
Digital Systems Design with PLDs and FPGAs
Kuruvilla Varghese

Department of Electronic Systems Engineering
Indian Institute of Science – Bangalore

Lecture-09
Entity, Architecture and Operators

Welcome to this lecture of digital system design with PLDs and FPGAs. In last 8 lectures we

had a look at the advanced digital design. We started with an overview of the field or revision

of the field, and given a brief overview of the current state of the art the basic what is

happening in the field, then we started with synchronous sequential circuits, started with

asynchronous counter etc, how to design a Timing Analysis.

Then we get got onto the design itself. We have seen the hierarchical design of a CPU, will

see what is datapath, what is a controller, how to hierarchically design the datapath and using

CPU as an example we have seen the behaviour of the controller of finite state machine, what

is the structure of it, then we have seen Timing Analysis of it and how to design a control

algorithm.

 And finite state machine using state diagram and we have wound up the whole process with

Case Study, somewhat realistic is a real life case study of data acquisition system. We started

with spec and went through all the way like the partition, data path design, controller design,

how to implement the in other state diagram, the next state logic output logic and all the way

down.

And what is the part of the kind of the designer main part at what are what are the tools +

designer and so on. But now we have some portion left in the advanced digital design but

before proceeding I thought it is better we look at this hardware description language, so that

when now onwards with me go with the digital design or anything PLDs or FPGA, wherever

it is appropriate we can put the connected VHDL or the hardware description language.

That is the basic idea that is why we go. So now for quite a few lectures we will have the

VHDL lectures with my plan is to at least complete the combination circuit description of

models and sequential circuit test ranges and some demonstration using the tools available,

free tools available you know how to write the code out to synthesise how to simulate and so

on. So let us turn to the slide of this VHDL ok.

(Refer Slide Time: 03:17)

So let us look at the slide out the VHDL, the full form of the VHDL is VHSIC hardware

description language that means at the very high speed in the greatest circuit hardware

description language. I just started in 1970s and 80s by department of Defence USA for

maybe I will give a brief on the contacts of that sometimes the contact make things clear, you

do not grumble or complain why certain things are like that.

And it is an accurately standard IEEE1076.3, there are various years y know 93, 97, 2012,

2002 and all that. I do not exactly remember but then these are the various versions of the

VHDL, essentially it started with some kind of limitation of the earlier design methodology

which was using sounding call schematic capture ok. So I do not know whether you are

familiar with the schematic capture.

(Refer Slide Time: 04:37)

But I will show a slide with which is taken from the internet of some kind of hardware digital

mainly digital hardware but then you see this is kind of some flip flops are there, some Muxs

are there, invertors are there and all that. A schematic would always involved some symbol of

the IC you are using or the other Gate or the flip flop, many times in terms of the IC you are

using.

Suppose this is a flip flop which is written IC 3D, so and there are pin numbers and it shows

how it is interconnected ok that was the earlier days that was starting point of a design you

could like you want an AND and invertor you put the inverter symbol which you mark which

is a part of the IC maybe there are inverters in a IC, so our 6 invertors may be IC1A, 1B, !c, !

d, !E, like that the numbering goes.

And the PIN number you can see that is output is 15 pin number, 14 pin number and all that

and people would put symbols and interconnect with the wires ok. So that was basically the

schematic capture and when one designer printed circuit board will be an associate at package

with it ok if it is in the standard library the package will be part of the library if the user

create yes to create what is a package maybe old times or may times you will be make

package.

So this was to be precisely created so that the PCB when one make PCB it is to size and the

chip goes into the is a pinholes and the tracks alignments are so on, but basically essentially a

schematic I would tell how is the interconnect or or the it is called Necklace ok, just shows

the symbol and interconnection between IC and it does not give you what is the function of

the circuit.

Many times I have to refer to the data sheet of each IC try to understand internal in simple

case gates in all simple but if there is a processor one has to read the data sheet of all the

complete processor to understand a memory process of everything need to be understood and

sometime a design description need to be returned saying that this is a particular IC, this is

the function of that IC and so on.

So that was one big problem that it just does not convey anything other than kind of

connectivity information, that was the first problem with the scheme capture and the second

problem was that there were lot of schematic capture or the tattoo and everybody had many

times a proprietary format that means the tattoo if you are using tattoo from my vendor A the

files stored in that format may not be operable.

You cannot you know edit using some other tools okay, that was big problem a proprietary

standards for fallout and many times this kind of tool did not support something called a

black box design, go back to our hierarchy design of the CPU and initially at the level 0 P put

a black box and set the clock and reset and read bar, write bar where the inputs outputs and so

on.

And then we have partition it to a level one kind of partition still it was black box you know

there is a ALU, register program counter, ultimately when we broke down in 1 pieces it as it

has come to some kind of gates and flip flop or some known blocks. So this was one

difficulty with the schematic a hierarchical design was not possible or top down approach

was not possible in this thing.

So this you that if you had to design a finite state machine, now when we describe the finite

state machine we said you could kind of describe that in hardware description language and

with tool will make the next year logic and output logic this was not possible with schematic

capture, you need to do you know the state diagram you need to make the truth table

minimise it and then implement those minimise equations using the gate and flip flops and so

on.

So this was kind of external you walk externally and bring the design into the schematic

capture and they also support some kind of simulation because there is a flip flop if the model

of flip flop was available then you could simulate the whole circuit then model of all the

chips used are available then using some kind of the later the behaviour of this could be kind

of simulated.

But again this for proprietary like the when they will give some models but that was not

compatible with the other tools and so on. There were right not that is completely prepared,

there were standard for you know the cat file exchanges you know the schematic exchanges

and the simulation models and so on, but not everyone was following in the work problems

issues with it and there was a huge problem was that these were binary files.

(Refer Slide Time: 10:36)

If there is one bit goes on everything is corrupted and said that were the problems with the

schematic capture now the department of Defence a lot of vendors making big systems and

they have huge rack of cards comprising it system, maybe each subsystem was designed by a

separate vendor and they all used different tools and put it together and to understand kind of

coordinator activity was a big problem.

That is why this particular standard came up and they thought of basically documenting the

schematic, know that started with documenting, so basically to describe in human readable

language English language the description of the circuit that was a basic idea. So that it is

portable like all the vendors use the same language to describe the circuit, so that one can

read and understand.

That was a basic idea, so it started with documentation in a document it well, you know

describe it unambiguously, so that the human can understand and there is it does not open

standard human readable is portable and so on. Then late 1 people thought anyway we are

describing the behaviour of subsystems a small circuits using some language, why not use

that description to simulate the behaviour of the circle.

Still the design was largely done on schematic capture, but then the simulation came second

ultimately when everybody started using simulation people started thinking why not generate,

the circuit itself from the description ok. So these are the three uses of the VHDL language

documentation simulation synthesis which is and which happened at different points in time,

so you will see all these features in the language ok.

So there are documentation features you know you when you look at the VHDL people will

you not see that the entity is or architecture a name is off and all that and people often

complain saying that what does if and of and why the computer algorithm need is human

readable thing, but you know you should remember that this is meant for documentation and

easy way you can you stand it templates.

You can make your own template or copy paste old template and so on, so do not complain

that much about it is a little bit verbos language so do not complain about that part of it and

similarly there are when you come back that there are you know that the syntax for

simulation there are some contracts in the language which is only used for simulation, the no

point in using it for synthesis ok.

So this should be kept in mind is not at all like anything you write can be synthesize, you

know there are different there are something made for synthesis something went for

simulation, some part of the language is nearly made for documentation. So do not complain

too much and the language support hierarchical design are you can do the top down design

with a black box.

Absolutely no issues you can do bottom up whatever and much to the to the convenience

there are higher level constructs you know you can describe the behaviour not just Boolean

equations but you can use a higher level construct like if then, case when loop, so it kind of

give up power to describe the language at many levels at a very detailed level abstract level,

as we go long we will see what is how we can efficiently use this contract to describe.

And what are the best scenarios to use at and construction so on and it supports library base

design that means that you can put suppose you have designed a counter a generic counter

you can put that in a library and late on you do not have to redesign that, so any anything

which model or generic can be put in the library similarly various operators various functions

procedures everything can be put in the library.

So that that can be reused, so the great help you are in an organisation in a particular business

and you are making designs over the years. So you can have a good library of the various

module SAP system components your using and so that when a new design need to be made

you can quickly make it using already well design component interconnect them or modify

them quickly and put it together.

So that is a big advantage and 100000 or you know or feature of the VHDL is that it is

straight type checking t means a data type is strict you suppose you declare something called

bit, bit is something takes 1 and 0 and there is a another kind of a data type call standard

logic, ok we will see that but that also support 1 and 0 and many more things, but in VHDL

suppose there is a signal which is of a data type bit.

This cannot be assigned to the something off data type thing that looks like a restriction but is

a very good thing you because if you do not know what you are doing because you are in the

connecting wireless signals and if you are not careful like you declared something as an

integer of some range and there is some kind of bus which is 8 bit and you try to connect this

integer that kind of bus 8 bit bus, maybe that your range of integers is more than 8 bit.

And then there is a confusion like you end up 12 bits and how to connect this 12 bits, 8 bits

and if the tool design that least significant bit will be connected then you are in trouble. So

that is why this spec type checking enforce a good thing, because we are making hardware

not make mistake the VHDL enforces spec type checking and there are that you cannot assign

a bit for standard logic you up to forcefully convert the data type then you are aware of it and

then you will take caution that is why it is provided.

(Refer Slide Time: 17:31)

So let us move on to the slide and let us look at the main design unit of the VHDL. So the

VHDL design or any block has two parts when you describe , it has 2 parts any component as

an entity which is nothing but the interface specification and architecture which is

functionality ok this and we will take an example of a bit comparator. This part is taken

basically from the reference book Kevin (()) (18:03) the starting part is taken from there.

So I say you look at an equality comparator, so you have A and B which are 4 bit and there is

a single bit signal call equal when the numerical value of A is exactly equal to B that means if

it is say 1,0 1,0 and B is 1,0 1,0. This will be 1 that meaning of it, so NDT means a name for

the block some name, what are its input port ok. So you say input part A and B which is 4 bit

and what is a data type is bit or standard logic vector and so on.

So and similarly what is output how many bits are there, is a single bit or multibit and what is

a data types, so that comprises reality. So give a name for the block, what are the inputs, what

are the outputs. So you have to clearly say what is the name whether the input output and so

on and what is a data type. Now comes architecture having define the NDT you define what

is inside.

The architecture is nothing but the functionality, so you have to define what is the function of

the circuits in terms of the input and output, that means you somehow you say that equals will

be 1 if A is equal to B in some there are many ways of describing it. But that is the

functionality. So you describe the functionality of this blog equality comparator in terms of

the input and output ok. So you say output, how the output is a assign from the input that is

the basic cracks of the VHDL, NDT and architecture.

NDT means the name input output, basic the data types and architecture means function in

terms of the input output and you know the circle, you know the when you come to the basic

implementation we need to have each bit you know suppose you have a A3, A2, A1, A0, B3,

B2, B1, B0, you can see that for this number to be equal. A3 should be equal to B3, A2

should be equal to B2 and so on.

So we use and exclusive NOR gate because exclusive OR gate as 01 and 1,0,1 but here your

00 and 1,1 as 1. So unless all these are equal this one by one and if all these bits are 1 then we

have design gate is making it 1. So you know the circuit for exclusive OR gate and exclusive

NOR gate and one AND gate is a function. So that is the VHDL way of describe main kind of

component kind of sub description NDT and architecture.

(Refer Slide Time: 21:12)

So let us look at this equality comparator VHDL code straight away and tried to kind of see

how to write a VHDL code and what are the basic components and so on. So say when you

like I have returned here 2 dashes and 4 bit equality comparator that means this is a comment.

If you start at dash anywhere you could I put 2 dash here and write something say anything

after the dash is a comment.

And you know that there is no way to kind of make it no nest with multiple lines and not a

big problem earlier when people use the keyboard that was a big problem, now suppose you

have 10 lines to command it. If you have to put everywhere the big problem nowadays with

your eyes very easy you select everything and click on an icon and then everything become

commended.

So this is a comment character only for a line, you cannot list it okay and the next thing is

interesting it say ok now that that the I have shown that code in two colours basically green

and blue and whatever is written in the green colour is a VHDL keyword and rest is what we

are writing ok. So that is to make out so, like library is a keyword of the VHDL use is a

keyword of the VHDL and ok.

So here we are saying we are going to use library Ieee, when there are Ieee standard library is

severe we are saying that we are going for this NDT and architecture, we are going to use

library Ieee. So when you declare that this Ieee libraries are visible only to this entity and this

architecture. Suppose in the same file you write another entity and architecture you have to

and unit used a library then you have to write again library before the entity and architecture.

And just write in the library that makes a library visible to the code but not the packages

library as lot of packages within it, so the hierarchy of library, so you have library your

packages and within the packages have components functions procedure data type and so on.

Ok so that hierarchy and we are going to say that that we are going to use particular package

within this library call standard logic, standard underscore logic underscore 164.all ok.

So we are going to use this particular package for this entity and architecture that is the

meaning of this and now onwards we are going to use the standard logic library, the reason is

that if you look at the VHDL inbuilt data type is bit, okay as for as the logic is concerned and

it supports only two values you know 0 and 1 and this is a great limitation and for digital

design we just cannot do with only 0 and 1.

We need many other things, at least you know that we have Tri-state gate which we use and

you want to use a and that describe saying that some output need to be Tri-stated, so and that

is described in a standard underscore logic and that is a kind of data type which is used which

is available in this particular library and package. So that is why we use this. It support you

know the data type like 0,1 values like 01 Z.

And you know there is many times in minimization used do not care, think support do not

care and all that many more we will see what are the values in the standard losing data type

but for the time being understand that at least support a Z which is represent the Tri-state is

very much required for the design. So now onwards all the code we will not get into bid we

will use the data type, standard logic that is what it shows.

Now this comes the entity description, so the keyboard is entity give some name, it does not

matter and this is what I said is a kind of for documentation and you say end this particular

name if you call ok. So that is a body of the entities, so you start with the keyboard entity a

name is and end that mean that that is kind of that is the body of the entity and within that we

have to describe the inputs and outputs.

And keyword used for that is port you open the port with the parenthesis left and right and

semicolon, you can see that all the kind of syntax is terminated by semicolon. So if you

describe something a complete entity then you put a semicolon complete port then you put a

semicolon everything every statement, every kind of the body is terminated by a semicolon.

Now you see this is the input specification and this is output pacification.

So we have two types of input to input A, b. So if it is of the same size, same data type which

used in the same line, so here a, b, the new product column this is the name, now is a what is

the direction of the port it is in it means it is an input and standard underscore logic

underscore vector 3 down to 0 that means that the a is a 4 bit vector which is a of 3 bracket

you know 3 like we have seen here.

A(3) a(2) and a(1), a(0) similarly b(3) b(2) and b(1), b(0) ok, that is the meaning of the

moment you say standard logic vector 3 down to 0 that means it is a(3) a(2), a(1), a(0). There

is another syntax you can say 3 down to 0 you can say 0-3 it is possible to write like that and

there is a difference we will soon say what is the difference and let us come to this equals

which is the name and the mood of the day or the direction is out and the data type is standard

logic ok.

So when you describe the port you have given name, you have to tell the direction, you have

to tell the data type and now when you say there has to be clarity with this kind of direction

of the code, so when you say in it means that it is an input okay. It cannot be treated as an

output that means that when you write some assignment like here we are writing assignment

= get 1 when a=b.

So a and b are the inputs in any assignment the input can come only other right hand side of

the assignment ok that is you should kept in mind when you have something different as there

is a direction in it can come only on the right hand side of the assignment and their similarly

there is out and out means it is an output port something drives you know the reason has

some kind of JK flip flop is output is driving a signal which is outside.

And when you declare something is out like = that can that should come on the left hand side

only. You can alright I know something like Z gets 1 when to something, now you cannot

write on right hand side ok, but that could be a restriction and you look at this kind of thing

like we have some many times and output top is taken from the output and used as an input to

the sum circuit inside this is quite, you know you have something coming like some gate is

driving and output but that output is going to the output pin.

Also it is used as an input to the father suck if you know within this block ok but by

definition it views out such a thing cannot happen with VHDL. So there is a roundabout there

is a kind of way out that is declared as output as buffer like using buffer you know standard

logic, but this has a problem because as standalone it is ok but when you are multiple

components buffer it cannot be connected together.

You know there is a there is an issue with buffer, so I do not think that you should we will not

be using this particular direction of the output signal at all and what we are going to do is that

there are internal signal, you know you can use signal so what we're going to do that we will

do normally in our codes we will declare a signal here which can you know which can

definitely connect to the summer output and can connect to some input.

And ultimately the signal we cannot sign it to some pin, now that is what we are going to do

in our code I so literally forget about this particular direction of the port buffer, now there is

one other direction specification which is nothing but in or out or an IU. So now that is not a

same as buffer in the case of buffer this still as an output, the pin is an output, but there is a

tapping which is used in that.

But when you say something is in out it literally means sometime there is a definite have Tri-

state gate and when the enabled is 1, this circuit will drive the circuit which is outside ok and

when it is cut off when it is not disable this part is inactive there is nothing you know it is

stated and this can be used as an input pin that means literally something can drive the pin ok.

So there is a difference between this structure and this.

And you should not use in out for out or buffer ok and I have seen sometime people you

know use out and something goes wrong and they somehow find that if you write in out that

can be circumvented because of some kind of simulator difficulties maybe at the appropriate

time I will tell, people tend used in out where in out is not meant to be used ok, so that is not

happen, you should not used input in place a buffer.

That in out is used only when a pin is used as both as output and input unnecessarily there has

to be Tri-state gate without with no wait use an IO pin, now that is the kind of various

direction in, out buffer and in out and as I said forget about buffer we will use the wires I will

show the proper time and standard logic buffer is a repetition of the standard logic like you

know this is a for bit standard logic is a standard logic vector and as I said you could write

three down 0-0 or 0-3 ok.

There is a difference when you write 3 down to 0 the most significant bit is 3 and least

significant bit is 0, when you write 0-3 the most significant bit is 0, then whichever comes on

the left hand side and the least significant bit is the 3 which is on the right hand side, so the

rules symbols whatever you write on the left hand side is the most significant bit and

whatever you write on the right hand side easily significant.

Now you might ask what is the big deal you know what does not matter ok. It matters if you

studied kind of the processes from the Intel actually this is a mystery you know behind the

Intel processors used to treat suppose your database which is going from 16 like 16 bit data

bus, D15 was treated say the data 15 was treated as the most significant bit and D0 was

treated as the least you can be done this was called little engine.

That means the small number will end the you know is the end part and then the Motorola

which was a kind of a competitor to Intel, when they came out with this processor

subsequently that is become free scale, but when they came out the numbering was kind of

opposite the b is 15 was LFT as D0 was a must be ok. Now you can imagine this is

something to do with this 3 down to 0-3 I something to do with the kind of the bit order and

byte order and so on.

So if you are using little end then you should use terminology like 15.0, we are using big end

then you should use 0-3, so you may even end up with you are designing a chip on one side

your connecting to some other chip from another vendor which has a bus in order and the

second side has a bus which is in the big in order, then you should appropriately a kind of

define this copy.

Otherwise things can go wrong, so you should keep that in mind is not that I know is not your

convenience but if you are designing a complete chip in your own which is not be in the

connected anywhere then you can choose what you want to do like whether the you adopt a

little like big in kind of style for your multibit signals that has been designed, so that is all

about the entity.

So we have looked in detail what is entity, what are the directions, little end and big end in

the case of multi based on so on, now comes the functionality which is defined as

architecture, so you say architecture which is a keyboard give some name of underscore if

you come that's my style of doing at of this particular entity. So you whatever the entity name

is is written here.

So this is the kind of link between the architecture using architecture name of which name

have to say is ok. Now you say big end that is where you describe the functionality ok and

before that before the begin you could declared many things, may you declared components

we can define functions procedure and so on ok. So we will see what could be done before

that.

And when you write this statement I we will see what are the statement and so on. So this is

an output signal and this is a assignment operator which is similar to which is exactly similar

to less than or equal to the VHDL, also use same for the less than or equal to so depending on

the contacts, I know the meaning of that is right, so one, now 1 is written with quotes left coat

and right code because in the library the standard library in the values are define with quotes

like you know one with the left coat and right coat.

When a=b else it is 0 ok so = get one when equal to be else gets 0 ok, very simple the

description is over. We say n this architecture whatever is mean, so that architecture is over.

So that is the code in actually you have a comment, you have a library you are we use

package kind of construct, your entity with port mainly within the entity port direction the

data type the multi bit decoration.

Then the architecture before the begin the reservation in the statement region you write

various statement then the description is over ok, that is in a nutshell a kind of the basic

VHDL code and you can use various keywords, various names and let us move on to the slide

summarise whatever I have said.

(Refer Slide Time: 39:06)

So I have said come and start with anywhere on the line and library has hierarchy library,

packages and it contains component functions, procedures, various data object, data types and

things like that then you have different mode of direction in out in out and buffer, we said this

is very limited usage and in out and out is different or buffer is different, then we have down

to and 2.

So I have to worry about little Endian and big Endian bit order, byte order and things like that

and when you define some name you can use alphabets, you can use numbers, you can you

underscore and it is not case sensitive first character should be an alphabet, the last character

should not be underscore and you should not have to underscore in succession and I do not

remember the exact number of characters you can use for the maybe it is 32 characters.

You can use you can check with us and it because standards keep changing but for practical

purposes your normal and names you can give quite a long names that is not be problem but

better to check with your with VHDL latest standard and tool compatibility what the tool

support maybe you refer to the VHDL, latest standard but the tool support the earlier standard

then you will be in trouble. Then you should be careful with that so that is in summary about

the code.

(Refer Slide Time: 40:43)

So let us move on the architecture body, so you we have said that in an architecture before the

begin you can declare many things out there is lot of things you can declare that is what is

shown here the architecture of 2 parts before the begin you can declare something, after the

begin you can write the statements, you can describe the function. So what all you can

declare is that you can declare components.

Components are in like a quality comparator gates of flip flops of multiplexers and decoders

all that is components that type data type like standard logic with Boolean and things like that

and constant like you have a bus would you know define as a constant like size of a it, signal

we have described like you want to interconnect kind of two pots or output of some block

with an input of another block then new signals.

You can also use functions and procedures for the time being we will keep it aside but then

you can literally defined functions and procedures not declared you can literally define in the

architecture declaration region which is visible only to the architecture statement region ok.

So after architecture statement is where you put all the description in terms of various

construct.

So let us turn to the logical operators, so you have all the logical operator and AND or NOR

or XNOR and NOR, but the trouble with the vehicles are the basic operate , within VHDL

support only the bit and Boolean ok, but as we describe in the in the first light we are not

going to use the bit because it is respected by 1 and 0, we are going to use the data type call

standard STD underscore logic we call as standard logic.

So STD underscore logic is called standard logic and this is but you do not have to worry

about the logical operators for this is data type because in this particular package Ieee

standard logic 1164 package with you have used in our code the first example code this

logical operators are overloaded, overloaded means whatever was written for the bit is re

written for the standard logic data type.

So the moment you declare use ieee.standard_logic_1164, but all means we could use all that

and all that here in the statement we can and the all means everything in it like that means the

entity and architecture following should use constructor can use whatever there is within this

particular package, that meaning of all. So that is a logical operator, then you have arithmetic

operators.

(Refer Slide Time: 43:59)

You have the plus you can I add minus multiplication integer division exponentiation because

many times we walk to the power of 2 then you suppose you have a data bus which is it but 8

bit, but then you know that it can go take values from 0 to 2 raise to 8 -1 ok. So where these

kind of exponent station operators are useful than ever modulo division kind than the absolute

value there is a little confusion with this terminology like mode is different from the

computer science Mod.

The more definition is a A mod B is A-B-N like suppose you say 13 put 3 that means you

know that this 13-3x4, so which is call the highest number input before it crosses over, then

you get 1 ok, so if you know that when you do a modN the result has to be 0-N-1 but there is

an issue with this kind of the expression because it does not work well with the negative

values.

Because you know that at the modN has to map any number to 0-N-1, so that is why does

rem operator is given to which is it actually this is equal into the computer science definition

of the mod, A rem B is nothing but A=the floor of A/BxB ok positive numbers it makes no

difference because you say again 13 mod 3 it is 13-13/3 integer division is 3 then kind of the

real division will give you 13/3 will give you some you know 4 point something which is the

floor of that is the decimal part of thrown off.

The fraction ball is thrown off, so you will get 3 and 3x4 is 12 and 13-12 is 1 and you get it

correctly but if you say -13 then you will end up with you this confusion but with this

formula but with this formula there is no issue because -13/3 you will get -3.7 something the

floor of it is the lesson number so which is – 4x3 is -16 and you have -3-(-16) you get +3 ok

you do not get a one but because you are so it is 13 like -13/4 is 3.4, 4x3 is 12.

So this is -12 minus, so – and - + 12 and you will get you will end up with a with a positive

number that is the of head are you can work out with an appropriate example but very

important thing to note is that all these operators are defined internally for the data type in

integer and real, integer is the integer as you know, the real is the real numbers on the kind of

floating point data type this internal operators cannot be you will not work for the standard

logic data type.

But if use standard logic unsigned package in the used things like you say library it and you

say use it Ieee.standard and unsigned that all then you can use plus minus multiplication

division and all that mind you if you write a code with this with the standard logic it might

work for simulation in and out from the size and generate a proper circuit for you have to

keep that in mind everything does not work.

Sometime we have to write your own low level design for some of these to work or give

some rudimentary circuit which is not that you want and things like that we have to keep that

in mind.

(Refer Slide Time: 48:31)

And let us come to the relational operators. So relation operators are equal to greater than less

than less than or equal to greater than or equal to and not equal to ok. These are the relation

operation operators you say when equal a=be or if a less than b and so on and you see that

less than or equal to operator is same as the assignment operator. So depending on the kind of

contacts use the tools will in for what is the kind of operator and will find it do not worry

once again in the only these are define for integer and real for standard logic data type.

This is overloaded these operators are overloaded for standard logic function in the package

Ieee.standard logic arith ok. So in principle like if you use three packages like Ieee standard

logic 1164, Ieee standard logic unsigned and Ieee standard logic arith you can do many things

with the standard operators at least you can work with the standard losing data type.

So keep that in mind and when you come to shift operator you have logical shift, arithmetic

shift and rotate. So you have shift left logical sll. So that is just left shift, shift by logic

symbol right shift and shift left arithmetic and shipwright arithmetic work with 2 complement

number so into is complement number you know that the most significant bit represent the

MSB or the most significant bed.

And that is a sing bit ,so for negative numbers will be 1 and when you extend suppose you

have an 8 bit number with the sign because one when you convert this into 16 bit then all the

numbers starting from and number 8 bit 15 bit has to be one so when you do a shift left

arithmetic this sign extension will be automatically taken care that the meaning of left shift or

arithmetic shift.

So if you do some arithmetic using the shift operators like you know that shifting left is like

multiplying by 2 shifting right is like dividing by 2 and if you are working with unsigned

integer then the shift sll srl like logical shift work but if use arithmetic like views kind of

signed integers then you have to essentially do the ship Clipart American flight automatic to

preserve the sign otherwise things will go on and you can work out.

You know you take a 4 bit number work out the negative numbers, you work out the you

know if you extend it into it but make sure that you get the same value with the sign

extension that should convince you and that will you will clear understanding of the 2 to 7

numbers you can you know work then even the decimal numbers and how this necessary but

that bring clarity.

And once again shift left arithmetic and shift left logic and arithmetic all these are define for

the bit and Boolean data type, for the standard logic data type this is overloaded in the

standard logic arith package. So that is what I said you use these three packages most things

will work you know standard logic 1164 and arith.

(Refer Slide Time: 52:31)

And you have an operator call aggregate operator essentially it is shown here suppose you

have a signal like standard logic signal with a, b, c these are single bit single ok now I am

using bit do not confuse bit I mean the real bit of the digital system not the bit data type of the

VHDL ok. So here we are trying to make it is combined a, b, c into a 3 bit kind of the bus.

So I have a signal is a keyboard is the name which is of type standard logic vector 2 down 2,0

that mean just 10.0, now we say temp is nothing but assign in the brackets is a, b, c that

means tmp 2 is a, tmp 1 is b, tmp 0 is company So this is call aggregate operators and

aggregate individual signals which can be single bid multibit to a bus but the restriction is

that these elements individual elements be of the same data type and should be same size.

It is not a can be 3 can be to bid and this is single but it has to be single bed to bit together but

even better flexible operator is a kind of concatenation operator which will work for the same

data type for different size you can see here we are declaring a data-type new data type which

is keyword is typed bite is array is a keyboard, it is a array of single bit that is the meaning of

it 7 down to 0 of bit the bit is.

The byte is nothing but an array of 8 bit array of with is the meaning of it and we say signal

count is a bite and we say now the byte is an 8 bit kind of signal, it is count get 0, 1, 0 and 0,

0,1, 0, so this is a 3 bit kind of signal and this is a 5 bit signal which is combined it is and is

much more flexible concatenation operator that I passed by saying but it will join things

together very useful in digital design you have some kind of some parts of the bus come from

different places which is come into the to make a bigger bus and things like that.

(Refer Slide Time: 55:13)

So that is very useful these operators and there is a president of the operators so you have the

highest precedence is 6 as you go down 654321 one of the lowest president, miscellaneous

operators are highest precedence and multiplying edition shift relational and logical operators

and not operator as president 6 in when you write the same precedence operator from left to

right it is evaluated left right.

But it is very difficult to remember all these I suggest you remember the kind of use the

brackets possible it is good for you know understanding me when u p y you write the code

somebody read it is very easy to understand. So maybe we will stop here todays lecture, so

we stop with a VHDL how did it kind of involve, what was the basic contacts, the department

of Defence has trouble with the schematic.

So it started with documenting the news for simulation synthesis in human readable it works

with the computer language support, hierarchy support, high level constraint library base

design and so on it and open it please send it to which over tool does not matter now the

different tool when does everybody uses the same language and we have seen basically and

entity and architecture in the interface architecture as a function.

Then we have seen an example code we have looked at the entity code the direction in the

moment the data types bit order byte order then architecture declaration reinstatement region

a statement and various operators. We have seen the logical operators and their particular data

type question in logic and which are the library is which is used for the standard logic.

And we have looked at the arithmetic operators we have made found what is the difference

between mod and rem then you have we have looked at the relational operators as to special

operators called aggregate and concatenation operator. So now in the next class we will see a

little bit how to what is the design tool floor you know various kind of different models of

description and so on ok.

So I suggest you look simple to start with, so please go back brush up understand it so you

can refer to some good books to get a grip on the on this particular VHDL, there a lot of good

book as I said earlier maybe you use some book with synthesis as the emphasis, so that is that

I wind up this lecture wish you all the best and thank you.

