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Good afternoon. This will now we are 15-th lecture. And what plans are for this lecture is to 

continue or discussion on the standard array decoder. And the last lecture, we were focused on 

using the standard array decoder or the syndrome decoder, for the purposes of decoding. Our 

purpose this time however is different. Here, we are interested actually trying to see, how does, 

what is the performance in terms of probability of error of this standard array decoder? So, we 

like to know for example, what is the codeword error probability etcetera.  
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So, I am going to give the title of this lecture as performance analysis of the standard array 

decoder. Now so as a recap, we are introduced the standard array, or defined the syndrome, and 

set up the procedure for standard array decoder. So, we laid down the steps involved in carrying 

out standard array decoder.  
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Now, towards end of the last lecture and so again let me see if I can actually copy that, so what I 

would like to do is copy this page here. And let us paste that here, so we want to use this 

standard array for carrying out performance analysis, and the goal in performance analysis is to 

determine the probability of error. They are different probabilities of error that come into play, 

and will begin with their focusing on the probability of codeword error. 
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Now the first thing is, the first point to note is a Lemma 1, the received vector and the error 

pattern e belong to the same coset of the code; and hence share the same excuse me, the same 

syndrome. The proof is obvious I just thought it to nice to draw attention to it.  

(Refer Slide Time: 04:45) 

 

The proof is, because y is c plus e. It is clear that they that y and e belong to the same coset; 

therefore y, e belong to the same coset of the code. Now the part about sharing the syndrome, so 

H times y is equal to H time c plus e, which is H times e, and hence y and e share, the share the 

same syndrome. Now, let us go back to the standard array, and say and now let us view the 

elements of the standard array. Now earlier we viewing them as receive vectors, and we were 

saying, supposing this was the received vector what could happen on this one. But this time, we 

are going to change have you we can look at the same table, but now we are going to treat each 

entry in the table as if it was n error pattern.  
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So, for example supposing going down to this table here. Let us say the error pattern for instance 

was 0111, and let me circle, let me take a different 1-s. I believe a pick that; let say that the error 

pattern is 1101. I am going to in circle that in blue. So let us say that was you have true error 

pattern, which is the true error pattern or vector. Now, what is the receiver a going to do? It is 

going to compute this syndrome of the receive vector. But the syndrome of the receive vector is 

the same as the syndrome of the error vector which is this. So, in this case the syndrome let us 

going to be compute is this, and once it is giving a syndrome it is going to use table look up, and 

it is going to jump to the coset leader. So it is going to jump to this coset leader. Now given this 

coset leader, and given this received vector the algorithm says that, you take this coset leader and 

added to the received vector. So, let us see what that does? So, this we finished our theorem.  
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Supposing, suppose e to be the true error pattern. So, we compute the decoder computes, the 

decoder the decoder computes H y, which is the same as H e and that is your syndrome. And 

then next let e hat be the coset leader associated to syndrome s.  
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Then, the decoder computes the decoder comes computes, y plus e hat, which is c plus e plus e 

hat. So, let us called is e tilled. I am going to called is the residual error pattern. So, let this 



actually saying is that the combination of the channel and the decoder result in a residual error 

pattern, which is really the sum of the true error pattern and the coset leader, because the coset 

leader is really are guessed the error pattern. If it happens that you guessed correctly then the 

error vector and the coset leader will cancel each other out. So, that your residual error vector is 

0. But that may not happen always. So, in which case you would have a non zero residual error 

pattern; now what I want to identify in the standard array the residual error pattern.  

So, here getting back to an example I said let this we are true error pattern, and then here is the 

coset leader and we also agreed that we would actually called this coset leader we would called 

this e hat, and now what would the decoder do? It would actually compute y plus e hat when the 

process create a residual error pattern which is the sum of e hat plus e. That means a residual 

error pattern in this particular case is the sum of this plus this. The way this table is set up that 

sum exactly here and the head of this. So, that means that the residual error pattern is in fact 

nothing but this. So, this is e tilled. And now so let say that this is the let us point out the this is 

the residual error vector, which means the residual after decoding. 

So, now you have a very nice way of thinking about, what happens when you imply standard 

array decoding? The error pattern can be any entry in the table, and the error residual error vector 

simply, the vector that is at the head of the column corresponding to the true error pattern. So, let 

us go down to the table again, and will look at some examples. So, if an example 1101 was in 

fact the true error pattern the residual error vector is 1111, if it was 1000 the residual error vector 

is 1010. 
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Let us make a note of that. It follows then that in the standard array, the residual error vector e 

tilled is the vector in the table at the head of the column at the head of the column to which e 

belongs. And just to cement this concept I thought will might draw a picture like this. The idea is 

that, you have the codeword and you have the true error vector e. This is followed by the 

syndrome computer by the syndrome computation. So, you compute H times y, and what you get 

is s then, you have table look up. So, standard array table look up, and what comes out of this is e 

hat which is the coset leader. And then what you do is you take the output of this and this, and 

you add the two, you add the two and now this is your c hat you are decoder codeword.  

But what is interesting is that sincere estimated the error pattern. You can also write, you can 

also identify that down here. In some sense the combination of channel and the decoder create 

the residual error pattern. So, just a way of thinking about this; so do not back to this table now. 

So, in terms of performance error supposing I have to ask you, which error pattern is of the code 

able to correct? We look down this table and side look, if in fact I am able to correct in other 

pattern then, the residual error vector message could be 0. So, the only error patterns that I can in 

fact correct are those for which the residual 0. So, I look at this table, and I say where but I know 

that the residual error vectors always the vector the head of the column. 



So, look at the table. Let us go down to the table please, and then you see that in fact the only 

place for the residual error vector 0 is in fact at the head of the first column; the only error 

patterns that the code is able to correct a precisely the coset leaders. These are precisely there are 

so let us put that down. It follows it follows that the only error patterns that the code is able to 

correct are precisely the error patterns corresponding to the coset leaders. Now all right, so then 

you can immediately write down also the probability of decoding error, because incorrect error 

precisely when the error pattern is not one of the coset leaders. So, let us do that. Let me, if I can 

select a section of this table. We does not want to copy the whole the table and will repeated.  
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Let see if I can copy here, very good. So, able to copy a section of the table and I guess we do 

not need these lines. Hence, the probability of codeword error is given by, I am going to write 

cwe to denote the probability of codeword error is, 1 minus the probability of no error, and no 

error happens precisely even the error pattern is one of the coset leaders. I can write this as 1 

minus epsilon to the 4 plus 1 minus epsilon cubed epsilon. Actually let me just erase that like it 

was correct but I really should write plus 2 into 1 minus epsilon cubed into epsilon plus, 1 minus 

square into epsilon square. In other words but I am looking at I am looking at these coset leaders 

here and the probability of this coset leader, being an error pattern is 1 minus epsilon to the 4 in 

the binary symmetric channels.  



Because we assume that the error is independent from bit to bit or from symbol to symbol. Again 

here, if we look at the coset leaders, then the second and third coset leaders both of hamming 

weight 1. So, that the corresponding probabilities are given by this and since, the two of them 

multiply by 2 and this is the last term. So, this is the probability of bit error and of course the this 

whole thing is small, because this thing is roughly close to 1 when epsilon is small. So, now had 

the probability of codeword error, but which in to sign that you can also use the you can also it to 

actually determine other error probability that is well. So, let us do that and again I am going to 

select this thing here.  
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I am going to select the table again, let us copy it and put it down. Now this time what I want to 

do is with the same standard array, let us say that I am interested in finding out what is the 

probability that the first message bit is in error? I just going to do this an example but from this 

become clear that we will find out any kind of message bit error that you are interested. Now 

recall so these are the codewords. So, these are your codewords in the code. So, this is your code. 

I am going to write down a form in other row on path, which has which contains the underline 

message symbols. So, these are, now we agreed that m transpose G is c transpose is the equation 

there actually describes how the codeword is generated.  



So, what I want to do is I want to put down in this table the corresponding message vectors 

transpose. But this being a systematic code the message symbols are explicitly present in the 

code as the first two symbols. So for example the message symbols here may be let me use blue 

are 00 the first two symbols 10 from here 01 and 11. If the residual error vector is always the 

codeword at the top of the column, the residual error pattern as far as the message symbols is 

concerned is are precisely these. So, you can also view these as residual message error patterns. 

So, what that means is that for example for example, if e let say e was 1001 then, e hat would be 

0011.  
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Therefore e tilled would be 1001 plus 0011 which would be 1010. We will find other pattern 

here this is now as discussed this is your residual error vector. But now we interested in what is 

the residual error in so far as the message with circumstance. 
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So you can see from here that since you recall the message symbols by stripping the first two 

symbols of the code. It is clear from this that m 1 is decoded erroneously, m 2 is decoded 

correctly. The reason behind that the 0 here that this symbol here corresponds to the first 

message symbols this 1 corresponds to m 2.  
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Now just in case in further explanation is needed and do not forget that your c hat is your c hat is 

c plus e plus e hat which is c plus e tilled. So, that is the reason, why I am saying that the first 

two message symbols there, whether they or correct or not to determine by the first two symbols 

in e hat e tilled because of this. Once you have this, now if I go back to this and I ask you what is 

the probability that what is the probability let say that the first message be does not. But not the 

second, if I want to know what is the probability that I what is the error but not m 2, that you can 

actually see that the only error patterns for which there is true are precisely those which 

correspond to this column, because here there is no error in even message symbol. Here there is 

no error in the first there is an error in the second here this is an error in both. So this is precisely 

this set of all this error patterns for which the first error, the first message symbol is decoded 

error only is 3 and the second is not. 
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So, now let me just again do this, select this...  

It follows it follows I am going to circle this column, because this is the key here. It follows that 

the probability that m 1 erroneously decoded while m 2 is correctly decoder is given by I am 

going to write this competition here. So, the competition is just corresponds to this it is equal to 

and I just sum the probability is that the vectors in this column at the error vector. So, you can 

see that two of them one of them has hamming weight 1, two have hamming weight 2 and this. 



So, you can see that therefore it is 1 minus epsilon cubed epsilon this is for the single error vector 

plus 2, 1 minus epsilon squared epsilon squared plus. The case when you have three will have 

plus 1 minus epsilon into epsilon cubed.  

So, this is the probability that the first message symbol is decoded correctly whereas the second 

decoded incorrectly second is decoded correctly. Now when one thought that might be crossing 

the mind that is fine, because this is the systematic code what effects not systematic can I still of 

this, and if you think about it, yes you can. The only thing is that only advantages systematic 

code really is that when you actually set up a table like this.  

(Refer Slide Time: 29:50) 

 

So, let us go back here. When you set up the table where you have the standard array and then 

you miss corresponding message symbols. In the case of the standard array the message symbols 

are a parent from the codeword, you can just simply pick them out is being the first two symbols. 

Now if this was not systematic then you have to work a little bit harder, because you have to go 

to generate a matrix and figure out what is the underlining message vector corresponding to these 

codewords. And then, you can do exactly what we did. So, and then you can exactly repeat what 

we did here. So, systematic are not you can use the standard array decoder to compute whatever 

expression you need relating to bit error probabilities.  



So, it is quite powerful in that sense. So, I think with this what I actually like to do is, I want to 

move on to the next topic, but perhaps I think just look at the notes here I think I should I precise 

one point before we complete this section conclude this section. 
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Note, the residual error pattern e tilled is independent of the transmitted codeword, and this is 

what enables this analysis to be carried out. Perhaps, no exclamations mark more out note of. 

Remind the note. So, let us go back here. So, when need did the analysis here and I started same 

well supposing this is the error pattern. Then, this will be a coset leader and this will be a 

residual error pattern. I never actually mention the transmitted codeword, because it terms of be 

the residual error pattern is independent of the transmitted codeword and that is where actually 

permitted all of this analysis to be carried out. That concludes our discussion on this topic, and 

now we are ready to start on talking about a new class of codes. This is also an important class of 

codes, and these go by the name convolutional codes.  
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The way we are actually like to do this I am going to introduce an example convolutional code to 

you. In fact that code that I will introduce to you is the prototype convolutional code in sense that 

if you open any book convolutional codes, it is very likely that this is the example code that there 

actually shown you. It is a nice example code. So, will take a look at this example code and will 

proceed with it. So, will actually study the encoder then, we look at methods of representing the 

code symbols then, we look at something again to the something which is similar to the 

generator matrix and so on. So, we will just keep perusing this example and little later I will 

come back and say, what is the general case? The general case will turn out to be quite or 

similar. 

So here are example encoders. In this encoder, the encoder looks something like this. So, you 

have two bit two registers like this, and what you have in the input is the stream of bangle 

symbols k going from 0 to infinity. So, this is the stream so, let me do the writing latter, do not 

want to clatter the background. This is the input, this is single stream of bangle digits here and 

we are out that going to be two streams of bangle digits. These are generated as follows...  

Let me just clean that applicant and I can draw that better. So, that is one output and that 

corresponds to the stream v k (1), and then the second output... and again these are senna infinite 

streams when in the start from 0 and go out to infinity. This is stream of symbols coming in and 



they are two streams are symbols going out and already you can see that this devotional block 

codes. Because in the case of block codes you did not have this senna infinite streams, because 

with block codes what you have is, fixed collections of message symbols and they do not want to 

fix collection of code symbols. You did not have this infinite streams is continuing. 

Also here, we are starting of with the encoder. So, what is the expression corresponds to this? So, 

what you really saying here is that the first output is the function of the current input and it adds 

to the current input the immediate pass to inputs. The second output adds to the current input the 

inputs two symbols ago.  
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So mathematically represent this like this. It say that v k (1) is u k plus u k minus 1 plus u k 

minus 2 and then, v k (2) is u k plus u k minus 2. So, this then is describes the encoder. Now 

convolutional codes belong to a class of codes which are known as tree codes. So, why are they 

called tree codes? Because you can actually represent each codeword as corresponding to a path 

in a tree. So, let me draw the tree and try to make things clear that way. 
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So, what I am going to draw here; let me put some arrows on this.  

An up arrow means that the corresponding input symbol is 0, and the down arrow will mean that 

the corresponding input symbol is a 1. So, every codeword trace is corresponds to a path in this 

tree, and what about the output symbols? So, the output symbols are generated using this 

expression here. So, for that it is convenient to look at perhaps set up table. So, let us draw table, 

and which we put down both inputs and outputs.  
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So, here you have the input. So, this is your u k this is what I will call this state of the 

convolutional code, and this is your output. Now the state is really captured by the past two 

symbols. So, that is u k minus let see u k minus 1, u k minus 2, and the output is v k (1), v k (2). 

So, this is what these things will represent. Now look, let us look at different possible states. So, 

you have 0 0, 0 0 that is one state then, you have 01 01 you have 10 10 and you also has 11 11. 

The input symbols can be the 0 or 1, 0 or 1, 0 or 1, 0 or 1. Now we have put they are two outputs. 

So, one says that you add the sum of these three symbols. So, that is v k (1), and so add the three 

0 1, 1 0, 1 0, 0 1.  

Now v k (2) what it does is that so, if we want to see where on getting that from see v k (1) adds 

the current symbols to the preceding two symbols, v k (2) adds the current symbol to the symbol 

to symbols back. So, here is v k (2) then. So, here I add the first and the last third entry. So, that 

is 0 1, 1 0, 0 1, 1 and 0. So, these are your entries. 
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So, now with that you can actually go head and put this down. Now initially assume so use these 

notes here a correspondence to a state. So, you assume the state (0 0) here, and sincerely to see 0 

here it continue to be 0 this became (1 0), this became (0 0), this is (1 0), this is (0 1) and this 

one, this state here is (1 1). So, these in some sense I have states. So, you have the states and we 

have inputs, because for it is an up arrow or down arrow tells you a inputs are and from that you 

can actually proceed to write down what the corresponding outputs are? You can check with that 

when the state is 0 0 the input is 0, your output is actually going to be 0 0. And, that will 

continue here, and it will continue here. 

 But if your state is 0 0, and you actually get a 1 then, in turns are that the output is going to be 1 

1. And in similar manner you can actually fill in this entire tree. So, let this tells you is that 

convolutional codes are different from block codes in the sense that they can be represented the 

paths in a tree. And, the reason by introduce the tree; because of after all, it is a senna infinity 

sequence. There is no motion of block of message symbols and block of code symbols. And then 

but convolutional codes at least the class, there are the class of tree codes we are interested in are 

little bit more restricted than a complete general tree code. The reason for that is, because in a 

tree code you can have whatever rules for generating outputs that you want it could be time 

varying, it could be non linear. But in the case of convolutional code, convolutional codes are 

always generated by encoder of this type.  
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So, what is it that a characterized is these encoders? Well, first what the time invariant? That is 

the output only depends upon the current and the immediately passed inputs. It does not depend 

upon the time keep does not matter it is morning or afternoon, the output is still same. So, it is 

time invariant and then, it is linear. So, these in these ways it is a specialized tree code. Just to 

put it in perspective. So, let us says put that down in writing.  

(Refer Slide Time: 46:40) 

 



 Convolutional codes belong to the class of tree code that are, 1, finite memory 2, linear and 3, 

time invariant. Now if you want to do something an anguses to what we did for the case of block 

codes, you could write down a generator matrix, except that it is not very convenient to write 

down the generator matrix, because it look something like this. So, here would be an input 

symbols u 0, u 1, u 2, extra and your output symbols you could view them has been generated 

using the matrix of this type. So, it will be a senna infinite generator matrix of this type, and this 

is what will need to v (1) 0, v (2) 0, and v (1) 1, and v (2) 1, extra. So, this is and you can check 

with this is true because what will really saying as for example take this symbol. We are saying 

that the by the way this is one thing I should clarify that. 
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In this we always assume that this encoder that the initial conditions are that both these registers 

are set equal to 0. So, may as well mention that. So, both are set to 0 so, both these registers are 

initially set to 0. So, that is your initial conditions. So, then you can actually verify that your 

output symbols are related to the input symbols like this, but this is not very convenient again, 

because it is senna infinite. So, the more appropriate so, let me just call this the senna infinite 

generator matrix. So, the more appropriate description of the code is in terms of polynomial and 

formal power series. So, will make a slide detour and discuss the field of formal power series.  



So, in a way this could be a continuation of an earlier discussion, where we set that whenever we 

need some math what I will do this can actually slide detour discuss the math and then bring you 

back to coding theory; when you talking about codes, I introduced groups, sub groups, cosets, 

rings, and fields, and vector spaces. So, similarly here in terms of that the math that you need in 

order to comfortably discuss convolutional codes is nothing but algebra, and particularly you 

need to know what a polynomial is? And what a formal power series is? 
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So, the field of formal power series over F. F is also a field. As in fact this make that clear let me 

write this as over the scalar field F. So, this is the set of all terms of the type k is equal to minus d 

to infinity, a k X to the k where a k belongs to F, and d is greater than or equal to 0. So, you look 

at this and say that is in this a polynomial? And the answer is no, because first of all here you are 

permitting finite number of negative coefficients and negative exponents. So, the X you could 

have X to the minus 1, X to the minus 2, and so on. But you only allowing a finite number of 

them which is probably actually say k goes from negative d to infinity, where d is itself greater 

than or equal to 0. But also polynomials have the notion of a degree.  

That is there is a maximum exponent which you before to as the degree, but here there is no 

maximum, because it just keeps in general running off to infinity. So, in this way objects within 

the field of formal power series actually differ from polynomials. Now how do actually add and 



multiply and divide? Now I am sure that any of you a given a formal power series then, now how 

to actually add and divide? Here have used X as the in determinant, but in our application to 

convolutional codes are they in determinate will be called d, where d stands for the delay 

operator. So, it is very clear how you would add two formal power series, because you just add 

them term by term. So, there is no confusion there.  

The quotient as well, how do you multiply them? Well, again that is not if you know how to 

multiply polynomial I am sure you figure out how to multiply formal power series. When a 

quotient is how do actually divide? So, I for that reason I only illustrate division or why the, 

since you are talking about the field what you really want to know is how do you compute 

inverses? Because you really have in order make something a field you need a set, and you need 

two operations addition and multiplication. So, the set is already define here, and then addition I 

have told you follows when a very straight forward way multiplication also. But when you go 

through the checking the axioms the most tousling axioms probably the axiom of the multiply 

get when inverse. So, we just illustrate that. 
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So, it is clear that all field axioms are satisfied with the possible exception of the inverse. So, will 

be this by example.  
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Suppose you are asked me what is D plus D cubed inverse. So, will be write this is D into 1 plus 

D squared inverse, and I just see that from my clock, there are I just have about 2 minutes to 

wind up. So, I think let me now perusing this example will do the competition next time perhaps, 

I should spend my time just recapping. So, what we actually did was the first part of the lecture 

was concern with standard array decoding and we said let us actually use the standard array 

decoder and figure out how to carried out performance analysis by way finalizing bit error 

probabilities code error, codeword error probabilities. Then we note to a completely new class of 

code known as convolution codes; and I am giving you to begin with various descriptions of the 

code. Eventually will settle upon one or two, which are convenient but we just introducing 

various descriptions, and we are somewhere in the middle and will continue next time by 

completing this discussion on formal power series. So, thank you. 


