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Bounds on the size of a Code 

 

Good afternoon, and welcome back; so we will begin today our twelfths lecture in this series. We 

just browse quickly through our last lecture, where I work was dealt with finding initially the 

minimum distance of a code. 
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Let me do this, and I told you that is equal to the minimum Hamming weight; we prove that we 

looked at examples, and then we define an alternative means of determining the minimum 

distance using a parameter S, and we prove the theorem that d min S plus 1. Then we should that 

the Hamming code is S is 2, and this also let us to define the general Hamming code. Then we 

prove the Singleton bound, which is the straight forward consequence of what we have done 

before? And codes, that meet the Singleton bound is called MDS codes. We look at two 

examples, and I quickly mention that there are no other known families, and towards the end of 

the lecture.  
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We started looking at bounds on the size of a code, and we started out with the Hamming bound. 

And what we showed is that the Hamming bound, we wrote down the expression with Hamming 

bound, we did not actually prove it. And I just about got started proving this, so what I am going 

to do is, I am going to copy this page over here on to our next lecture.  
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I am going to this lecture twelve as I just mentioned. We are going to call this, Bounds on the 

size of a code; Just is a quick recap, we looked at we showed last time that d min equals w min 

that d min was equal to s plus 1. Let us to define that we looked at examples of course and in 

both case you looked at examples, and they went on to show. We talked about the general 

Hamming code, then we talk about the Singleton bound, and MDS codes, and then towards the 

end of the last lecture, we will looking at proof of the Hamming bound. So, the Hamming bound 

says that, we just get it of this extra page that is introduced here.  
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The Hamming bound said that the following that, the size of the code is less than or equal to 2 to 

the n divided by the sum i is equal to 0 to t n choose i, where t was defined as d min minus 1 

upon 2.  
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We start it proving this using the following argument. Now, looking just erase this last part of the 

here, I am going to phrase it. If I can that is, I am going, so in the cleangenius say it out in words 



then after that well I write on the proof. In words put it actually saying is that if you look at the 

set of all n topples. Then inside that set of n topples are contain the code words, and around each 

code word you can actually define a ball of radius t, and these balls must also we contained in the 

set of all n topples, but it terms out that these balls are the destine, there is no overlap. What that 

means is that, if you cannot the number of code words multiply that by the number of vectors in 

a ball then that must be less than the total number of vectors, and that for the Hamming bound 

constraints. So, let us put down here. 
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So, F 2 to the n contains the balls of radius t, center it around all of the code words, but these 

balls are disjoint; meaning that B (c, t) is p. Now, we just going to count, you going to say that, 

since once that contains the other, the cardinality of the first set must be greater than or equal to 

the cardinality of the second.  

It follows that 2 to the n is greater than or equal to the number of code words M times, the size of 

the number of vectors in a ball of radius t, which is nothing but. So from this the Hamming 

bound follows. That proves the theorem. 
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Now, let as look at examples, and see where we stand with respect to this bound, but first I need 

a definition a perfect code; perfect code is the code that satisfies the Hamming bound with 

equality, i, e; that is size of the code is equal to 2 to the n divided by the sum power i n choose i.  
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Of course, a natural question to ask, is well to perfect codes exist example one, consider the 

repetition code for odd for odd values of block length n. Then you know that the parameters of 

this code are n, the dimension is one, and the minimum distance is also n. Now, what is the 

Hamming bound say? The Hamming bound says that M in this case is less than or equal to 2 to 

the n divided by the sum i goes from 0 to t n choose i.  
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Now, we know that if you add I goes from zero to n. If, you add up all the binomial coefficients 

you get two to the n. This is well known result in common networks or from the binomial 



theorem, and when n is odd. Since, n choose i is equal to n choose n minus i. It follows that, this 

is in fact equal to 2 to the n minus 1, because there is the Asymetrix between the binomial 

coefficients.  

If, you sum all of them, then you get two to the n, but let say you start from left, and when you 

start from half way, then you will get two to the n minus 1. So, that is what let us what this 

saying? Now we ready to plug this in, so we want to use this, and plug it into the Hamming 

bound, so here is the Hamming bound, so we want to replace the denominator here, but what we 

just derived.  
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And therefore, M is less than or equal to 2 to the n divided by 2 to the n minus 1, which is 2; 

therefore all such repetition codes are in fact perfect. And actually you must be wondering well 

how about the single parity check code are they also perfect.  
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So, you can verify, I will leave this is in exercise verify that with the single parity check code is 

not perfect in general. Any other perfect codes are the situation, then we were talking about MDS 

codes are pointed out that the news is in some sense the bad news, because the only non MDS 

codes are the trivial codes, which are either the repetition code or the single parity check code. In 

the case of perfect codes, however the news is little bit better there is one excuse me family of 

codes that meets the Hamming bound the quality, and not surprisingly, this is the class of general 

class of Hamming codes.  
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The general Hamming code is always perfect. Proof: Remember that the general Hamming code 

has these parameters are n equals 2 to the r, k is 2 to the r minus 1 minus r, and d or d min is 3. 

Now, if you check the Hamming bound m is less than or equal to 2 to the n divided by the sum i 

is equal to 0. Here, t is equal to 1 0 to 1 n choose i, so this becomes by the way, this is the small 

type of here, and is not two to the n or its n is 2 to the r minus 1. So, here apply this, then this is 2 

to the r minus 1 divided by 1 plus 2 to the r minus 1, which reduces to 2 to the 2 to the r minus 1 

minus r, which is precisely the dimension of the code, therefore it is perfect.  
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I should also to say that, the hamming code is also known as the sheer packing bound, because 

you can think of a picture like this. Where you have the code words, and you have these balls of 

radius sheers of hamming t of radius t, and these perfectly cover the space. It packs the space in 

the sense that there are no vectors left over, where is apart from the code words, and the balls 

surrounding them. There are no other vectors these no empty space, so it is speak; for this reason 

is also called first we a packing bound. 
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We have seen that our repetition codes of odd length are perfect, when every Hamming code is 

perfect, at the any other perfect codes. In the story here is interesting, there was this is the coding 

theorist marshal go lay, who actually was perusing the same question, and he made the following 

observation is at look. Let as assume that, there is a linear code which is perfect. Then he looked 

at the Hamming bound, and we made a certain observation. He notices that, the sum of certain 

binomial coefficients had to equal a power of two, and he said this is new and then this gets into 

numerology, because what you are saying now is… I am just going to look at numbers in see, if I 

can get the sum of certain consecutive binomial coefficients to equal a part of 2. Once I find that, 

then I actually start looking for perfect codes, it seems like a fare best idea, but actually it 

worked, so here is what he did many years ago? 
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This class of code is called the Golay code, and there is from the following calculation supposing 

you take n to be 23, and you take d to be 7, in which case t is 3. So, Golay’s observation was that 

so perhaps, the since this is in a side a let me a do one thing, I am going to a let me introduce 

align a certain page here, we will come back to Golay code.  
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Let as put down Golay’s observation. First, if a linear code is perfect then you must have that the 

size of the code must equal 2 to the n are another words, the sum i is equal to 0 to t n choose i 

must equal 2 to the n minus k. This is what our telling you about earlier, there is observation 

were basically that if you to the sum of certain the first few binomial coefficients. Then you must 

end of pair of two, and these all precisely the binomial coefficients in equation, it is called this 

equation 1. And his search for the suppose to searching for perfect code to actually look a 

different values of n, and then try to see when it is true that you can actually get a power of two.  

And in terms or that it is not very often that this happens. Wherever, certain specific cases in 

which does happen, and then he was able to rule out the existence of perfect code, and some of 

those thus any codes 23 was a case in which he could not rule out the existence. So, then they 

said about constructing a code, and I think he was a he was a brilliant coding here is and he did 

manage to come up a back this many years ago, so many years ago with the perfect code. 
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Equation one in this case, will actually read like, so will ask as to compute the sum 23 choose i 

for i going from 0 to 3, which is 23 choose 0 plus 23 choose 1 plus 23 choose 2 plus 23 choose 3. 

Now, this is 1 plus 23 plus 23 into 22 divided by 2 plus 23 into 23 into 21 divided by 1 into 2 

into 3. This is 1 plus 23 plus 253 from multiplying 11 times 23 plus 23 times 77. Let us do that 

computation on the side. So, this is, therefore 1771 plus 253 plus 23 plus 1; heard it you get 8 14 

0 2, and this is precisely 2 to the 11. That was it discovery, and that let him to a consider the 

possibility that are code which such parameters exist, so you want to go any further into this, so 

this let him. 
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This numerical calculation led Golay to construct a perfect code of the parameters of this code by 

23, the dimension is 11, and the min distance is Hamming. This code is now called the go lay 

code not surprisingly. Now, this may actually, led you to ask to keep question a little bit for the 

answer. Now, I know that the repetition code fall link the perfect, I know that every Hamming 

code is perfect, and I have just I have just seen the parameters of a Goley code or the any others, 

and it terms out that there are no other perfect codes that are known; all though that took some 

time to prove when involved several coding theory is, including a finish coding theory is (( )), so 

that took a longer to proof; that these are all the known, these are all the only possible perfect 

codes. There are perfect codes other than this, but they are those a turnery, and they are also 

called Goley codes to distinguish between you call them the turnery Golay code, but apart from 

this no perfect codes or known as upper bounds on the size of code. 
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So, now let us turn or a tension to a lower bound, and this particularly low bound is called a 

Gilbert Varshanov low bound. I think it is words noting the bounds that, we have stating whole 

for an any code regardless of that are linear or not necessarily linear. However, we examples 

there are known are linear codes which are interesting theorem, and will abbreviate Gilbert 

varshanov, and just write GV and the GV bound? The code size perhaps, I need to mean for little 



bit the error, the maximum the maximum possible size M of a binary code of length n, and 

minimum distance d satisfies the equation M is (( )) I need a low bound.  

I need to any quality to go in the opposite direction, the M is greater than or equal to 2 to the n 

divided by the sum I goes from zero, and at this point you must be thinking this looks just like 

the Hamming bound, well it does with there are two difference, one is of course there is a low 

bound not in upper bound, and second leaving where as earlier. In the case of the Hamming 

bound you would have t here, 0 to t you have 0 to d minus 1. If, these are the two differences, 

how do you prove this? 

Proof is via a greedy algorithm for code construction. It proceeds like this what we do is, we take 

a code word, so we building up a code by picking code word one at a time. And of course we 

have to keep in mind that our code must have block length n, and minimum distance d, we have 

to keep this parameter d in minus we go along, so you begin like this, take any vector at random 

this is pick any vector here.  
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Let us, make that our first code word now, because you want minimum distance d in your code a 

force you cannot pick another code words which belongs to a ball of radius d minus 1, around 

this code word you say that is fine, you draw this ball, and the radius of the ball is d minus 1. 

And so when you pick a next code word you say, I am as avoid this ball F in fact what you do is 



from the set of all n topples, which is F 2 n you throughout all the vectors in this ball, after 

picking a first code vector and you throughout the code vector two, you do not want to pick the 

same code vector twice. 

Then you pick another vector. So, let say you pick a next code vector and there is somewhere 

here. There is two similarly, this a ball of radius d minus 1 surrounding that, so you pick the code 

word and throughout all the vectors in that ball, and then you pick a next a vector in that could be 

c 3 and again what you do as you throughout all the vectors in a balls in a radius d minus one. 

Now, there are a couple of circle point about this algorithm; one is that now you see this 

intersection of circles I mean your bother sees wait a minute, you are not suppose have to 

intersection you have doing something wrong. This nothing wrong with this, because these balls 

can have intersection is just that note to code words must be the length Hamming distance d of 

each other. What you are doing is that, whenever you pick a code word you are always going to 

through away all the vectors which line a ball of radius d minus 1 surrounding that code word, 

now some of these may already have been thrown away. 

Because if there was intersection, then these a balls in these intersections would already have 

been thrown away do not need to throw them, away twice is keep there in mind, but certainly 

regard less of that. 
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It certainly true that as long as M times the sum in choose i to 0 minus 1, as long as this is less 

than two to the n. We can we can always enlarge the code to size M plus 1, while maintaining a 

minimum distance of d. So, again just in case that is not clear, let us go back here what we have 

saying is that it may be that, you thrown out the less than sum in choose an I throw to d minus 1, 

but we will assume the worst case will actually (( )) I can assume that, you thrown out that you 

have to thrown out all of them. 

Even if, you did that and still the number of vectors is less than 2 to the n; that means that some 

where line in this box, there is another code word that you can take. So, you can continue this 

process. Now, this part you might want just to pay get attention make carefully, so the argument 

is that as long as this equation, so may be, I will call thus equation 2, call this equation 2. As 

around this equation two is satisfied, you can enlarge the code. Now at some point equation two 

will fail to be satisfy, and that is when you cannot enlarge the code any further. However, you 

will your (( )) to reach a point, where this equation fails. So, we will just simply say at this 

trapping point, where this process cannot be continued at the stopping point we will have M 

greater than or equal to 2 to the n divided by the sum, and this is Gilbert Varshanov bound. 

 I am referring to this is the greedy bound. Greedy, I would interpret in the following away. 

There is that what you do this you do not look at long term consequence, you only look at short 

term consequences. Once you picked the code word, then your overriding concern is that the 

next code word, you pick must be it is this d y from that is all that you occupies a might, so given 



that you pick unique codeword and so on it is, the short term view point algorithm and it 

produces a code of this guarantee size.  

Now have given you the Hamming bound, and the Gilbert Varshanov. This is the Gilbert 

varshanov bound, and very early we looked at the Hamming bound. Now, what will do next is 

that law examine the same two bounds expect that we will look at them as of n very, very very 

big, we look at very long codes, that is going to let some calculations. Now, you will ask now, 

where are you interested in long codes, I mean a from will short code good enough, and I will a 

try to interest you in long codes by giving you a long code approach to achieving reliable 

communication. I will explain, would I will mean by that. 
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So, I call these an approach to attaining reliable communication. Now, this approach has two 

features, one is it employees let me perhaps let me write down put down features here. So, 

features one long codes are employed, long codes meaning codes of long block length, second 

you assume bounded distance decoding.  
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The second point here, let us put down a formal definition of this bounded distance decoding 

definition a bounded distance decoder is one which, when given a received of some also going to 

draw picture here in the middle of this definition.  

Just to make things clear a and t is going to be d minus 1 upon 2 has always, when given a 

received vector y examines the ball B y t, which have shown above and declares c hat which is 



the decoded code word. If, c c hat declare chat to equal c, if c is the only code word, in the ball 

else gives up that gives up else gives up is parentheses is not very interesting, but what is 

interesting, as what it does length it finds out that within this ball, there is the single code vector 

c.  

Now of course, if there are if there are two code words, then course if bound know what to do? 

Sorry actually (( )), it is not possible that there are two code words that simply not possible, 

because then the Hamming distance between the two code words should the no larger than 2 t, 

which is less than the minimum distance. So, what could happen is they could be no code word 

within this ball in which case just gives up. So, such a decoder is called a bounded distance 

decoder, now you might say well, what else is there and I mean what are other kinds of decoder 

are there, these terms for the logical to me.  
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So, what in alternative decoder might do this, and will actually be coming to this soon, an 

alternative would be to do the following instead of what it my do, is it my just partition the set of 

all centuples. Let us say that this is F 2 to the n into regions, and say that look if the received 

vector is the here. I am going to decode c 1, and on it is going to partition the region, and then to 

every region it is like a tertiary, and if you are received vector. 



 Let us, say happens to fall if here then you simply this side decode c it these decision reasons are 

based on Hamming distance as you might expect, but the difference is that earlier, you would 

only confine yourself long in a ball of radius t around the received vector whereas here, you are 

actually saying look and just going to look at, for the nearest codeword. I am going to decode 

toward in way it is a simple of philosophy and as will see the better one, but the bounded 

distance decode a decoding applies in many situations for reasons. 

I think which will become clearer a little later, if we are clear about what bounded distance 

decoded as they are going to now. Therefore, long at in approach to making communication 

reliable by using long codes and applying this bounded distance decoding algorithm. Now, this 

word reliable what do you mean by reliable these actually. 
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So, what we mean by reliable communication? Is communication in which the probability of 

error is negligible? So, note by reliable communication you mean communication with negligible 

probability of error. It can also think of as virtually being error free. It is important, we are not 

satisfied with making the probability of errors small, they actually want to make it negligible, 

and it is not easy to do that, because in the reason why this is of interested. 

Because tells that there is possible, what is says as that look, if you are trying to communication 

across of communication channel? It always be the case that, the channel is not perfect it is going 



to introduce some distortion and is as the distortion on the channel does not prevent, you from 

achieving reliable communication everything.  

Then it will actually does is that it limits the maximum rate at which you can communication, 

what done is their approach. So, we start of by saying we are when approach towards retaining a 

reliable communication. It is going to use long codes, and that is where interested in the 

Hamming bounds for larger n, so your approach is this. 
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We going to say that consider the binary symmetric channel when put 0 or 1 put is 0 1, and the 

cross over probability is epsilon when and what we are going to do is across this channel across 

this channel, were going to sent a codeword and what is going to come out of this is the received 

vector y. Now, this code has large block length n, we going to send therefore n symbols across 

the channel, and the binary symmetric channel is going to corrupt some of those codes words.  
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The probability that k code symbols are corrupted is given by n choose k epsilon to the k 1minus 

epsilon to the n minus k, and we know that. Now, this comes from the binomial distribution. It is 

well known that when n is large, this distribution tends towards the Gaussian distribution tends to 

become Gaussian and Gaussian with parameters. Let us add that here with parameters, mean 

equals n times epsilon, and the way if the standard deviation at which is equal the root n epsilon 

1 minus epsilon, where only about a minute left just to summarize, what we have looked at is, we 

look at bounds on these size of a code, we look at the Hamming bound then we talked about 

perfect codes, we talked about the Hamming code the Goley code, then we look at the Gilbert 

varshanov bound. And I am looking at explain try to explain y, z that long codes are of interest 

from the point of view, it retaining the reliable communication. So, we will pick on this, and on 

the next lecture, thank you. 

 


