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So, this today we began a lecture eighteen, we will continue discussing convolutional codes. Last 

time, we spent almost the entire lecture talking about the Viterbi decoded.  
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So let me, do the following, I will just run through the slides, and then I will do the quick recaps. 

So we started by looking at by sitting up the trellis of the convolutional code. 
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And the way the convolution code is set up is that the, you have all your every branch in the 

trellis is labeled with an output segment. In such a way that from start to finish and I am going 

from start to the end node, every path it takes response to code word. You can identify the 

message sequence associated to that path by just looking at the sequence of reds and blues, in 

these figure; and you can look at the code word just by looking at the output of the output 

symbols that are listed sequentially. So, for example if we went along with the top part it would 

be string of zeros, like this and so on. 
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And then we actually showed how you would use this for decoding in a particular example. So in 

the particular example here is the trellis, and it is label just it we shown in, and let say that we 

took that particular message sequence 1 0 1 1 1 0 0 0, and then the corresponding output 

sequence over here. We introduce two errors as indicated by these red arrows, and this was then 

we receive sequence. 
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And then what we do even back to trellis in we label the trellis by actually list in the hamming 

distance between the output that the segment of the code word corresponding to a branch and the 

segment corresponding to the received sequence. So for example here we put 2, 3 and so on. In 

this way, we were able to label every branch. And then from a brute force point of view, all that 

we have to do is examine all path from this start note to end note, and then pick the one that has 

the closed, that is closest hamming distance to the receive vector, but that involves too many 

competitions, because the number of paths increase exponentially with the length of these depth 

of these trellis. So the clever thing that the Viterbi decoded does is that well, let us start from the 

left and keep going to the right, and you will see that in this way you can actually keep 

discarding certain paths; and that was the idea began the decoder. 
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And we pursue that and we were able to actually decode the message correctly in these particular 

case. Now, so with that let me get on today’s lecture, which is entitled catastrophic error 

propagation. But I will just (( )) some toolbars here, and put down recap, labeled the trellis 

diagram, and then explained the operation of the viterbi decoder. So, that is what we did last 

time; so today, I just before I start our main topic, which is catastrophic error propagation, what I 

would like to do is just make one point about last time viterbi trellis. So lets us just go back once 

that.  



Now, if you look in the trellis, what I have actually done is put in two trailing zeros over here, 

and the I have already explains the last lecture the reason for bringing the (( )) so that you could 

actually bring the trellis are the finite state machine underlying this trellis back to the all zeros 

state. So that means last two message symbols are actually known, so even though the number of 

times you address a channel is 1, 2, 3, 4, 5, 6, 7, 8 in these instance, the number of message 

symbols that you actually transmitting is only 6. So these trailing zeros are a convenience and 

can be also be shown to improve performance but they do result in a loss in rate, and I thought I 

just documented before continue. 
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Note, by adding a string of zeros at the tail of the message sequence in order to bring the encoder 

back to the all zero state, we have suffered a small loss in rate. How do you quantify that? If the 

convolutional code is rate 1 by n, and has rate and has memory nu, so the memory nu; so what 

we actually mean is that this is the number of shift registers on the input line, then the loss in rate 

per message sequence of length N is given by N minus nu, it is N minus nu by N into k by N. So 

it would be… Now nominal rate of the convolution code is 1 by n, but now the fact that you 

actually introduced these trailing zeros brings in these other factor. So this is your actual rate; so 

that the loss in rate is this. As you can see the loss in rate is negligible, if N, capital N is large.  
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Now I want to get into the topic of the lecture, which is catastrophic error propagation and we 

are actually began that is by using an example, in this example consider convolutional code. So 

this is an example of catastrophic error propagation, and we will abbreviate that to be CEP. So 

consider the case, when the polynomial generate a matrix is given by 1 plus D and 1 plus D 

square, and so the input output relationship, as you know is given by this equation. Now so, 

catastrophic, I am sure as convey the meaning that something bad is going to happen.  
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So I am going to tell you, what that is suppose your input, the input U of D, now of course this is 

the input power series. So this is the sum U k D to the k, k goes from 0 to infinity. Suppose the 

input sequence use of k is such that this is equal to 1 upon 1 plus D, which would correspond to 

continuous, so this is equivalent to say that your sequence U k, k goes from 0 to infinity is string 

of 1, it is going up to infinity. In this case, so now what I am going to do is, I am going to this 

equation and I am going to plug in 1 upon 1 plus D for U of D. 
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Then, V 1 of D, V 2 of D is given by 1 upon 1 plus D into 1 plus D into 1 plus D square, and that 

is same as 1 plus D upon 1 plus D, 1 plus D square upon 1 plus D. So this is 1, and so the 

question is what do you get and when you divide 1 plus D square, 1 plus D. So let us do that the 

side calculation.  
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So, this is an aside. So we want to determine, what is 1 plus D square upon 1 plus D. So we will 

put down D square plus 1 and D plus 1 and so it is important remember that we are dividing 

sometimes we are dividing power series and sometimes you are dividing polynomials, so it is 

important to keep in mind, which we are doing at any given instant of time. In this case, we are 

actually dividing polynomials; so we do not have terms going off to infinity; in which case what 

you do is whenever you write a term you actually put the highest term first, which is what we 

doing here. So, this is D, D square plus D, D plus 1, D plus 1. So what we see is that this thing is 

precise D plus 1. So that was the little side calculation. Now, let us go back in here and say that 

now, we know this is 1 and this is 1 plus D and so this is your V 1 of D and V 2 of D. 

Now this is actually very bad and you thinking you have to looking at this since as well has not 

clear to me why is this very bad will the reason for that, is that here is the incidents and which 

your input sequence was infinite stream of 1s right. You input sequence here was an infinite 

string of ones and the other hand when you come to your output, your output is a pair of 

polynomials. So what is the corresponding output sequence is look like? This correspondence to 

the sequence, V 1 of k which is 1 followed by an infinite string of 0s. 
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. 

On the other hand, V 2 of k corresponds to 1, 1 and then a string of zeros. So even though your 

input as infinite hamming weight your output has finite hamming weight. Otherwise that the 

problem because, now supposing by chance the channel well as to actually corrupt just three 

message symbols supposing the channel corrupts these bits. So let me just write channel 

corrupted here, if this bits by channel corrupted then the output sequence would look exactly like 

the output sequence corresponding to an infinite string of 0s. So, that means that a finite number 

of channel errors can cause an infinite number of message symbol errors and that situation is 

called catastrophic error propagation. So let me, try to give you definition for an encoder matrix 

G of D for a convolutional code is said to have catastrophic error propagation. If there is some 

input U of D with infinite hamming weight generating are rather that generates an output. 
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V 1 of D, V 2 of D are in general let see with is a rate one by an convolutional code, whose 

hamming weight is finite; so in a encoded matrix for a convoultional code is said to have 

catastrophic error propagation. Now, I do want infuses that whether are not the right question to 

ask, whether your encoder is catastrophic are not, sometimes people casually say that certain 

convolutional code is catastrophic, but actually that is not the right terminology. For the same 

code you could have two different encoders, one of which could have catastrophic error 

propagation and one which does not, so that why I have said and encoder set of catastrophic error 

propagation, because this is really of phenomenon. That has done with the mapping between 

input and output. If this is generated matrix G of D as you see over here which actually maps in 

infinite weight input, such as this to finite hamming weight outputs, then this encoded has 

catastrophic error propagation and the reason for that is simply because of finite number of 

channel errors can cause an infinite number of message errors. This terminology stems from the 

observation that if the encoder has catastrophic error propagation, then a finite number of 

channel errors can cause an infinite number of message symbol errors. 
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Now obviously this is a situation that you like to avoid, so the natural question is what is it that is 

different between the two encoders. So there are consider the following generative matrices. If 

you consider G of D, which was the older encoder corresponding to 1 plus D plus D square 1 D 

square it turns out that this does not have catastrophic error propagation. On the other hand, if 

you look at the second polynomial error matrix, which 1 plus D 1 plus D square this has 

catastrophic error propagation. So, the question is what is it that really is causing the trouble; and 

the problem is that in this second example, down here, the two symbols in the generative matrix 

share a common factor and that is really what is causing the problem. It terms of the there is no 

common factor here. So now, I would like to do is state of theorem which actually tells you when 

precise even catastrophic error propagation takes place.  
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So, theorem a necessary and sufficient condition on the generator matrix of a rate 1 by n 

convolutional code to avoid catastrophic error propagation is simply that the gcd of the gcd of g 

1 of D g 2 of D g n of D is equal to D to the l for sum l greater than equal to 0. So, what exactly 

are these g as well these are nothing but components of the generated matrix. So these things are 

the elements of the generated matrix. So well just put that in where g of D is g 1 of D g 2 of D g 

n of D is the polynomial generated matrix of the code. So the theorem just as that all that you 

have to do is compute the greatest common deviser. If the greatest common deviser is some pair 

of D, where that exponents greater than equal to 0. Of course the convention is that, if you take D 

to the zero then that is 1, so the gcd can be one and can be D, D square and so on. But only these 

are promise able, if this is the gcd and this is does not have catastrophic error propagation and 

the other hand it does. So for that in order to decal little deeper I like to explain go back in 

explain how gcd are compute, because we will also running to gcd when we actually deal with 

decoding algebraic codes such as a reads on code. 
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So, just a quick review of a computing the g c d, so first of all an example, what is the gcd of the 

integers 27 and 63. How do you compute it. Now, the algorithm that you would have learned has 

an high school is that you keep dividing and you get remainder 0. So 63 divided by 27, where so 

63 divided by 27 is 2, 54 remainder is 9 then would you do is you go on to looking a 27 divided 

by the remainder whatever is the remainder here. So divided by 9, so that of course the you know 

that the remainder is going to be a 0. So, as soon as is 0 stop and then you declare the previous 

remainder to be the g c d, so in this case gcd terms are to be given by 9. Now, it terms up that the 

similar algorithm will also work in our case, but we want to extract the little bit more information 

than the working as gives us. So, what will do is we will organize this competition in the form of 

a table. 



(Refer Slide Time: 31:32)  

 

So, let us we have to do that, so will form a table, in which you will have a remainders on this 

side then you have 63 and you have 27, and then you have quotients on this side and then draw 

some vertical lines. So, are first two entries are going to be 63 and 27 themselves and I am going 

to put down a 1 and 0 here 0 and 1 here. Now the interpretation here is that 63 is 1 time 63 plus 0 

times 27 27 is 0 times 63 plus 1 time 27. So you can think of these is somewhat very similar to 

an working with an excel spread sheet for you have some formula. Now to compute the gcd 

work. We kept on dividing and keeping note of the remainder. 

So, when we divide 63 by 27 the quotient is 2 and the remainder is 9. Now, these first entry in 

the third row are obtained in the address byte by taking 63 and subtracting twice 27 from it. So, 

the same thing of here I takes ones of two times of 0 and I will get 1, I take 0 subtract two times 

1 and I will get minus 2 over here. Now the excel type formula is still valid 9 is one time 63 

minus two times 27 because, 63 minus 54 is 9 and now will continue, so 27 divided by 9 gives 

you quotient of 3 and remainder of 0. Now this 0 was obtain by subtracting 3 and 9 from 27. So 

0 is the entry here, should be 0 minus one time 3 that is negative 3 this is 2 into 1 minus 2 into 3. 

So, thus 2 into 1 plus 2 into 3 thus 2 plus 6 which is 8, and you can verify that. 

So let see, excuse me there should be slight mistake here. So what we want do is we want to 2 

into 1 plus 3 into 2 that is actually 8 so it left side. Alright so now, this 1 as they got the 



remainder 0 would be actually observed was that this is the gcd that we want and the focus on 

these. So what these table gives you apart from the gcd because whatever calculation you did in 

the left most column there really of know conscious where are similar what we did earlier. So 

there is nothing new that the table adds what the table does provides is this extra row that you 

actually see over here, in what this row actually tells you is that 9 is equal to this row actually 

tells, you that 9 is equal to 63 times 1 plus minus 2 into 27 .and it terms are their this expression 

is true useful for us.  

This is one small correction I want to make here this thing here should actually be a 7 the reason 

being that like in the excel spread sheet 27 minus three times 9 is 0, 0 minus 1 time 3 is minus 3, 

1 minus of minus 2 times 3 is 1 plus 6 which is 7. And you can verify that this is correct because, 

seven times 27 minus three times 63 and actually give you 0. So are that this extra information 

that this table gives you is precisely this equation over here and will use that. Now let is go on to 

by the way in case you a case this table also gives you the ingredients that you needs to actually 

true that what you got. You get this gcd because, if you look done here since when you divide 27 

by 9 you get 0.  

That is telling you that 9 divide 27, but since 63 is linear combination of 9 and 27 and 9 divides 

9, 9 divides 27, so 9 also divides 63 so the these calculation. Here tells you that 9 divides both of 

the number on the top and these would hold in general even, if you had longer table this would 

still hold. This equation is that bottom is helpful, because it tells you that not only is a 9 a divides 

of 63 and 27 it is also the largest possible deviser reason being that anything that divides 63, 

anything that divides 63 or 27 must divide 9 from this equation. So this equation gives you it 

allows you to take the extra step in declare 9 to be the greatest common deviser. 
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Now let us, look at the analog in the case of polynomials. So, let is do first of all take the 

example of code that we have just done earlier and what I am going to do is just cut these out. So 

in this case so apart from the remainder we will also have two polynomials D square plus D plus 

1, D square plus 1 and a quotient. Why is this polynomial is interest, because if you go back a 

few slides you see that there were two generator polynomial generator may to see and I mention 

without proof admittedly that were as g 1 of D is an example of an encoder, which does not have 

a catastrophic error propagation; whereas g 2 of D is does have catastrophic error propagation 

and the difference really lies in that the gcd of the polynomial generated in the two matrices is 

different.  

So what we doing here is not trying to compute the gcd of entries in first g 1 of D. So let us go 

down do that. So will list here D square plus D plus 1 and then D square plus 1 so this is 1, 0, 0, 

1 just like. In the earlier case the next step is to actually divides D square plus D plus 1 by D 

square plus 1 the quotient is 1 and then D is to D and the remainder is D. And so now, in the next 

now the way to obtain this is multiplied this row by 1 is subtract from this so, we do the same 

thing for the remaining entries in the same row. So here it is 1 minus 0 times 1 that is 1, 0 minus 

1 times 1 that is 1, the next step is to actually divide D square plus 1 by D, so the quotient is D 

the remainder is 1.  



So, we do the same however we got this entry will reproduce the procedure to get these two 

entries. So we obtain this by taking these subtracting D times D. So here 0 plus 1 times D that is 

D this is 1 plus 1 times D that is D plus 1. And finally, we divide D by 1 so the quotient is D 

remainder is 0 as soon as the remainder is 0 we can actually stop and declare this to be the g c d. 

So, this is then a gcd and we see that the gcd is 1, now according to our theorem, which remains 

we proof in as long as the gcd is some part of d that I could be 0 then I your code does not have a 

catastrophic error propagation. So, that is the reason why this particular code does not have 

catastrophic error propagation. 
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So, since the gcd of 1 plus D plus D square, 1 plus D square is equal to 1 there is no there is no 

catastrophic error propagation by the theorem. 
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Now let us look at the second example, where G of D was 1 plus D and 1 plus D square will 

setup the corresponding table. So here is your remainder here is 1 plus D square, 1 plus D 

actually let us write the highest term highest degree term first. So that division seems to be the 

natural. So D square plus 1 D plus 1 1 0 0 1 and then you are going to put down your quotient 

here. So, when you divide D square plus 1 by D plus 1 the quotient will be D and the remainder 

will be D plus 1 and here. It is 1 plus 0 times D, which is 1, 0 plus 1 times D that is D. Now you 

divide D plus 1 by D plus 1 the quotient is 1, the remainder is 0. So we stop and declare that the 

gcd is D plus 1. So in these the case of this particular generative matrix the gcd is not at the form 

to D to the l enhance by the it has theorem catastrophic error propagation. 
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gcd is not equal to D to the l, l greater than 0 and hence this code has catastrophic error 

propagation. Now I was actually interning to go through the proof of this theorem, but just 

keeping in mind that we have a fair number of topics to cover. What I am going to do is I am just 

going to give you verbally a scratch of the proof and leave it in that. So, we want to actually go 

through the process of writing it. The idea is that, we have two other topics to cover the fairly 

major topics. So I like to be able to get to them, so the way this proof actually works in the zoom 

out here is basically it obsess. So, the question to look at in trying to understand this is perhaps, 

this one. Now this is a particular example, where the gcd was 1 plus D and the input is 1 upon 1 

plus D the general case is very simple if the gcd is 1 plus some polynomial the input can be that 

1 plus that polynomial. 

And, you can prove that thus the valid input and because this divides the denominator divides 

both the entries what you will get this output there are finite at polynomial enhance at the finite 

hamming weight whereas the input itself being of this form will always have infinite hamming 

weight. You can prove that, so that is why the greatest common deviser cannot be of the form 1 

plus something because, then you can play this same trick in that case to actually exhibit and 

output sequence as finite hamming weight. Even though input has infinite hamming weight. Now 

on the other hand supposing the gcd of the form D to the l then you by are extended, you clear 

the divisional algorithm. Thus the algorithm, we just carried out you can actually show that the 



linear combination of these will give you a pair of D. So, that means intern that means a linear 

combination is that output will give you some delayed version of the input which means that the 

output themselves must have infinite hamming weight.  

So I know I went to the rather fast, but presumably you can ravine listen to it again and any case 

that you just give you quick overview. So that we could move on, so in unactual a necessary and 

sufficient condition. For an polynomial generated matrix of catastrophic error propagation is that 

not do not have catastrophic error propagation is that greatest common deviser of the 

components. Be of the form some pair of D and this is analogist condition for the case from the 

convolutional code is of a k by n, so k other than 1 and will come to that. Now I want to get on to 

something else which is now if you consider the way in which we pursued convolutional codes it 

has been a little bit different than are treatment of block codes and intentional so because, what 

we dread was we follow the rather natural train of thought, we first should you for the 

convolutional encoder was what look like then I should you why belongs to class of tree codes 

and is thus different from a block code and then from that, we went on to see that the finite state 

machine produce give presence.  

You can presence destruction of the code and this, like to the trellis is of course extremely useful 

because, you could do Viterbi decoded over the trellis. And now I just pointed out by the way 

when you actually select your polynomial generated matrices. You have to be careful to ensure 

that the phenomenon of catastrophic error propagation cannot take place there is your to make 

sure that the components of the polynomial generated matrix are actually rarely will be prime are 

at least the gcd is some pair of D. Now what we do is do something and to same you know after 

all performance in the case of block code depended upon the minimum hamming distance 

between a pair of distance code word.  

So, is in that is in something like that also true here any answers absolutely convolutional codes 

are very much like linear block codes and their exactly linear block codes when you actually 

terminate the trellis, so how do you actually find the minimum distance of the convolutional code 

well these are linear code so finding the minimum distance of the convolutional code is exactly 

the same is finding the minimum hamming weight of a non zero code word, but the code. But it 

turns out that these easiest done in terms of generating function. 
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So, that is what we are actually going to do next. So I will begin and I will continue these in the 

next lecture. I will begin by redrawing are finite state machine for the convolutional code. Here 

are finite state machines for an encoder and let me just select the page, copy the page, moves on 

the current lecture and paste it again. So now, this is then are finite state machine description 

from earlier. What we want to do is to use this to enumerate all code words in the trellis. We 

want to use this enumerate all code words in the trellis of infinite length and it is not exactly set 

of all code words it turns out to be the set of all code words of the interest. That a miner shuttle 

point so, we want to do a some enumeration and we like to make use of the finite state machine 

for that purpose and will use generating function technique.  

So I will just begin with the certain step and then will continue in the next class here, we have 

outputs the outputs associated with each of the transitions and, we know the inputs are either 0 or 

1 depending upon the line is dotted or not. So I am going to associate to the transition like this a 

term L and with the term like this for the input is 1 the output is hamming weight 2 I am going to 

associate L I D squared. So, the exponent of L tells me what the length of the sequences and the 

length of the sequences always going to be 1 this is measure in terms of number of input symbols 

the exponent of I is how many information symbols by 1 during that. So this is 1 that is side to 1 

here it is 0 so that is side to the 0 and the exponent of these hamming weight of the output since, 



this is term has hamming weight 2 you have D squared over here since, this is hamming weight 

0.  

You have D to the 0. So with that we can now, continue labeling the others. So this is all of them 

will have an I to the 0 and D squared, this is L D, this is L I D, this is also L I D, this 1 is L I, this 

1 over here is L D and I think, we were labeled all of it in this way. So, now we are going to use 

generated function technique should actually count all the paths that start from a all 0 state and 

go through and journey to this finite state machine and return to the all 0 state for the first time to 

like to enumerate those paths and in terms of these trellis background here. What we trying do is 

we are trying to count the number of paths that originate from this start node and which end up at 

one of these all 0 nodes without revisiting it in between, so paths of the kind that were interested 

in for example, is this path this path which goes down like this in merges with this or a path like 

this which goes down like this goes up, goes down and then merges like this.  

So, interested in all such path and we want to enumerate them in the sense that for each such path 

we want to keep track of not just the length of the path but also the number of information 

symbols that was one along the path and hamming weight of the output and that will turn around 

to used. So, I think you are almost out of time here. So this I just to recap what we did today is a 

we continued are discussed convolutional codes and a after the short node having to deal do with 

loss in rate of a convolutional code with whether are trailing zeros. We talk to about catastrophic 

error propagation we wrote down and necessary and sufficient condition for a rate 1 by n 

convolutional code to avoid catastrophic encoded to avoid catastrophic error propagation and 

now, we are beginning some enumeration of paths or code words and will continue that in next 

class. 


