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Second lecture on error correcting codes, and let me just bring you to the title of our lecture 

today. So, our lecture today is entitled error correcting example codes and their parameters. 

But normally what I do is before I start every lecture, I give an overview of what we covered 

in the previous lecture, and I will also do that today. But there is other thing that I actually 

wanted to do which was to show you some of text books that you might want to take look at 

just to get just to use them as a reference.   
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So, let me just quickly do that, then I will come back, I will summaries the last lecture and 

then we will continue with our lecture. So, here now these text books I must say are not in 

any particular order, it is a random order, there is one book Steven Wicker Error Control 

Systems for Digital Communication and Storage, this is 1995. So, not quite latest text book, 

but still not bad. So, this is one of the text books. It is a, it is a it is a well written text book, 

it is quite balanced, little on the older side. To the right is a text book, which is even dates 

back even further back to 1981, but one of the things that I particularly liked about this text 

book is that it is extremely well written, and it is easy to read the authors avoid, they avoid 

formulae or equation wherever possible in yet convey much of the meaning. But of course, 

in since 1981 this is clearly dated, but still it is also written from a rather practical point of 

view, because these authors are actually practicing engineers. So, it is little bit different 

because most of the other text books are written by people, who are professors in some 

university or the other. 
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This one by contrast is this one on the left over here, is this one here is more recent text 

book. The Fundamental of Error Correcting Codes by Huffman and Vera Pless, it is 2003, 

very well written. These same authors actually put together handbook on coding theory, 

which is about several thousand pages pages long, and they got contributing contributions 

from the leading coding theories around the world. Then subsequently, they brought out 

their own book and this book is very well written, very carefully written. I think at some 

extent, the text books define their coverage of the topics. For example; one author who is 

done research in a particular topic, might actually emphasize that topic in relation to the 

others. So, that often is the difference between textbooks. 

Now the other comment I guess, I should make is versus I mean this issue of the Classical 

Coding Theory, which tends to be algebraic versus the modern, which tends to the 

probabilistic. From that point of view this book, for example; this book is algebraic, it does 

not consider the modern theory, coding theory, we point simply because it was written a 

little before Modern Coding Theory took over, took its current place. Similarly, the same is 

true of this book except the it is written as I just explained in an not so mathematical 

manner. This one it does write to include some of the modern coding theory, but really the 

authors are are experts in algebra and (( )) and the book reflects that. Similarly, here if you 

look at Ron M. Roth he is classical coding theorist although he does some of the modern 



aspects as well, but again you can actually as you browse through the contents of this book, 

you see that the authors personal research preferences show up in terms of the emphasis on 

different topics. 
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Now first let me begin with this book on the right, the book this book on the right was the 

classic, it was it is a 1977 book, so very much dated, but in its time it was considered a 

Bible. It is it is the Bible from an algebraic coding theory point of view. It is like an 

encyclopedia anything that you want it could actually be found there, it is beauty beautifully 

written, but very compact. So, every word there is no extra word in this entire text book. But 

also it is restricted to the algebraic coding theory view point. And even there for example; it 

is not treat the topic of convolutional codes. So, it is rather specialize that given that it is 

superb text book. 

On the left, you have kind of the opposite model, which is the Modern Coding Theory text 

book. I think, it is a year or two old, and it is completely different from all the other text 

books, because it takes predominantly the modern coding theory view point, which is that it 

is very probabilistic and it emphasizes low density parity check codes or or or turbo codes 

and so on. Very nicely written, the authors very are experts in this area. 
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The text book on the left here maybe I will just magnify this little bit. This text book on the 

left here, Error Control Coding by Shu Line and Daniel J Castello, this was the default 

reference text book for many years. And basically, because all topics were covered and they 

two authors were experts respectively in block coding and convolutional coding and so it 

made for balance. Now now that with regard to modern coding theory, the authors have 

done some work in this area particularly the first author. So, they do pay some attention to 

that as well in their topics. So, basically what they have done is they taken that text book and 

then they are upgraded it to include the modern coding theory view point. It is its for main 

people will actually like if we, if we have to use the single text book, you might actually 

think of considering this book. To the right to the right is book actually on Optical Fiber 

Tele Communication as you can see here. So, we might say well what is an Optical Fiber 

Tele Communication text book doing here?  

As I mentioned last time that in this hand book published in 2002, a bunch of us had 

occasion to write to a chapter on error control coding techniques; and and my my discussion 

the topics will be in the same sequence as is covered in the chapter. So, this might be the 

useful reference for you. So, there are 8 text books here, but in reality, but if you look out in 

the market there are lots of text books on coding theory many, many text books have come 

out in the recent few years. So, this is, by no means exhaustive, but just give an idea of some 



of the text books that you are likely to encounter; so that I will close on this. And then we 

will move on to talking about the lecture. The lecture 2 is example codes and their 

performance. So, let us quickly preview the previous lecture. 
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Just for an overview purpose I think that this level of magnification should suffice, what I 

did last time was basically said I am going to introduce the course in terms of flow charts. 

So, here what you see here is like a flow chart. So, I discuss, I discuss over here in the 

second slide, let us see if we can see this (( )) there you go. So, on this side what I do is I 

discuss in this slide. I tell you how we are going to start of the course by talking about basics 

of binary codes; then we will move on to linear binary codes. And then as a side topic we 

consider the topic of convolutional codes. And then after convolutional codes, we will move 

on to to the modern view point, which is, which as I said is probabilistic, but we will 

approach it from the point of view of an algorithm that is way efficient in terms of 

minimizing competitions. And that algorithm has its bases in something called generalized 

distributive law. 
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So, we will cover that, we will spend three-four lectures on it, and then go on to talking 

about the modern codes, which are examples of which are low density parity check codes, 

and then turbo codes. And after that the end we will actually start talking about the algebraic 

view point, which will begin with finite fields and then want to talking about a specific 

classes of codes, which make use the algebraic view point. 
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Then next thing that I did, was to actually talks so maybe I can access this zoom out little 

bit; so that was the first part. Then the next thing that I went on to do is to consider to 

discuss the, to discuss channel models here. And the channel particular channel module that 

we will be dealing with for the first few lectures is so called binary symmetric channel 

model. And what I did there was I explained how a second channel called (( )) channel and 

which perhaps is closer to what you might imagine a channel looks like, how that in 

approximation of that leads to the binary symmetric channel. The binary symmetric channel 

is the one that we will focus on. So, the input is both binary the input and output are both 

binary so, that leads to question how do you do a arithmetic working with just binary set 0 

and 1. 
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So, we talk about addition and multiplication and how this are carried out, when we have set 

is 0 1 and then we actually say how do we extended for the case, when you have vectors, 

where the symbols individually come from 0 and 1. Then we introduce some terminology, 

we introduce what is meant by the hamming weight, hamming weight of the vector is the 

number of non-zero components in the vector. So, here you see the space of vectors they the 

symbols come from f 2. I give you an example. 
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The hamming weight is the number of non zero components and the hamming weight 

function has certain properties, which we actually discussed, and this led naturally to 

discussion of the hamming distance between two vectors.. 
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And we define the hamming distance as simply the hamming weight of the of the some 

vector and again there are some properties, one of them being the triangle in the quality 

which corresponds to this figure. After that I said, I think we are now have the set up where 

actually tell you what in a very general way a binary block code is? 
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So, binary block code is simply any subset or the set of all n tuples; and here what we see in 

this figure are collection of n tuples, and certain selected ones among these correspond to the 

code words. And error correction takes place, because given that you transmitted the code 

word and given that the channel has perturb the code word to another vector that close by, 

you can often correct that errors simply by saying well this is transmitted this is received, 

but since this is closest to this most likely that was transmitted. So you guess what the 

transmitted code word, and that is how error correction takes place. 
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And then I started talking about the parameters the different parameters of a block code, one 

is of course, the size which in some sense measures how much information. So, one 

parameter of course, is this size of a code, which is simply a count number of code words in 

the code. The second is the rate of the code, the rate of the code if you taken information 

theory is a major of how much information you are sending along with the code word per 

channel use. If the code word has the length n, then in reality what you are doing is, you are 

using up n channel uses. So, the amount of information when you average per channel use, 

terms out from an information theory point of view. 

And the units in this case are bits by channel use, bit being a very clearly define quantity in 

information theory. So, its log of the size of the code to be use to divided by n that is number 



of bits the channel use it have transmitting; so the bigger the code the more the information 

that you are sending.  
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And the third then there is of course, the block length of the code itself, which is here simply 

the number of components in each vector and n there is the minimum hamming distance; the 

minimum hamming distance is the is is really a measure which tells you how close to, too 

close two code words come together, because this smaller the distance the lesser the error 

correction capability of the code. So, what that tells us is that building an error correction 

code is really all about trying to actually within the set of n tuples picking certain vectors as 

code words; and then number of them is the function of how much information you want 

actually convey but how much error correction capability you get is really depended upon 

how well spaced these vectors are in this space.  

So, having introduced the parameters, so what will do today and that is the title of our talk is 

we look at some example codes and their parameters. Now, typically what I do is, I ask 

questions in the class then I say, does anybody know of an error correcting code? And the 

and usually we do get responses. And the most common responses are very good examples 

to begin this theory with. So, I will actually start with those. So, the first example that you 



might actually think of is that repetition code. Now all of our example codes will have block 

length 7. So, let me make a note on this side of on that. 
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So, the repetition code in this case will just simply consist of two code words, the code word 

beings the all 0 code vector as well as the all 1 code vector. Now let us go about seeing what 

the parameters of this code might be so the size, so the size of the code is of course 2, the 

rate of the code is remember it is log to base 2 of the size of the code divided by n. So, in 

this case that would be 1 by 7. The third parameter is the block length, but I have already 

pointed out that all of our example codes will have block length n equal to 7. So, the last 

parameters the minimum distance of the code. So the last parameter is the minimum distance 

of the code; that is what is the minimum spacing between a pair of code words in the code, 

distinct code words in the code? And you can see in this this case the the minimum distance 

is 7.  

So, this of course, since the vectors have length 7, I am sorry this one type here, this 0 

should have been 1, let me just quickly correct that. So, there are, in this case, the code size 

is small, but the separation is large, in fact the separation is as large as can be.  
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Let us go to our next example; so, example 2 is so called single parity check code and we 

will abbreviate this as s p c code, single parity check code. And the way you define this is 

that c is the set of all vectors of the form under the constraint that summation is equal to 0. 

Now just reminder here and I want discuss this many times, but whenever we talk about any 

arithmetic, we will always mean modulo to arithmetic. So for example, when I write down 

the condition that the sum of the symbols must be 0, what you mean is that this sum of after 

it is computed modulo 2. So, the modulo 2 sum is equal to 0 is the way you should actually 

interpret this. But I want to mention that in the sequel we will always assume that to be the 

case.  

Now again with regard to code parameters, you have that this size of the code is 2 is 2 to the 

6, and does not have to see because after all you can choose the first six components 

arbitrarily and this seventh symbol gets fixed by the parity constraint. The block length of 

course, is 7, we chosen that the rate of the code is we are going to take the log of the code 

size to be 2 divide by 7, so that will be 6 by 7. And then that brings us to the minimum 

distance of the code. The minimum distance of the code is the minimum distance between a 

pair of code words; and if you think about it, this another way you can actually try to answer 

the question is to, what the minimum distance for code might be is just to ask yourself the 

question. If let us that X 1 through X 7 is a code word then how many of this symbols must I 



flow in order to get a second code word; and it is not actually had to see that if you flip one 

symbol, then the parity condition will be violated and therefore no two code words can be 

one symbol can have a hamming distance of 1. We cannot define just one symbol. But you 

can certainly flip two symbols and satisfy the even parity constraint, thus the minimum 

distance of the code is actually equal to 2 in this case.  

And if you want a small example of that you can it is not at all hard to construct for 

example, you can consider the hamming distance between the vector of all zeros and the 

vector whose first two components are one and the remaining components are all 0 so, 

hamming distance is 2. And both cases I know that their code words, because after all the 

parity check constraints is actually satisfy so that is our second example. 

(Refer Slide Time: 22:23) 

 

Now, let us look at our third example, the third example will be the hamming code. It turns 

out that the hamming code is really a chain of error correcting codes and these codes can 

have different lengths, there always of the form 2 to some power minus 1. So, now we are 

looking at the code whose length is 2 to the 3 minus 1, there are you can present the 

hamming code in a number of ways. Some years back I listen to a seminar by well known 

coding theorist Bob Macklis and he presented it from a rather interesting point of view and 

he was saying, you know I can explain the hamming code to a 5 year old. And we were 



spectacle it first, but, as he gave the lecture, we can clear yes of course, you can do that. So, 

I am going to present that few point to you and afterwards we will will view it from a 

different perspective, which will allows to generalize it to a large class of course. 

I have myself presented this few point to some, some children, who were fifth graders so, 

not quite 5 year old, they were 10 years old and they seem to understand perfectly well. And 

going to put down some symbols and I actually I called it the magic of 3 circles when I 

actually presented it to them. So, let me just introduce some notations. So m 0, m 1, m 2, m 

3, so each of this represents a symbol and it turns out that there in the hamming code that 

you can pick this symbols anyway you like, but of course, this is the binary code, so you can 

only make it either 0 or actually 1. So, there only two possibilities, so that means, the total 

number of code words is therefore, 2 times, 2 times, 2 times, 2, which is16. 

So, the hamming code will actually contain sixteen code words. Let us go about seeing how 

after all the code is block length 7 that means, there are 3 more symbols to this code words, 

let us go about introducing them. So, the code symbols are I will put down p 4, p 5 and p 6. 

So, there are these three symbols and the way the hamming code is going to impose the 

requirement that in any in any circle the parity must be even. So for example, let us see 

arbitrarily chose the message symbols m 0, m 1, m 2 and m 3, then the parity symbols must 

be chosen in such way that every circle you actually have even parity. So, in particular that 

means that the following equations must be satisfied namely that m 0 plus m 1 plus m 2 plus 

p 4 equals 0, m 0 plus m 2 plus m 3 plus p 5 equal 0, m 0 plus m 1 plus m 3 plus p 6 is equal 

to 0. So, for each of the circles you actually write down a parity check equation. So now you 

can see, why I call the first example a single parity check code, because there is just a single 

parity check that had to be satisfied there, whereas, here you actually have to have satisfy 

three parity checks one corresponding to each circle. 

Now of course, the question is how how is it that this code corrects errors etcetera, but we 

come back to that little bit later, right now I am just giving you an example of a code in 

terms of just saying how is it constructed.  
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So, let us now look at code parameters so one the size of the code, is the size of the code as I 

told you earlier sixteen because you free to pick the message symbols, and then after that the 

parity symbols are all fixed. So, the size of the code is 2 to the 4 which is 16. And as the 

consequence is this the rate of the code the rate of the code is the log of this to this 2 divided 

by 7 so, the rate of the code is therefore, 4 by 7. The third parameter is a minimum distance 

of the code. What is the minimum distance of the code? So the minimum distance really is 

asking the question, let us assume that someone put down a certain set of symbols. So, let 

me take take a particular example I will put it down in red.  

So, let us say for example that I chose the message symbols to be 1, 0, 1 and 1. See the 

message symbols can be chosen arbitrarily so let us assume that in a particular instance they 

are, I am going make this little bit thicker, so that you can see this clearer in a more clear 

way. So let us say that again that this is 1, this is 0, this is 1 and this is 0; and these are your 

choices of the message symbols. Now you must make sure that the parity satisfied in each of 

these; and as a result for example, what you will do is you have your force to make this 

equal to 0, and here you have force to make this equal to 1 and here 0. So, you pick the four 

message symbols and the parity symbols are determined after that.  



Now the question is so, that gives this is an example, this 7 tuple is an example of a code 

word in the hamming code. The the question with regard to minimum distance is, what is the 

minimum distance between a pair of code words or asked in different way how many 

symbols must I flip at a minimum in a code word to get a second code word. And let us try 

to this code word reference to the question is how many of these symbols can I flip and still 

get a code word? Now let us consider the various possibilities. For example, I might flip this 

symbol in this (( )) but, if I flip this symbol, now it is a part of three circles, so it is clear that 

if I flip this, then I have to flip at least one other symbol. Let us say there I flip this, because 

I have to make sure the parity in all three circles is sets, so if I change this to a 0, then I 

might try to balance out the parity in both of these by changing this to 1, but then I am still I 

still have to do something about this circle.  

And since I do not want to interfere with what is happening here, I am forced to flip this. So, 

you saw there in this particular instance, you had to flip at least three symbols before you 

went from one code word to another. So, once again let me just repeat, so for example, if I 

tried let me try picking slightly different color see if we can show you this. So if I tried let us 

see changing this to a 0 and trying to make sure that the parity here was balanced, I am 

making that 1, now balanced parity in both of these circles, but then I am left with this 

circle, I do not want to change this or this because that will upset the parity in the two circles 

that are I have already balanced, so I tried to change this one, so I do this. So you see that I 

was force to put three green entries here, which meant that three symbols had to be changed, 

that is the indication that the minimum distance of the code is actually 3, that is not a 

complete proof, but I will let you complete the proof on your own the rather ways of 

showing later on. So, we will just put down here of now, that the minimum distance of the 

code is 3. 

And I leave this is an exercise for you to prove that, no matter what your starting code word 

was that you can never change from one code word to another by just changing three 

symbols. So that is an important point because here what we did was we took a particular 

code word, and saw how many symbols we had to flip to get an another one, but of course, 

to prove this you have to show that no matter what code word you started out with that the 

same you will be in the same situation. No matter what you did? And also they were other 



choices available to us, but no matter which situation you consider, you will always end up 

with this. So, the minimum distance of the code is 3. Now we actually finished looking at 

some example codes. 

Of course the burning question is that is fine, so you told us what the code is, you told us 

what some parameters is the code are, but what I really like to know how do you use this 

codes for actually correcting errors? So for that we will we are going to need some 

definitions so let me get to that. 
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A t sub c, t sub d code is a code in which any combination, any combination of less than or 

equal to t sub c errors can be detected and corrected. And any combination of t errors, where 

t is greater than t sub c, less than or equal to t sub d can be detected as in an correctable 

error. This automatically implies that t sub d is always greater than or equal to t sub c in any 

code, so perhaps let me just in the pair. We always assume that t sub d is greater than equal 

to t sub c. So that is fine, but still the question is about how these codes correct errors. And 

will actually the next theorem will make this clear, because what we will do is we will tie in 

the minimum distance of a code, which we will able to compute to these parameters t sub c 

and t sub d. 
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So here is our first theorem, binary block code C is a t sub c, t sub d code, if and only if the 

following is very straight, namely that the d min of the code is greater than or equal to t sub 

c plus t sub d plus 1. So only if this conditions satisfied is code t sub c, t sub d code, so how 

do you prove this? So, what we actually do is we will provide, so by the way this is if and 

only if, so that means that we have to show two things, one is that if this equation is satisfied 

then in fact the code can be used to correct this sub c errors and detect t sub d errors. 

On the other hand to show only if we have to show that if this condition is violated, then it is 

not possible. And to show the if part, we will actually do this by exhibiting very simple 

algorithm.  
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So here proof, so this will be for the if part, so here assume that d min is greater than or 

equal to t sub c plus t sub d plus 1. We will adopt the following decoding algorithm, so I am 

I am going to draw a picture that goes a long width, when I am going to describe, so in the 

picture this is an abstract depiction of the set of all n tuples, and here let us say that you have 

the received vector y.  

And so what we are going to do is, we are going to draw, we are going to consider in the 

neighborhood of this vector a ball of radius t sub c and if there is code word in this ball, so 

let us say that there is a code word in this ball, which is located here let us say. Then we will 

declare that x was a transmitted code word. If there is no ball, if there is no code word in this 

ball, then we will actually say that the number of errors exceeded t sub c and we will detect 

an uncorrectable error. So, let me just write some of that down, let y be the received vector 

and now for for any vector a in F 2 to the n, let us define let us define B of a, r to be the set 

of all vectors of the form is call that z, z belonging to F 2 to the n. Such that the hamming 

distance between a, so a is a vector and z is less than or equal to r. This is a general 

definition. 

So, for given any vector a, we define we can define this ball like this. So, when I was earlier 

talking here about a ball always referring to one such ball except that here it is going to be 



centered around y. So, our decoding algorithm will say let us look at the ball of radius t sub 

c centered at y and look to see, if there is a code word in there.  
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So, let me write that down, if B sub y t sub c contains a code word x, then we will declare x 

to be the transmitted code word. If not if not, we will declare that an uncorrectable; that an 

uncorrectable number of errors have occurred. So that is our algorithm. 
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Let me just do one thing here, since this dotted line is not so clear, let me try to draw this 

circle in perhaps different color here. So, this is the same circle that I was talking about last 

time. So, this is your received vector, you are going to look in this ball and look to see if 

there is a code word in this ball. Now, often students say this point say sir, that may be true, 

but what you have not said explained to us is what will happen if this more than one code 

word in this ball? And what I want to point out is that it is not possible for more than one 

code word to belong to this ball.  
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Why is that? Because let me just draw that so we will make that note, so it is not possible for 

B y t sub c to contain more than one code word, the reason being so let me draw this circle 

again here. So, let us say that they were two code words whose distances were, let us say 

that their distances were d 1 and d 2. So, now within this ball if let us say that there are two 

code words and both of them belong to the code, then what you would have is that the 

distance between these two code words the two code words themselves. Let us call this 

distance d and what that would implies that the distance between these two code words by 

the triangular inequality is less than or equal to the sum of these distances, which means that 

is less than or equal to d 1 plus d 2.  
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So, if so if if the hamming distance between y and x 1 is less than or equal to t sub c, and the 

hamming distance between y and x sub 2 is less than t sub c, this would imply by the 

triangular inequality, that the hamming distance between x 1 and x 2 is less than or equal to 

2 times t sub d c, but this is less than or equal to t sub c plus t sub d, which is strictly less 

than t sub c plus t sub d plus 1. So, that is a contradiction. 

So, what that means is that we ruled out the possibility that the ball of radius t sub c around 

y can contain more than one code word. So, the only possibility is therefore, are that either 

the ball contains no code word so, we are back here either this ball does not contain a code 

word or it contains exactly one. Now let us so, what I would like to claim is that the 

algorithm does what it promises, there is if the number of errors is less than or equal to t sub 

c, it will give you back the correct code word; and if the number of errors is greater than t 

sub c, but less than or equal to t sub d, then it will tell you this, there is an error, but I cannot 

correct it.  
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Now let us let us say for instance, that let us say that let me just clean this up a little bit, so 

let us say that in a particular instance there was a code word, and you decode it to that code 

word. So, the question is when how could you go wrong? You could only go wrong if there 

was some other code word that was transmitted; and so let us say that there was some other 

code word that was transmitted, which is let us say, let us call that other code word, let us 

put it in a different color, let us say let me see if yellow shows up in a screen here. Let us say 

that I will call this I guess, yellow is not a good choice. So, I may try different color, let us 

go with red. Let us say that there was another code word here, which is let us put x with a 

waggle on it; that this let us assume that this was actually the transmitted code word, but 

when you found another code word in this column. Now we know that this cannot belong 

inside the ball so that is what actually happen is that perhaps, this was the transmitted code 

word and that this was received with the number of errors being less than or equal to t sub d. 

So, may be that has happened, and which case you would be an error, because what you 

should have done was you should have detected that there was an error, which was 

uncorrectable. And as this figure shows we have already agreed that x from cannot belong in 

this ball. So, the distance must be less than or equal to t sub c d, but greater than t sub c so, 

in this case what we should have done was you should have declare an uncorrectable error. 

Instead what you did was you declared x to be the the actual transmitted code word, which 



means you made a mistake, which you should not have, but that is assuming this picture is 

true. But this picture really cannot be true, because if you look at this here, you cannot have 

a pair of code words x and x (( )), which with this set of distances and I will explain that. 

So, once again but before I do that let just to summarize that, we are in a situation, where the 

vector y has been received, and you declared x to be the transmitted code word. So, only 

question is could you have gone wrong, now x itself was the transmitted code word then 

there is no problem. And we know that whatever if if x was not the transmitted code word 

the transmitted code word must be somewhere in this place. And we are only interested in 

the situations when the distance from the transmitted code word is less than or equal to t sub 

d, wise that because all that here algorithm is promising is that its saying that if the number 

of errors is less than or equal to t sub c, then I then I will correctly correct the errors. But if it 

is greater than that, but, less than or equal to t sub d, I will declare it uncorrectable error. 

What happens beyond that there are no promises there are no guarantees, if the number of 

errors is greater than t sub d, then you just throw up your hands and give up. And that is 

perfectly fine, because we are not promising anything that region.  

So, for that reason we are when we are trying to actually if there are performance of the 

code, we only need to consider this two cases, the case when the transmitted code word is 

within this ball, which will shown cannot happen or the case when it is outside the ball, but 

its distance less than or equal to t sub d. And the question is, could this happen? And as we 

will see for the same reason, because of the triangular inequality even that that cannot 

actually happen.  
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So, here is your received vector and our concern is that on the one hand there is on the one 

hand, there is one code word here; whereas, the true code word is over here. And the 

distances is that you have are that these was less than or equal to t sub c and this distance 

was less than or equal to t sub d. But again that the triangular inequality that would imply 

that the distance d between x and x tilde would be t H of x x tilde would then be less than or 

equal to t sub c plus t sub d would be less than or equal to t sub c plus t sub d, which would 

be strictly less, excuse me, which would be strictly less than t sub c, this t sub d plus 1, 

which is again a contradiction. Because which is thank you, which is the minimum distance 

of the code. 

So, that we have shown is that you will not have an error even in this case because even this 

situation cannot error occur. So, what we shown is that if there is a code word within the ball 

you are going to make an error. Now what we need to actually come back and show is that 

what if there is no code word in that ball, then what you are suppose to do is you see you 

suppose to declare an uncorrectable error, and what we will do in the next class is we will 

actually show in there in that case, if you do declare an uncorrectable error, then in fact that 

is exactly what is happened, provided the number of errors is not greater than or equal to t 

sub d. 



So, I think this may be a good place to actually stop. So, just to quickly recap what we done 

in this lecture, we looked at three example codes, there are predation code, the single parity 

check code and the hamming code. And we looked at the parameters, then I actually 

explained, so now we are in the process of making the connection, the important connection 

between the code parameters and the error correction capabilities of the code and that is 

captured in this theorem. And we are in the middle of proving the theorem, we are almost 

done. We should be able to do that rap that up in the first part of the next lecture. So, let me 

stop here; and I will catch up with you all in your next lecture. Thank you. 

 


