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The previous lecture was I gave you our final example of junction tree construction. Then I 

moved on to the topic of moved on to the topic of message passing, because that is our next step 

in solving the NTF problem. 
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And in the last lecture, I gave you formula for message passing, and then we looked at an 

example relating to decoding of 7 4 2 code decoding. And let me just take you through, walk you 

through some of that once again. So the first part of the lecture have to do with the example of 

junction tree construction, and that was concluded here. 
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Then I give you a formula for message passing, and I we applied it to the 7 4 2 code and we pass 

messages on the 7 4 2 code, I shown here and eventually entered up. Now all I introduce another 

notion that is that of a schedule, so you pass messages in accordance with some schedule, and the 

schedule is the function of how many objective functions you want to compute, if there is just a 

single objective function that you want to compute, then the right thing to actually do is to orient 

all the edges in a network towards the particular that local domain associated with that objective 

function, which is x 4 in this case. And then you pass messages and we did that.  

And then eventually end up with the point where you have all the messages that are incoming to 

your objective function and then the question is well what to you do here, and I said you just 

multiply them and that is true, but let me just do the following. I will come back to this, I just 

want to state a general principle.  
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So, a node is ready to compute its objective function, once it has received messages from all of 

its neighbors. So, in the general situation that we are node here, let us say x s i and there will be 

messages coming from all of its neighbors, and will all be its local kernel. Alpha x s i and these 

are all the mu k i(s) that are actually coming in. These are all the mu messages, mu k i that are 

coming from the other nodes. And then all they were means to do is simply to multiply all of 

them.  
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At this stage, the node computes its objective function simply by computing the product of the 

incoming messages and the local kernel.  
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So, in other words beta j of x j is alpha j of x, I should say x s j of x s j times the product of k, the 

neighbors of mu k j x of s k intersect s j. So, the objective function is simply equivalent to this 

product computation, take all the incoming messages multiply them end list. We think is to keep 



in mind is that all of these are functions when we actually multiply these functions and then 

when you represent functions as vectors multiplying functions is equaling to multiplying vectors 

component by component and that is all called the show product of a branch of vector. So, 

towards the end that is exactly what we were doing, we were computing the shoot product of all 

the incoming vectors, let me just select this page and copy it for our current lecture.  
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We have this, so you can see here what I meant, because the incoming messages are 2 theta 1 

plus theta square from each of these nodes, so you multiplied these together the local kernel is 

this; so what you are doing?  
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You could also view this computation as being 2 theta 1 plus theta square schur product, which is 

the component by component product 1 plus theta squared component by component product 

and then final, we have the local kernel which is one theta, you also put that in and you have one 

theta, if you take the component by component product this is the schur product, so it shows the 

component by component product. So, this is equal to 8 theta cube 1 plus theta squared the hole 

cubed into theta and because theta is small typically, the application of interest, you can 

approximate this by 8 theta cube, and then theta at the bottom; that is what we ended up in last 

lecture.  

Now, remember that your objective function was really, so the objective function, which in this 

case is beta 4 x 4 was really proportional to the probability of x 4 given there is the vector. And 

given that your vector was part of a code; that was how we started out that was a problem we 

started out with in the lecture you see here, we had this quantity as the quantity that we were 

interested in computing here, this one here. And so that is this, and now what this is saying is 

look this is saying that the probability that, and then the way we always I mean, there is a choice 

of ordering when you are listing the values of a function as vector, so this first component 

corresponds to x 4 equal to 0, and this is x 4 equal to 0 and this is x 4 equal to 1. What this is 

saying is that the likelihood of x 4 being a 0, given that you see that was 8 theta cube, but the 

likelihood there will actually a 1 given by theta and since theta is small, this number is much 



larger remember, what maximum likelihood code symbol decoding will do at that stage is to 

declare x 4 to be a 1.  
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Since, Let me do it on the next page; since, theta is much smaller than 1 typically, the maximum 

likelihood code symbol decoder will decode x 4 to equal 1. And now, if you go back to our last 

lecture, we will see that, we will have corrected the error that we introduce across the channel. 
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So, here in this example, this was the transmitted code word so indeed the fourth symbol was 

equal to one, but we are introduced an error here, so that the received vector was this what, so we 

have enable to do using the single vertex passion of the GDL is to actually that restore the correct 

value.  
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Now a comment, in a way I am going back and forth between lectures, last lecture and the 

present lecture hope that is okay, I just want to actually make one point here. Let, me just 

perhaps I should, let me here is make that point with respect to this figure here. Again this is 

from here this is the twelfth slide from your last lecture, lecture twenty six. The question is well, 

what is the justification for what you have doing, I mean you are telling some steps, you are 

passing me messages, but what is the justification? The justification is simple this that the 

objective function that you wish to actually compute, which is this one here, is here if you look at 

it you will see that what you want to compute is the product of all the local kernels, and then 

followed by marginalization, which means you want to get rid of the variables there are not 

interest in some sense, which in this case are x 1 x 2 x 3 and then x 5 x 6 x 7. The only thing that 

GDL a saying well, I understand that is what you want to do and then, but I am trying to be a 

little clever in terms of when I marginalizing, because node one looks and says look I have 

information about node one, and it passes this here.  



This node looks at node four and says look I have information caring concerning x 1, but that is 

of no interest to this. The brute force we have doing the computation would be to collect all the 

local kernels have them passed, and then do the marginalization, finally and only finally at the 

objective node. But the smart thing to do is to do the marginalization where ever possible, 

because then it reduces the over head in terms of both competition as well as how much of 

message you pass, because the message first passed across here is the function of a smaller 

number of variables. And all your computation will actually a therefore be simpler, because 

when you are multiplying you are involving a smaller set of variable. That is the read why, that is 

exactly what GDL does; so that all at the same time justifies the procedure. It tells you that 

nothing much is really going on, the key property that you are using is that of the GDL. Now, so 

for example, supposing instead of actually trying to compute at the objective function at node 4, I 

was trying to compute the objective function at node six let us say, when I would orient all my 

edges towards node six.  

And then here what would happen is that I would marginalize with respect to x 1, because I do 

this node looks across this gap and says, I have information which is a function of x 1 x 2 x 4 but 

on the other side, I see only x four from then marginalize with respect to x 1 x 2 and the question 

minds wells in your mind well if you got rid of all the information of x 1 x 2, how do you know 

that it is not going to pop up somewhere here. What if our node here, a node here has 

information about x 1 and x 2? And may not in trouble, but that is a beauty of a junction tree 

because if x 1 is present here and not present here, and present somewhere else, then it has to be 

present along all the nodes along the unique part joining these two nodes. So the very fact that x 

1 is here and x 4 is in x 1 is not here you once you see that you can rest you sure that the x 1 will 

not appear and this part of the tree. So, that is what justifies your marginalization at this stage 

that is another point.  
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So now, the next question is, well now we justifies how a maximum likelihood code symbol 

decoding is achieved, so I just make a very short note about this from the example and the 

junction tree property, it is apparent why marginalization at intermediate stages of message 

passing. 



As determined by the GDL is justified. Now, I want to actually repeat the same example that we 

did here with the difference that I want to consider in place of maximum likelihood code symbol 

decoding. I would like to actually carry out maximum likelihood code word decoding. Take this 

end code, but now I am see maximum likelihood code word decoding. So the question is what 

changes would be required in order to enable us to do that. 
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And as I pointed out, what you could do is, you could the only change that is really required is 

that instead of the sum product the summation sign here, you would carry out marginalization 

using the maximum operator. So, let us just copy this page on to the current lecture.  
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And talk about maximum likelihood code word decoding of the 7 4 2 code using the G D L and I 

think in a earlier lecture we had in fact set up the objective function, let me see if I can actually 

fill that up.  

Here we go so in our twenty third lecture, we had there is an example this linear code and our 

interest was in maximum likelihood code word decoding of this particular block code. And 

towards this end, what we have done was, we had introduce this quantities F i of x i and we have 

define it like this, and if you break this it turns out to an end up with an expression like this, you 

end up with this objective function. 
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Let us copy this page as well on to our current lecture.  

So, with the same code we now have this I guess I can actually with this is here for just 

comparing purpose what we speak, perhaps I will just move this up so that we can readily 

compare these two quantities. So, if you look at this expression on this page. This is our 

objective function may needed to carry out maximum likelihood code word decoding barrowed 

from a previous lecture, and you can see that all the local kernels are the same, you are doing the 

same computation except that you have max here; whereas in the case of maximal likelihood 

code word symbol decoding, what you actually had here, let me removed this; is the same thing 

except that you have the summation. So given that, its decoding the change in strategy 

immediate to carry out maximal likelihood code word decoding is almost immediate, and what I 

will do now is given this are I will (( )) are all going to be changed accordingly. What do I mean 

by that?  
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I mean that in the last lecture, we put down and I will an algorithm, we put down an algorithm 

for message passing, which was given here. Now this message passing algorithm assumed that 

this that the semi ring in which you are operating is the sum product semi ring. So, in fact this 

notation summation really stands for the first of the two operation in the semi ring; in the sum 

product semi ring, this would be a summation and that is a product. But on the other hand, if you 

looking at max product semi ring, then this summation would be replaced by a max, and this 

product would be stay as it is. So, that is how you should interpret this. And similarly, we said in 

the beginning of the current lecture at the end, when you are computing the global kernel, what 

you do is you just take the product of all of this. So, this product is really stands for the second of 

the two operators in the semi ring. For example again since we are talking about the sum product 

semi ring, here what we have is the product.  
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But there is another semi ring called the min sum semi ring, in which case the second of the two 

operation is the summation; so it actually be adding instead of multiplying; please keep that in 

mind. So, the notation here is with respect to the sum product semi ring. Once we are clear on 

that, it becomes clear how to actually carry out message passing, we can go back to this example.  
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Let us go back to this example and carry on from there. 



Here, we have the junction tree, and this time I want to tackle exactly the same example, the 

same setting exactly as before. And see, what difference comes about, since we have employing 

the max product. So the first thing that is clear is that here initial messages are all the same; so I 

can actually restore them I guess, I did not need to delete them, since the initial messages are all 

the same. So, the messages that are incoming from each of the leaf nodes are exactly the local 

kernels, and these do not change. And again let us assume that so the setting is the same as 

before; here we will do decode the 7 4 2 code once again, for y equal to 0 1 1 0 1 6 7.  

We had remembered we had introduced an arrow in the fourth symbol, so will be still carry that 

over. So, for that same example with the same notation as earlier that initial wave of message is 

the same coming in from the leaf nodes. And the first marginalization that carried out is actually 

here; so the question is what is a marginalization that you would carry out between these two 

nodes; in the sum product summering you would sum over the variables x 1 and x 2, here would 

actually take the max. So, what you are going to do is, I always feel more comfortable, when we 

have a little bit must space to write let me again copy this over.  
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So here, we want to focus on the computation, the computation indicated by this red line over 

here. I am going to delete me of this are the stuff, which we do not need.  



So, the question is what is a computation, let us actually being carried out, and that 

marginalization with your actually carrying out here is the max over x 1 x 2 of p of y 1 x 1 p of y 

2 x 2 times k 1 2 4 of x 1 x 2 x 4. And this is our function g of x 4, exactly like we had last time 

we had the summation, so that things of x 4 is 0, then this is going to force there x 1 plus x 1 

agree with x 2. And when you take the max, what you are going to do is you are going to take the 

max, so here for example, you will multiply 1 with theta one by theta and take the max of these.  
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So here, what that would mean is that remember these quantities in vector format 1 theta 1 and 

theta 1, so you are going to multiply these component by component, and then you are going to 

take the max. Now, x 4 here dictates that if x 4 is 0, it dictates that if x 1 is 0 x 2 is 0, then you 

would multiply 1 and theta and theta and 1 and take the max if x 4 and theta and 1 and take the 

max if x 4 on the other hand is a one, when x 1 is 0 x 2 is a 1, when this is a 1 that is a 1 when 

this is a theta this is a theta it takes the max of that you will actually end up taking in this case 

The max of g of 0 therefore is the max between one times theta and theta times one which is 

theta; g of 1 is the max of and this time coke fast, because one here force one here it is one times 

one and theta times theta, this is actually equal to 1. So, the message that is passed here is result 

is theta 1, the message that is passed is theta 1.  
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And now, we can go back to this figure here, and fill in all the messages, we seen here that the 

message that is passed in here let me try to put a different color here; perhaps, I will try red itself, 

this we would already seen is theta 1, the message coming in here again for exactly the same 

reason is theta 1, this is also theta 1. And this quantity here is the local kernel. This is the local 

kernel, and you are going to take the product of all of these.  
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The end what you going to left with is the following computation; you have x 4 and from 1 2 4, 3 

4 6 and 4 5 7 all of the incoming messages are the same and correspond to theta 1. Your local 



kernel however is 1 theta, so the way you should interpret this is that it saying that the local 

kernel seems to suggest that you know likely to be a 0, because this number is larger. However 

the messages that are coming in from all this check nodes tell you otherwise that telling you are 

more likely to be a 1, and that is them what do you do? Well, the GDL tells you need to multiply 

these quantities.  
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So, in this case your F 4 remember objective function we had called we denoted that by f i of x i 

say 4 of x 4; therefore F 4 of x 4 is equal to product of all three, which will then be theta cubed 

and theta. Therefore, since huge compare in decoding what you do is, compare between the two 

possibilities; the possibilities corresponding to 0 and 1, so again I remainder this here stands for 

x 4 equal to 0. This is x 4 equal to 1. And when you do the comparison, you see that x 4 equal to 

1, so therefore even the maximum likelihood decoder; even the maximum, likelihood code word 

decoder, decodes x 4 equal to 1; so in both cases end up correcting the error.  

Now, the other question you might have on your mind is well. You tell me how to decode x 4 on 

this graph, but how what if I have wanted to do decode all the others. Well, this node difference 

fundamentally, because node is ready to compute his objective function, when it has received 

information from all its neighboring nodes. So, you can work out whatever schedule you want, 



so for example here we pass messages inwards, and variable to compute the objective function in 

the x 4.  
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Supposing you wanted to compute objective functions at all of 1 2 3 4 5 6 7 nodes, what you 

could do is, you could pass messages in inward and outwards schedule, while the message is first 

come in from the outside. And then go back out; in this way, you will actually find out that you 

are ready to compute all the objective functions, more generally you could set up its schedule of 

message passing and ask yourself a question. Am I ready to compute my objective functions, 

have I received the messages, have I received messages from my neighbors and so on, the correct 

messages from neighbors; so that is an in general, what you would need to do?  
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You could and you could keep track of in sequential message passing procedure, so perhaps I 

should do this. Let us go back to lecture twenty six.  So here, in general if you wanted to know, 

when it is exactly that a node is ready to compute it a objective function. What you could 

actually see is what inward outward schedule let say that you first pass all messages inward like 

this; and on the graph, you could keep track of who has heard from whom? So, let me get rid of 

this right here. So initially, it is true that every node knows its own local kernel, so this knows 

this has knowledge pertaining to 1, this has knowledge pertaining into 2 and so on. But after 

these messages have been passed, we can keep track of what who has what messages, perhaps if 

should put downing red again. So, this knows all information pertaining to 1 and to 2; once these 

messages have been passed, this has all the information pertaining to 1, 2 and of course 1 2 4.  
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It knows 1 2 and 1 2 4 likewise this knows 3 6 and 3 4 6, because 3 4 6 is a node by itself, 

similarly this knows 4 5 and 4 5 7. Now, once these nodes have had a chance to pass on their 

information to 4. Then 4 has information from everywhere and that is when it is ready to 

compute its objective function. Now, so that is exactly what we did just now, but supposing at 

this stage, we were actually to pass messages in the backward direction. So, let us say that next 

my next step is to pass a message like this, a message like this and a message like this. And you 

see that I am able to pass a message in whichever direction I choose, because I have heard from 

all my neighbors me my precision to pass messages in these directions. Now at that stage I have 

all the information.  

Therefore, I am able to pass all information to these nodes. So, on the backward wave every node 

is it here receives a message it has it has complete knowledge, this already heard from to this 

here is from everything else to which its connected. And so, you actually go back and then 

computed that is on the first and on the second iteration, you can compute the objective function 

at the leaf nodes.  
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So, you can find out more details about this schedule from the paper, which is our reference for 

more details on this scheduling please see.  The generalized distributive law by S M A j i and R J 

Mc Eliece IEEE transactions information theory this is march two thousand issue alright with 

that, although there may be small gaps here in there hopefully you understood. How you can 

actually use the GDL to decode a code when there is a junction tree.  
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Just a quick note again without proofs, note on the complexity at the GDL of implementing the 

GDL; this it can be shown that the complexity for the single, a single vertex implementation of a 

GDL is equal to the sum over all edges E i j of q of s i plus q of s j minus q of s i intersect s k. 

And I mention this theorem earlier and this is why when we were actually setting up the junction 

tree we wanted keep this as an objective function to be minimized, where an opportunity errors. 

It can be shown so this is counting additions and multiplications as operations.  Again I use the 

terms addition and multiplications but these really are reference to the two operations in the 

summering which in the sum product summering turns out to be additions and multiplications.  
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And it turns out that, the complexity involved in computing the objective function at all nodes is 

bounded above by four times the single vertex complexity. So, it tells you, gives you a 

reasonable handle on how many operations are required to implement the GDL. Again for the 

proof, you can actually, can solve the paper I think that will take as no time then we really have 

to actually go through the proof. So, I somewhat ambitiously put down the title of our lecture, the 

GDL approach to decoding convolution codes. Let us move on to consider convolution code 

next.  
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So, maximum likelihood code symbol decoding of a convolutional code; and we did actually 

introduce convolutional codes in the context of the MPF problem in lectures twenty 3 and also 

twenty four. So, let me go to twenty four here and I actually, we looked at this figure here this 

actually tells you that in which really is right is a graphical means of actually depicting the 

factorization of the joint probability function of the message symbols, the output symbols on the 

state of the convolutional code, and we said that this will factor like this, and that is what this 

figures is all about this is not a junction tree it is what is called Baysean network. It is a directed 

acyclic graph that reflects the factorization and nothing more, and that is actually given here.  
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And just as we did maximum likelihood code word decoding at the 7 4 2 code, you can also 

maximum likelihood code word decoding of the convolutional code in a similar fashion by 

introducing objective functions such as these, and if you work through it will actually get this, 

and this maximum likelihood code word decoding is what the viterbi algorithm actually does. 

However I will what I we will come to viterbi decoding and I actually show you how viterbi 

decoding can all be viewed from the perspective of the GDL. What I would like to do today 

however is actually introduce a different decoding technique, which is decoding technique for 

maximum likelihood code symbol decoding of the convolutional code.  

So for that, let me just, so I think that is easier than perhaps to just try it out again simply. So our 

interest here is in actually in but I should clarify that we will do this for example, and the 

example view the same one that we considered earlier, namely this convolutional code. What do 

I mean by this? Well its sufficiently general except that just to keep thing have manageable I 

have restarted my attention to this four message symbols here; short and in some sense of short 

length convolutional code. So, we will restrict attention to this perhaps I should reproduce this; 

so let me say we consider the same convolutional code, I think I am writing too close to the edge 

of the paper.  
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We consider the same convolutional code as before with the difference that we are now 

interested in maximum likelihood code symbol decoding, so that leads as to an expression that is 

p of u k given y. 

(Refer Slide Time: 53:00) 

  

I can write it as being proportional to p of u k comma y, which is a marginalization of p of u k, k 

is equal to 0 to 3, and y which is a marginalization with respect to u k of and further 



marginalization over the entire state space of the code of p of s k the state sequence going from k 

is equal to 0 to 3. Our u k there are four states excuse me k is equal to 0 to 3 and y k, k is equal to 

0 to 3. This corresponds exactly to our convolutional code here with there are these message 

symbols this is the state sequence. We start from state 0 end up in state 4 and these have a 

corresponding receive symbols and that graph tells us how this actually factors.  
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We will have probability of s 0. This factors like this and once again we see that we were ended 

up with a problem that has a form of marginalize a product function problem and this is where 

since we only have two minutes left this is where we take up our discussion in the next lecture 

just to recap what we did today was, I started out with the GDL approach to decoding were we 

want to do maximum likelihood code word decoding at begin with, I just know the couple of 

nodes, I explain that how would node under the GDL computes its objective function. We 

completed our discussion of maximum likelihood code symbol decoding. Before moving on to 

maximum likelihood code word decoding, we made the observation that, you simply replace the 

summation operator by the max operator and we carried out decoding that was quit straight 

forward and then towards the end we started discussing decoding of the convolutional code 

though is also a short note on the complexity of the GDL. Thank you we will see you next time.  


