terms of density function is given by this
put the star only thing is that you see that | actually take | am taking that mapping on the

density functions. Actually I have a product of density functions here.

And that is should be some we need to pass that because | mean why do you how you
justified in taking the product; that seems to employ that your incoming variables are
random or linear or statistically independent. And that is the case, because you see your

output here is the sum of this input variables.
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But if you assume that the neighborhood is tree like right; that means, that if you unravel the
tanner graph you will get a graph like this. What we want to say point out is that look the
message that is been passed the message, that is for instance that is being passed here. And
the message that is being passed here, this message is now a function of all these received
variables. This message which is a likelihood ratio so this is for instance this would could be
an | 1 this could be an | 2. and what actually goes out is an | d v there is also a channel input

whichisan 0.

So, now each of these inputs, so | 0 is a function only of the corresponding received
symbols. That is 'y 21 | 1 is the function of all these received symbols and also a makes use
of the fact. That there are certain parity conditions that the code symbol satisfied | 2
corresponds to this branch of the tree. And therefore, uses these received symbol knowledge
as well as these parity checks. Since the received symbols are independent given the

transmitted code word these messages are independent, so that is important.

So, the incoming messages under the tree like assumption can be assumed be independent
and this is the reason. Why you actually write the product density function, why you write it
in terms of the product of the density functions rather than adjoin density function.



Similarly, at a check node the messages are make from d ¢ minus 1 fold messages and this is

the corresponding message on the map on the density functions.
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So, we want to actually say that look | now we are getting down to specifics, we know the
input output relationship in terms of messages is given by this. What can you say about the
densities? So, the trick is to actually where to the characteristic function, we take the
characteristic function here, and because these are independent this expression breaks down

to the product of individual characteristic functions.

But, any characteristic function is more or less the Fourier transform apart from a sign. So,
In fact, let us in order to make it exactly the Fourier transform like simply put a negative
sign on both sides. So, then the characteristic function as defined in this manner is the
product of these by independence, and each of this is a Fourier transform. So, what that

means is that?
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The density function of the output message can be obtained by taking the Fourier transforms
of the incoming density functions multiply by them together. Multiplying them together, but
a symmetry there are all actually identical. So, you can race it to this power then you take
the fully inverse.

There with this we were actually accomplished density evolution at a variable node that is
where able to relate the density function of the output message to the density functions of
the input. So, that was attentively end list at checks node things are easy, but more
complicated where is that?
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Because now here check node look likes this the mapping at a check node is in fact, a series
of first of all each of the individual messages is passed across a transformation tree, and then
there after after the check node carries out, it it is map then there is an inverse
transformation. So, in some sense we have to actually trace the evolution of the density as it
goes across the transformation. So, that is step one across the check node that is step two and
then across the reverse transformation. One we now have to keep track of three

transformations of the density. And that is what will actually did.
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So, first step there is incoming density incoming log likelihood ratios transform from an | to
an x and a y, and you can show that if you have given the density function of I, then they
join density function of x and y is given through this pair of expressions. Why does it look
like this, because x is a discrete random variable y is continues. So, x can take on values
either 0 or 1 where as y being continues. So, we break this joint distribution function into
two parts 1 which corresponds to x equal to 0, and 1 is corresponds to x equal to 1 and we
get this expression. This involves some change of variables transformations which have will

not discuss in any great details here.
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Now what does what is that a accomplish that is accomplished; that means that we now
know how to actually go from a density. Here given here to a density on the x 1 y 1 now we
want to go given all the incoming densities on x y to the density on the outgoing X y. Let us
do that next.

(Refer Slide Time: 50:33)

3 i vep 2-2-92-P47:
S/ ANEERERN mTE
~ kvl/‘_]

101wk




So, here let us define a joint characteristic function of x and y in this manner. It is minus 1 to
the lambda x j e to the minus y j a lambda s. Lambda takes some values either 0 or 1 s you
can think of s a complex variable as you would in the case of say a Laplace transform. So,
this can be evaluated by actually evaluating it. Now, this expectation is over both x and y.
So, x take on value 0 and 1 and y takes on a continue values. So, this expectation evaluates

to this and so it is an average.

So, it is an average of all the values of x, but there is only two of them in average over all
the values of all and that is a continue. So, that why we have a sum and an integral, and you
can actually see that if you separate the parts corresponding to x equal to 0 and x equal to 1
that one turn is a Laplace transform of p 0 y. And the second is the Laplace transform of p 1
y, and then there is the minus 1 to the lambda which separates these two terms now since the
I j, and hence the x j y j are statically independent.
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Now, | am going back over here to at the output we can do the same thing and because x d c.
Now, we call that x d ¢ is equal to the sum of x j (mod 2). So, this expectation evaluates to
this. So, it is an average y d c is the sum of y j. So, keeping this in mind here it follows that
you write this out and again by independence this breaks down into the product of the



individual joint characteristic functions so that. So, what this is telling as is the way you can

actually. So, let me go back to the perspective lecture this one.
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So, now we are trying to go from the density functions on the messages that are coming here
to here, and what we are saying is you can go from these density functions to this as follows,
you can go from the join density function, you can evaluate the characteristic function. And
this set for all the inputs then by multiplying them in this way you can actually go to the
joint characteristic function at the output from, which you can actually take the inverse, |
mean you can go from joint density function to the joint characteristic function, but you can

also go backwards.
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So, how do you actually go backwards if you given the joint character function then we are
given this expression over here. Evaluate this for lambda equal to 0 and 1 and in terms of
these transforms you can actually show that you can to cover p x d c y d ¢ 0 y by taking the
Laplace inverse of the sum divided by 2, and p of x d c y d ¢ 1 y by taking the Laplace
inverse of the difference. So, in this way you can actually, so that means that now we know
how to go from a density function here, the density function here using joint characteristic

function it remains to go across this transformation.
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So, here is the Inverse transformation. So, we are given these x and y density function of x y
and me took find the density function of |, again using this particular nature of this
transformation you can actually show that the density function of the output is related to the
joint density functions like this.
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So, with that we were actually completed the entire density evolution, because we were able
to relate at a variable node. The incoming density is to the outgoing density, check node we
have to work a little bit harder we have to work in three steps; we could do this at once shot,
but here we need it to work in three steps; step at b, step at ¢, and the step at d. We have to
do density a transformation of density is across t, and then we have to do joint characteristic
function to derive the density function here, and then do a transformation of density is

correspond t inverse in here.

But with the net result that once you apply this you can actually keep track of the density
functions at either check node or a variable node. And that basically is how you do density

evolution. When you are doing belief propagation decoding?

So, I think our timing has been very good, | have got just under the minute left to summarize
what we did today was we followed up on the earlier discussion on how belief propagation
is carried out and we went to the harder task of actually saying well now how do we analyze

it is performance?

So, we want to keep track of the likelihood there it is going to make errors, which one the
one method that people know is to actually do this per keeping track of the density function
of the messages that we are actually transmitting, and this is computationally a little bit
mercy. | try to take you quickly through that the details are in the write up, but admittedly it
was a little fast. So, I let you pore over this on your own and we will stop and continue next

time, thank you.



