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Good afternoon welcome back. Just we was discussing with the excellence staff here that, today 

would be the 30th lecture. We have got about ten to twelve lectures move to go. So, we are 

getting to the end. And, just a quick recap of what we did last time. Last time, I started the new 

topic of LDPC codes. And the discussion was part motivation and part explaining terminology. 

So, I pointed out why it is that, this class of codes is known as LDPC codes; which stands for 

low-density parity-check codes. And, I told you that whereas in the typical matrix, the number of 

ones in the matrix will be of order n squared. In the case of an LDPC codes, it is typically on the 

order of n.  

And the second difference is that LDPC codes are described in terms of their parity check 

matrix. And while it is customary for the entries in the parity check matrix, the row is to be 

linearly independent in what we have discussed up to now. When we come to the topic of LDPC 

codes it turns out that that needs some relaxation. So, we will just say that the null space of this 

matrix defines the code. But we relax the requirement that there was the linearly independent.  
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Then, we introduced the sub class of LDPC codes known as dv dc regular codes. And, here the 

property of these codes is that, from the point of view of a parity check matrix, every row has an 

equal number of 1s, which is equal to d c. Each row stands for a parity check and the column 

have a constant number of ones, d v; and these columns of course, stands for the variable nodes, 

stands for the code symbols. And then, of course there is a matrix of size m by n, there is the 

simple relationship which you obtain by just counting in two different ways the number of ones 

in this matrix. And then, from that you can actually derive a simple inequality, relating to the rate 

of the code; namely the rate of the code is greater than equal to 1 minus dv by dc. And this is 

called the design rate of the code. 
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LDPC codes are typically visualized, and people work with them in a graphical, from a graphical 

perspective. And what that the graphical respective does is that it puts one node of the each code 

of the symbol on the left, one node each parity check on right and makes the appropriate 

correction. So, for example in this particular code, the code length is ten, there are five parity 

check symbols. So that, the parity check matrix of the code is of size five by ten and we have a 

one, for example, we have a one in the A through on the second Colum. A through on the second 

column, if there is a link connecting this, and so that means you can visualize all these edges is 

as telling you that as identifying the code symbols which meet some to zero and this parity 

check. They are represented by A. This graph is bipartite, is called a Tanner graph. 



Then, I pointed out that, decoding of these codes is carried out using the sequence of message 

passing. And, that is very similar to the way in which they pass message across in the junction 

tree. And that, because… and the d v, d c regular condition, then the degree of each node is a 

fixed constant that gives the decoding complexity, which is typically proportional to the number 

of edges in this graph is linear in the number of code symbols. 
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And, just to make the connection with what we have discussed earlier. Here, was a junction tree 

for the code defined by the parity check matrix.  
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And, however you can rewrite in the form of Tanner graph. This code, however is not an 

example of d v, d c regular code and you can actually see that. However it still does have the 

representation in the form of the tanner graph. So, may be it worth, just making a quick note. 

Note: this code is not a d v, d c regular.  
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So, that brings us to today’s lecture. So, today’s lecture; so, this will be lecture thirty. And, I am 

going to call this very simply LDPC code terminology. Of course, you have already looked at 

some of the terms that we are going to come up with. But we will continue this because this will 

allow us to build up a vocabulary which we will need when we discuss performance and method 

of operations of these codes. So, this is a very quick recap; introduced LDPC codes and we have 

introduced terminology of d v, d c regular codes. We talked about the rate, then we talked about 

the Tanner graph and of the decoding complexity being linear. So, today we will discuss these 

codes some more. And, so, perhaps what I will do is I will begin by drawing a graph and we will 

call upon this graph several times, over the course of the next two or three lectures. It is going to 

take me a couple of minute to setup this graph. And so let me do that first. 
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So, I am going to give this graph a name and we will call it the computational tree. And, I might 

ask, well, what relevance does this have to us? So, let me bring back our earlier lecture. And, I 

am going to copy over this particular graph here. Here we go. I am going to remove some of 

these notations which we do not need at this time. Alright. So, we have this Tanner graph. And, 

what I mean by this computational tree, which you see here.  

What I mean by this here is that, I am going to actually unravel this graph by starting from the 

particular node. So, I might start from the check node, go back to the variable node, see which all 



nodes it leads to and so on. So, basically this is redrawing the graph in a different way. But, apart 

from that nothing has really changed. So, here what it means is that, I have a variable node which 

is connected to these three check nodes and each of this is connected to variables nodes and so 

on. Now, I have numbered this 1 through 21. I want to make it clear that, this computation tree 

does not directly reflect correspond to this particular code.  

See, this is the code whose block length is 10. But the scale is having variables node up to 21. 

This code has block length at least 21 and typically much larger. This, I do not mean to indicate 

that, this is, these two codes are the same. But nevertheless, for any given Tanner graph you can 

always unravel the graph, so to speak and draw it in this form. And now, what I am going to do 

is going to give you a few definitions involving notions of edge and path and so on. And, those 

have to do it with this computational tree. So, for example, I will be talking about, the edges that 

we will be talking about the directed edges. For example, 17 to I, this is an example of the 

directed edge. And, I to 21 is the second directed edge. And by path, we will mean a sequence of 

the directed ages.  

So, the sequence of directed edges would represent a path. The neighborhood of a node up to a 

certain depth is basically a collection of edges and nodes that traversed by path whose length is 

at most d. For example, if you are looking at the neighborhood of the, this node of depth one and 

that would include these three nodes in these three edges. If you go to depth two and look at the 

depth two neighborhood of this node, then that would include these two edges, these two nodes, 

these six nodes and these six edges. So, we will actually make the formal definition of this right 

now. 
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So, I will call this edges and paths; edges, paths and neighborhoods. So, clearly it is clear what 

we mean by an edge. So here, if this is the variable node and if this were a check node, let me 

draw that little bit more clearly. So, let say that this is the variable node and let us say that this is 

a check node and I am typically going to try to represent with the rectangular boxes and variable 

nodes with circular. So, if I write (v, c), then this is a directed edge. And that, if I to write (c, v), 

that would be a directed edge, but going in the opposite direction.  

So, now that you understand what the directed edge is and then your path in the graph. And, if 

you ask the question which graph you mean, well, it could be the Tanner graph except, I am 

thinking of it is redrawn as the computational tree. But really it is the reference to the Tanner 

graph. So, you just say the Tanner graph.  

A path in the graph is a sequence of directed, is a directed sequence is a directed sequence of the 

directed edges of the form e one, e two, e sub k such that, if e i is equals to u i, u i prime, then e i 

plus one is equal to u i plus 1, u i plus one prime. And, u i prime is equal to u i plus one. So, in 

other words, we are thinking of these two edges as leading has been contiguous and leading from 

one to the other. So, this is the common vertex for a node. So, from u i we are going to u i plus 

one, which is this node and then we are going to this node. So, this is what we mean by a path. 



And, we say that the length of the path is, for example, here there are k directed edges. So, we 

will say that the length of the path is k. 

So, the length of path is equal to the number of directed edges along the path. Given two nodes 

in the graph; we will say that the two nodes are at distance d, if they are connected by a path of 

length d, but not by a path of length less than d. Then, we define N u d. This means the 

neighborhood of node u to depth d; which should be taken to mean the induced sub graph 

consisting of all nodes reached and all edges traversed by paths of length at most d and starting 

from u. So, let me see if I can illustrate this last definition here. We did that once earlier. Let me 

just repeat. So, talking about the neighborhood of node eighteen to depth one, as I pointed out 

just a short while ago. That includes all nodes that are reachable by path of length utmost 1. So, 

that is 1, 2, 3, 4 and all edges traversed along the path. So, that is 1, 2, and 3. So, that means that, 

this collection of these forms the neighborhood of the eighteen. 
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I think, we can actually use a little bit of technology, if I can do that to indicate that. so, let see if 

I can put that in red. I am having a slightly harder time to color these edges red, but anyway I 

think you get the idea. These four nodes are in the neighborhood and also these two edges. 

Except that I am having hard time in converting these edges to may be I will try in the simple 

way, so that I do not leave you confused. I need to draw this. So, that is now the neighborhood. 



So, this N is the neighborhood of node eighteen to depth one. Then, there is a simple claim at this 

point. 
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Then, this is simple claim at this point. Note that, u one belongs to N u two d, if and only if for u 

two belongs to N 1 of d. That is and that is very simple because what that means, going back to 

the graph, is that for example, I belongs to the depth one neighborhood of eighteen and it is clear 

that the reverse is also true. That is eighteen belongs to the depth one neighborhood of I. Now in 

a similar fashion, if e is an edge v, c, then the undirected neighborhood of e is N v d union N c d. 

Then, the undirected neighborhood to depth d of the directed edge is this. Again, bring to that the 

graph. 

So, for example, they are asking what is the undirected neighborhood of this to depth one. That 

means that, it is the one depth neighborhood of this node as well as this node. So, in this 

particular case it would mean; let us see I can get colors right this time. It would mean paths, no, 

that is going to be hard. So, again the hard way. So, that would in this case mean; so then if you 

are talking about the edge from 18 to C, then the one depth neighborhood of this edge is the 

union of the one depth neighborhood of this and one depth neighborhood of this. So, that is why 

everything that are shown in red is actually included in this. It is also a notion of an undirected 

neighborhood, of the directed neighborhood. So, this will be your last definition regarding edges.  



The directed the directed neighborhood to depth d of edge e equals (v, c) are denoted by N e d is 

is the induced sub graph containing all edges and nodes on paths e 1, e 2, e d starting from v but 

with e one not equal to e. So, just a clarification. Earlier, we talked about the undirected 

neighborhood. So this, the undirected neighborhood is indicated by N e d, expect that we do not 

put that arrow. And, most of this will be clear from context, even if it is confusing now.  
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And here, the only difference is that it is similar to the earlier definition, except that the initial 

path does not, is disallowed from being the original edge. So, for example, in this graph if I have 

to talk about directed neighborhood of this directed edge; that means I can start from here and I 

am allowed to walk along path of length d, except that I am forbidden from actually starting on 

this link. So, that means I can walk. Let us say I am interested in going to depth four, I can go to 

depth four in any direction except this one. That means by the, that was it is meant by the 

directed neighborhood. And the difference in terms of notations is that an arrow on the edge.  

Here, you can actually prove that now, there is nothing particular important about v and c being 

like this. We could also start with the c and you would have an definition in which you talked 

about the directed neighborhood to depth d of edges of type (c, v) and it would be defined in 

fashion.  
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Another small node denoted here is that; here you can prove this yourself. And, if e belongs to N 

e prime of d, then it must also be true that e prime belongs to N e of d. So, there is a reciprocal 

relationship, but at least intuitively it is obvious. It takes just a little bit of work to show it, but 

we want to get into those details. What we have done, let me just take a quick recap. So, it has 

been a lot of terminology; basically talking about the edges, path and neighborhood I defined 

what is meant by a directed edge. And then, I talked about the path edges, contiguous edges. let 

we talk about the length of the path and we talk about distance between two nodes in the Tanner 

graph, and then we talked about what we mean by the neighborhood of a graph and we talked 

about neighborhood of a node, neighborhood of an edge, the directed neighborhood as well as 

the undirected neighborhood. As I said, the reason for going into such a detail in the terminology 

is because when we talk about decoding we will be in the need of it.  
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So, next we will talk about channels. So, the two channel models that we have in mind are, first 

of all the binary symmetric channel. Already, we have seen this before. And, we know the binary 

selected channel looks like this. There are two inputs and two outputs. Except that, our inputs 

earlier were 0 and 1. This time our inputs will be x t equal to 1, x t equal to minus 1. And 

similarly, the output will have one and minus 1 and this will represent the output and the cross 

word probability will be epsilon.  

And, now note that, this channel you can actually represent in the following way. We could 

represents y sub t is in the form of x sub t in to z sub t, where here the z sub t is either plus or 

minus one. And, the probability of z sub t taken on plus one equals the probability of z t equals 

one minus epsilon. And from that, it is clear that the probability z t is equal to minus 1 is epsilon.  

Now, this terminology is a little different from what we have been used to. Typically, when we 

encounter the binary symmetric channel, we actually has been additive and we were working in 

zero one domain. So, in case that puzzles you, what you can actually keep in mind is that, this x t 

can be regarded as minus 1 to the u t and whereas the u t either 0 or 1. So, this is your small 

change in a notation for the symbols, but actually it makes things easier. So, it will give you the 

input and output as plus minus 1 rather than 0 and 1 and the minus one. 



So, one near u t equal to 0, minus 1 corresponds to u t equal to 1. And, I just pointed that you can 

right you represents the channel multiplicatively. That is, you can pretend the output, multiple 

input symbol or particular symbol, which can taken plus minus 1 value with these probabilities.  
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The other channel model we have in mind is the additive White Gaussian noise channel. Or more 

precisely, the binary-input Additive White Gaussian Noise channels; which, typically we have 

been representing it like this. They are in input and we are in output. And, let say that the input x 

t is again plus minus one, then the noise is added to it is distributed as a Gaussian distribution. 

So, it is normal with zero mean and variance sigma square. And then, what you have here is y of 

t. So, the y of t is equal to x of t plus n of t. That is the typical representation. 



(Refer Slide Time: 40:15)  

 

And, keeping in mind the nature of the Gaussian density function, I can draw the following 

picture. So, what I mean to say is that the plus 1 and the minus 1 here are their input. And, what 

you are looking at here are the density functions of p of y t of y as y. Now, perhaps I should do 

the following. Then so, just to avoid confusion, redraw slightly differently. And, I am going to 

draw this with, in red. So, what I mean by this is that, if the input is the plus one, then y of t has 

this p d f and input is minus one, then it has this particular p d f.  
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Now, here again the interesting thing is that this is the customary representation, where again 

you can give the multiplicative representation because you can write, can write, can write y of t 

as x t times z t; where z t is distributed, normally distributed with mean 1 and variance sigma 

square. And, you assume that, x t z t is the independent of x t, it is independent of x t. Alright. So 

what, by does that makes sense, well, if, you just think about it. Let say the x t one, then y t z t. 

So, it has this density function because this mean is 1 and the variance is sigma squared. Let us 

say x t is equal to minus one, then y t is minus z t and this density function will look like this.  

But, that is exactly what we had got even under the additive representation. So, actually go to 

this multiplicative representation. Now, notice one thing that in this particular case, supposing I 

ask you to compute p of y t given x t of y given x. Now, that is easy to see that, that it is precisely 

p of z t give and evaluated at y divided by x.  
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And, it is also easy to see that this is also equal to p of y t given x t of minus y minus x. The 

reason being; because this is again of minus y by minus x, which is p z t of y by x. So now, 

seems to change actually, to do this calculation like this. What you actually saying is that, the 

probability of the certain density function of y corresponding to certain x. If you reverse the x, 

you have the same density function for negative value of y and you can see that here. Supposing 

x is minus one, let us see and you wanted the density function is minus half would be here. And, 



that is same as the density function of y equal to plus half, when x is plus one. If you reverse 

both quantities, then the value of the density function remains the same. This is the fact that we 

will use shortly. And, this is known as channel symmetric condition. And you want to point out 

that the same channel condition, the symmetric condition also holds in the case of the binary 

symmetric channel. 
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So, let us check that. p of y t given x t of y given x is again p of z t given y by x, which is equal 

to p of y t given x t of minus y given minus x, for exactly the same reasons as seen before. So, 

the comment here is that, so this is known as the channel symmetry condition as applied to the 

binary symmetric channel. 

Now, what we want to do is to introduce some terminology associated with message passing. So, 

let me label that message passing terminology. So, let us go back to the figure here. So, this is 

the Tanner graph. And as I mentioned some time back, the way we are actually going to decode 

this code is by actually passing messages back and forth along this edges. We actually start. Let 

us say from the variable nodes passing along these edge to the check node and back and forth. 

So, we will be doing this iteratively. And, the way the iterations are numbered, there is an initial 

or zero iteration in which message flow from the variable nodes to check nodes. And then, you 

start with iteration one, which is a flow of information from the check nodes to variable nodes 



followed by a flow of information from the variable nodes to check nodes. So, that would be the 

first iteration. Then you would have the second and third and so on. 

 So, messages are going back and forth. These are the variables nodes, these are the check nodes. 

Now, initially if you think about it, the variables nodes are the ones that will actually initiate 

message passing, because they are the only one should have any information at hand and the 

information that they get is actually the information that they get from the channel input. So, that 

channel input will then, they will use to actually determine or compute the first set of messages 

that they passed out. Now, all of the messages that have been passed out are real numbers. So, all 

of them are actually real numbers or the subset of the real numbers. And now, what do you like 

to do is, we would like to just introduce some notations relating to the alphabets of these 

messages. 
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So, let we draw a graph picture as I introduce this terminology, so, here is your variable node and 

here is the input from … just use solid lines, I am using different color any way. I mean just use 

a solid line here. This is the input that is received from the channel. So, we will make a note of 

that. And then, on the other hand, it also receives input from the check nodes. And, what it does 

is that it sends back a message to the parity nodes. So over here, some where over here this is the 

parity node, this is the parity node and the message that is going back is also going back to a 



parity node. Now, all that you want to do is you want to identify the alphabet, which is used to 

pass these messages or the alphabet corresponding to these messages. So, this alphabet, which is 

the channel output alphabet will be called o. So, the message alphabet will come from o. This 

message alphabet will come from script n and so will be this. 
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So, then o is the output alphabet of the channel and m is the common alphabet employed to pass 

messages from the variable node to check nodes or vice versa. So, here we will this diagram 

variable node, but you have a similar picture at the check node. So, the check node we would 

have and it have a variable node, which are communicating with the check node. And, here again 

the messages are from the alphabet m. So, we will note that both o and m, may be assumed write 

it in other words both o and m are subsets of the set R of all real numbers.  

And, so basically you just summarize as you just have a couple of minutes left. What we did was 

we continued developing terminology of LDPC codes that us to, it will make it easier for us to 

discuss the decoding algorithms. So, I introduce the notion of an edge, a path and of a 

neighborhood of the length of the path. And then, we talked about channel models. And, I 

introduced the binary symmetric channel from multiplicative; through a multiplicative 

representation and that is the same for the additive White Gaussian Noise channel. And, these are 

the two principle channel modules that we will be looking at. And I introduced the notion of the 



channel symmetry. And then, we were just getting in to the alphabet that is used actually to pass 

the messages. And so, let me just close the lecture here by writing down the equation, which I 

will continue to develop in the next lecture may be this is the good place to stop. So, we will 

introduce the notation next time. Thank you. 

 


