
Digital Systems Design with PLDs and FPGAs
Kuruvilla Varghese

Department of Electronic Systems Engineering
Indian Institute of Science - Bangalore

Lecture-05
Top-down Design

Welcome to this lecture on advanced digital system design in the course digital systems

design with PLDs and FPGA. In the last few lectures we were looking at the structure of the

sequential circuit, how to design it and in particular the last lecture we had a look at the

basically the timing analysis, we have looked at the maximum frequency of operation hold

time violation.

Then we have looked at setup time when there are setup and hold time in the rescues in the

data path and the clock path. Before moving to today's part we will have a look at quickly

look at the previous slide, so that period continuity.

(Refer Slide Time: 01:15)

So moving to the slider we were talking about synchronous counter and we said that

designing a synchronous counter means putting the flip flops all clock by the same clock and

decode at the next state from the present state and that is the logic and we form a truth table

and then we get right the next state as a function of present state and that is how the design is

done any counter can be designed.

(Refer Slide Time: 01:46)

And with when the clock comes with the delay of PCO the present state of the count changes

and since in this case there are 3 output will take the worst case as the maximum delay as the

TCO.

(Refer Slide Time: 02:05)

And I mention that definitely there is when you show the picture in an abstract form the

details which is not forget, that here there are different path is not just 3 parts from Q2, Q1,

Q0 that could be path to D1 to D0. In this case there is only be D0 as only 1 path, D1 as 2

path and D3 as 3 parts from the output. But in general case you know there could be there are

end beds of the could be N square paths in this case.

(Refer Slide Time: 02:43)

And we also looked at and uptown control essentially we are modifying the logic, we are

giving this is an Input and forming a truth table and coming out with equation for the eyes

and in this case we find the next it is a function of person state and imports and the next

question we have looked at is that can be kind of get rid of this flip flop.

And make it a synchronous it is possible but then you can have that can be reached output

research which is difficult to control but asynchronous circuit is very fast because there's

nothing like them o clock I know kind of blocking it an opening the path you know to control

it, so it can be very fast, it can move another maximus speed but then it is difficult to control

because of the unbalance path delays.

(Refer Slide Time: 03:44)

And this is the essential thing we have looked at the last class in this case for a counter there

are two timing issue we have to look at what is the maximum frequency. So the minimum

clock period is the delay of the flip flop TCQ, the combination delay plus setup time. So that

we are analysing from one cock head to the next clock head and so hear from 1 to the next.

So at this point you see the data comes after the delay TCO, at this point it is coming after

TCO+Tcom and we know that data has to be set up as setup time before the next clock head,

so the minimum clock period is TCO+Tcom+ T setup and we give a margin cause slack and

other the maximum frequency is inverse of the minimum clock period, and one surprising

thing is that the whole time does not picture in the whole hand expression for the clock

period.

But we have to make sure that the whole time is not violated, that means that data this point

should remain there sometime after the clock head and if you just think about it it is enough if

you think like when the clock at comes how long it is going to it takes to change this next

sheet that we know that if a clock head comes the it takes TCQ+Tcom time for this to be

changed and that is shown here.

So it is enough that the minimum TCO+Tcom is greater than this whole time then there is no

violation ok. So that is what is mentioned here Tco min and Tcom min is greater than the T

whole max. In this case we take care of it and we have to consider the maximum delay but in

this case it is the minimum delay and if you find that you know suppose you fix in a design

the clock period and if then the worst case delays delay path violate that clock period.

Then you have to reduce the clock period okay that means sorry reduce the clock frequency

and increase clock period ok, but if there is a whole time violation we find that TCO min+

Tcom min is kind of less than whole time the cock is not something to be considered because

in the earlier analysis we are considering the timing from 1 clock to the next clock head.

But in the case of whole time violation we are talking about the same clock head ok. So there

is only 1 way of kind of solving the hold time violation is to increase a combination delay or I

had kind of dummy logic to increase a combination delay and this can happen you know this

whole time violation can happen when there is combination delay is minimal or there is no

combination delay like in a shift register.

Normally is a flip flops have there TCO is greater than the whole time, so normally there is

no question of violation ok, but like in this case we receive me one thing out assumption is at

the clock edges I just read all the flip flops at the same time ok which is not a realistic

assumption that could be skew between the clock arrival time at the various flip flops and that

skew can create the whole time violation.

We will analyse these two timing issues with respect to the I mean when the rescue that we

will do little later when we probably take the FPGA lectures we will kind of consider that for

the time being just they will do the symbols ok, but as I said before at the introductory lecture

the basic timing parameters for a combination circuit is the propagation delay and for flip

flop is setup time hold time and TCO.

Now you see that when it comes to sequential circuit with this Ts T hold TCO and Tcom we

are building you know we are going one level up, we are coming out with expression for the

minimum clock period and condition for the whole time violation. So these two are the kind

of important timing detail of the sequential circuits or any registered data path that has to be

understood.

(Refer Slide Time: 08:58)

(Refer Slide Time: 09:03)

And next thing we have looked that was like it is said this is applicable to any register path

you know, after all that picture shows at the data moving from one register through a

combination circuit to another register. So that is with respect to a sequential circuit but in a

scenarios where there is we call data path, where there is computation this will be the

structure there will be registers of flip flops, combinational circuit and registers.

The same analysis hold good, there is a minimum clock period which consists of TCQ max,

Tcom max and T set up max and the hold time violation at the destination register is TCO

min+Tcom min should be greater than the whole time ok. So that is a generalized or a data

path or register to register part or a sequential circuit ok.

(Refer Slide Time: 09:59)

And we have looked at the setup and hold time with skew when there is a skew in the data

path when we refer to that external. The set up timing greases because this delay I mean you

have to set up the data much before so much time before at this point ok so you see that with

respect to B dash hear the setup files to nanosecond set up time is increase to 4 nanosecond,

but the whole time has become negative.

Because the at this point the whole time spec was 1 nanosecond that means it remains there

are 1 nanosecond after the clock head, but since this delay holds a value for 2 nanosecond in

principle like you can remove the data with respect to clock like 1 nanosecond before the

clock edge at this point and at this point will be correct. So as I said the set up time is

measured as a time before the clock head to decide when the whole time is measured as a

time after a clock head to that side ok.

So when the whole time is towards the left of the clock then it becomes negative and negative

whole time means that at the point of reference it can be removed the data can be removed

before the cock head, but this delay will hold it and the other for the input of the flip flop at

that be correct ok, so you do not need to worry about a negative whole time.

(Refer Slide Time: 11:42)

And if opposite is a case when there is a delay in and the cock path or there is a skew in the

clock path then we have a clock dash which is at this point which is coming earlier to this

clock. So now you see that the set up time was 2 nanosecond with respect to original clock at

this point and the whole time was 1 nanosecond. Since the clock dash is coming earlier to it.

And we can actually we can and now set up the data much later at this point, because clock is

at this point clock comes only after 10 in 3 days in so you can see that the set up time has

become negative that means we are setting after the data at this point with respect this clock

point after the clock heads, but when it comes here to be correct, but the whole time is

increase ok.

It has become 1+3 nanosecond, this has become kind of 2-3 which is -1 nanosecond and so

here the whole time increases and the setup time decreases it can even go to negative value as

I said I means that you can set the data set up the date after the clock head that is meaning of

it.

(Refer Slide Time: 13:02)

And this was the last part of discussed suppose we talked about the design now you are

coming to designing the circuit, designing the system and if you take a simple example like a

60 seconds timer, we have seen the design, you know you take clock oscillator that divide it

to get a 1 hours like you have a BCD counter counting 0 to 10 that that goes to a mod 6

counter then behaviour BCD to 7 segment Decoder and this goes on and only goes from 0 –

59 0 and so on ok.

And we said it is fairly simple circuit, we have design from one end to other end but we see

that are the issues like what should be the top frequency higher the better because if it is

higher the drift will be less and for the same drift the high clock frequency since it can divider

that will be much better, but we have choose higher clock frequency the divider will occupy

lot of area and we said that you can instead of having a BCD counter followed by Mod 6

counter.

 we can have a Mod 6 counter ok, so here there are 4 flip flop, 3 flip flops, in the case of Mod

6 counter you need only 6 flip flop, and that is quite natural because a BCD counter all the

flip flops are not used to the full extent because 4 flip flops can you now count up to 16 then

only we are using 10 ok, but there is no guarantee that if Mod 6 counter Mod 6 2 7 decoder

will have lesser area than.

This put together and we also said that this has to drive LED so it has give high current. In a

simple problem there is a question of area the speed and this divider might kind of 10

megahertz the flip flops should work with 10 megahertz, so that is a kind of little high

frequency compare it and so there is a timing issue the area, speed, electrical you know the

currents and all kinds clock edge.

So accuracy even in a simple circuit there are if you put a mind there are lot of issues to

handle, so but this is a flat design given the spec you can design from one into other end.

(Refer Slide Time: 15:42)

So we are going to look at a fairly reasonably complex design.

(Refer Slide Time: 15:49)

So let us look at this example let us look at how to design a 8 bit microprocessor definitely I

am not going into complete design of the microprocessor, I am trying to take this as an

example of a resemble complex design case and illustrate you have go about designing a

complex design problem and what are the steps involved and how do you handle it. All that is

what is our focus.

I am not guarantee in that in the end of it we will be completely designing a 8 bit CPU,

though at the end of the course you can do it nothing very specifically grate there are lot of

detail, lot of functional detail, lot of timing detail, but it can be done, now there is no problem

and we are also looking at a very simple architecture ok now very efficient architecture.

The main point is illustrating the process of design and for you to understand you know

without at the very very used way, so I am awarding all kinds of you know high performance

design or simple clock design and things like that. So let us look at the spec of the

microprocessor, so it is an 8 bit microprocessor means it means 8 ALU, data bus is 8 bit, D7,

D0. It has 4 register, which are of 8 bit, it has 16 instructions.

So the purpose of choosing a 4 registers is there we are hoping that there are 16 instruction

which will occupy for that, then you know that in the instruction we have to specify the

registers. So 2 bit for codes and 2 bit for destination, so that makes it 8 bit, so there could be

most of the instructions could be worn by would most of them, but we have instructions like

Jumbo call Vikas definitely specify the address and that can be kind of multiple bytes.

Maybe one 8 bit for opcode and 16 bit for address and so on. It has 6 64kb address space in

A15 to A0. So since the program counter and stack pointer are the one which is giving this

address it has to 16 bit. There is no separate IO space that means the memory space is used to

map the IO devices, it is easy otherwise you have to have a separate instruction which is

handling the USBs and all that.

Also it is map on the main idea is that you should have enough address space then you can

accommodate the memory and IO in a single space you do not need to have a separate IO

space as a controller is hardwired that means it is a finite state machine it is not something

about micro coded as in very yearly designs and if you use de-multiplexer address and data

bus, separate orders plus there is 1 interrupt ok. That is the specification okay.

So first thing is I have a look at it it's almost clear that we cannot design as we design a 60

seconds countdown. Now you cannot start putting say ok let us put the ALU, ALU you has

addition, subtraction, complementary operation, logical operation and comparator, all kinds

of thing. So there no way we can just and just put start putting the blocks and interconnecting

as we did in the case of that second counter there are registers that need to be designed there a

program counter.

(Refer Slide Time: 20:30)

If you are not kind of design at least once you do not even know how to design it ok. So this

is a problem which cannot be kind of design from one end to other and in a flat way. So

basically in such cases have to bring this of huge design into pieces we have to call it as

partition, way to partition the functional block with interfaces that means we should say we

might divide this is ALU, registers, the program counter, the stack pointer and then we say

how they are interconnected and so on ok.

So that is the basic idea partition and we go top down that means that we go from the CPU at

the top as a single block, then we come down to break into level 1 pieces like ALU, register,

the program counter, stack pointer, then we take ALU and further design it which is

composed of adder, subtractor, comparator are the logical operations and so on so. That all

from the top to bottom we come down as you see come down to the bottom there are lot more

blocks, quite a lot of blocks.

Each block at the level 1 will be kind of exploded in the level 2 blocks and so on. So that is

called top down design and at each level we have to look at the functional specification,

timing specification, electrical specification and all that ok. Now when I said top down design

this is applicable to any design whether it is kind of software design or an aircraft design or

organising a complex function all that.

You know not say you up to organise a big problem then you have to have come it is looking

at the whole arrangement the speakers, then the food and mementos and so on. You know that

there are finance or lot of things, so that is all any complex things has to be broken down into

pieces and handle that is all, only thing is that you have to have experience in the game.

Otherwise you cannot do it if you have not organise a big function it is very difficult to

organise the first time. So you have to get in a thing, get the experience and do that, okay

similarly if you want to do an aircraft design it is composed of various pieces, unless one go

through it for a long time get enough experience then only you can design that similarly with

dual system when you want designer complex things like process you should know about

processor.

And you should know what are the blocks of the processor, how to design them, how to

integrate them and all that so you need a very good domain knowledge and experience and

expertise to do it, but my point is that the only way to do is that a top-down approach I know

going from top block all the way down to small blocks.

(Refer Slide Time: 23:14)

So let us look at the Sheep you at the top level, so in our case are this is the block diagram of

the CPU at the top level we have talked reset an interactive input read write an address as

output and that has bidirectional you know what and so many people kind of hesitate to draw

such a block diagram at the top level it may be simple but nevertheless you have to draw it to

bring clarity.

And what are the functions at this level okay, there are definitely there a lot of functional spec

have to decide at this point of time, you have to decide whether the CPU is going to execute

instruction in a single clock cycle or multiple clock cycle it has to be pipeline what is the

instruction format, what type of instructions you support all that comes in kind of functional

aspect.

And when it comes to the timings spec you might think there is much there is much timing at

this point of time but you see there is definitely there is timing on the clock reset, interrupt,

but very important thing is that you know that the memory and peripherals are connected to

this data bus be the CPU is along with the peripherals is in a single chip or it is external does

not matter.

But you know that there is something called the bus cycles which essentially access memory

and peripherals, so it goes like this maybe in the first clock cycle the address come, the

second clock cycle the rebug come comes then the data comes on the data bus, so that need to

be specified, how many clock cycle in there for the bus cycle to complete for an instruction

related to the memory or peripheral to complete.

And that could be asynchronous, there could be synchronous. So there is timing spec and

when it when it comes to electrical specs we know that this address and data lines in these

lines are connected to multiple peripherals and memory. So that should have good driving the

that that it has to source and sink large amount of current is not in terms of my comp but it

has been the order of milliamperes. Then only it can drive multiple loads.

So all these are the spec at the top level, we call level 0 and now we break this into kind of

level 1 ok.

(Refer Slide Time: 25:59)

So let us look at the level 1, so I must say that this is a something which I have put it very

quickly for the instruction purpose, I do not claim a very great accuracy, there could be some

kind of timing issue, but basic idea is sound, you can kind of follow this and make a CPU is

possible and this is a very simple CPU which works in multiple cycle that means I take

maybe multiple clock cycle for instruction to complete.

And one instruction is stretched it is executed then only the next instruction is refluxed, so it

is a multiple cycle CPU. So let us look at the partition for you see that there is an instruction

register in Skoda, a controller, ALU with temporary registers, for register a program counter

and stack pointer ok. Now the program counter or the stack pointer depending on the

inspection of the situation drives address bus.

There is an internal Singh data bus which connects all the data path elements or the all the

registers and combination circuit basically registers because the combination circuit can

cannot be directly connected the data bus only then because there is a single bus only one of

the kind of output can drive. So if you have a combinational circuit you should put a kind of

tri-state bus to the connect to the database ok.

So now so that there is an internal data bus, but the modern CPU might have separate buses

because of that many things can happen parallel because there may be a bus for the

instruction to get into instruction register, there could be bus between registers and ALU and

so on okay. Of course has to be at some point interconnected, but for simplicity we assume a

single data bus.

So let us look at these four registers and registers are you know in a 8 bit registers and it gets

the data input from the data bus, it also drive the data bus, ok because some time an ALU

output has to come to the register or an instruction, part of an instruction might get load into a

register, sometime the register has output has to go to the data bus to the ALU input or to the

memory and so on or depending on the instruction.

So register, input and output both are tied to the data bus input is not a problem because all

the inputs can be driven by the data bus, but the output only one of the output should drive

the data bus, so there has to be a Tri-state gate 8, Tri-state gate between the output and the

data bus, and the controller make sure that only one of the registers or one of the load that

drives the data bus, ok.

And another important point is that that you see there are three control signal at the registers,

all registers and one is cock which goes to all registers and there is a register A enable for

register A means that if the output of the register A has to come to the data bus then the

controller will give that enable signal high and data is enabled on the data bus. Similarly if

there is a data on the data bus which need to be latched onto the register.

Then the controller give this register A latch as a level signal and when the clock head, the

positive clock head come the data get large on to the registry ok. So that is our operation, that

is true for this temporary register, you see there is a large signal and there is a clock signal.

When the latch is 1 and the clock is you know active clock edge the data get large. This very

convenient way of latching the data because you could think about the way you could think

of the controller clocking the register maybe say controller makes any this clock is 0 for a

register and controller make it 1, then make it 0, then it gets a kind of a positive edge and data

get latched ok.

But there is an issue there because you have to load something to a register every clock cycle

then you have to know calculate 1, then 0, then 1 and so on, but in this case it is enough to

keep it high for integral number of clock period and either high for 4 active clock cycle than 4

times the continuously data will loaded ok. So this came as such an advantage, so this shows

the instruction register.

Because we said that the execution take multiple clock cycle. So this wholes the register

value there. So that because is not a single cycle, so that they just hold the instruction that is

decoded and it goes to the controller ok. Now when you look at the program counter you see

the program counter is output is the one which is driving the address first and sometimes the

stack pointer drive the address first.

You know that when an instruction like a call comes the content of the program counter is

pushed on to the stack and stack means the part of the memory at that time the address of the

memory is given by the stack pointer ok. So the stack pointer drive the address bus and the

address value on the program counter is driven to the data bus and we goes to that memory

location which is addressed by the stack pointer ok.

So that is this program counter and stack pointer, but you know that the program counter is

incremented after every clock cycle, but 1 is here is that the program counter is 16 bit but the

database is only 8 bit. So if you have a jump address kind of instruction code of gems and

that is larger than 1 bite of the address come then second bite of the address come. So when 1

bites the comes there has to be kind of temporary stored.

And then second bite is along with the stored bite is loaded onto the program counter. So the

loading has to happen byte by byte similarly when the program counter containers has to be

pushed on the stack, the program router wireless split into 2 part, and has to be pushed bite by

bite, so it involves lot of kind of multiplexers to select various paths. These are the control

signal ok.

Now all these control signals are given by this control ok. So the controller is the 1 which

gives say the large signal to the various register it is a 1 which gives enable signal for the

output like register A enable, ALE enable, disk controller is a one which gives the various

combinational selection in would like in this case of ALU whether it is in addition operation

or subtraction or logical or comparator.

All that is specified by this the controller. So in a digital system design we divide this in 2

part. One is the data path where the data moves ok. So here is a data moving into the distance

from register with the temporary registers and from the 2 ALU back to register and sometime

the data come to the program counter or stack pointer, sometime data moves from the

program counter to outside the memory and so on.

So all these part were the data the computation happens that is called data path, ok and this is

the control of which controls the data path which give the latch signal, which enables various

paths to markers, all that is called the controller ok. And the controller does not do any

complication, controller just sequence or operations correctly because the complex there are

lot of blocks and everything has to be done in an order in a sequence.

That sequencing is done by the control of through control signal, it does not computation, all

the competition is done by the data path ok, that you have to remember. Now the question is

that this kind of scheme allow you to kind of partition the design in a in a functional

boundary without worrying about the sequence of operation like when you divide these the

whole design into blocks.

You do not need to worry that for the for the what happens when the add instruction comes

what happens when the comparator comes which way the data moves all that can be

controlled by this control signal ok, so this kind of separation of the controller and data path

allows us to partition the design properly ok. So that is a level 1 design, so we have to worry

about the function at this point of the various block, the timing of the signal between them,

like what is the timing of the control signal at the electrical spec.

And what is a source current, what is the what are the voltages and so on all that need the

address at this level. Now like at this point we are not in a position to say the design is

complete because ALU complex block even registers are not broken down into kind of non

pieces or higher level blocks as we call, so this has to be further designed ok. So let us look at

the register ok.

(Refer Slide Time: 37:09)

So when you talk about the data path.

(Refer Slide Time: 37:15)

I want to mention that data path compose of registers and combination circuit in our case

there are register, the ALU, there is combinational circuit within the program counter

controller is something call of finite state machine and that also is composed of registers and

combinational circuit. We will see that ok and one may be one of the important issue is that

how many controllers are required for a data path normally ok.

In a simple case we can say there is only one controller required, but in a data path there are 2

asynchronous activities going on that means there is some operation in a part of the system

which is not happening in synchronous with other part then you need a separate controller for

that 2 mutually asynchronous part ok, but in principle if you have everything is kind of

synchronous with 1 clock you need only one controller.

But then the controller operation can be very complex, so but when there is complex it is

involved we might divide the data path into multiple blocks and you could have multiple

controller for each part and you can our top level controller controlling this the level 1

controllers separately. So you can think of a hierarchy of state machine in the case of

complex design ok.

So let us look at these registers, how to design them and when you take a register you should

know that this is a 8 bit register, it involves 8 flip flops and the easiest thing to handle is

output enable, so since only one load can drive the data bus, we can imagine this to be putting

8 tri-state gate at the output of the registers and control by a common enable signal which

comes in the state machine.

(Refer Slide Time: 39:56)

But what about the input and only the latch signal comes okay ok, so let us look at the symbol

design for a particular this particular register as a level to design ok now we're looking at this

one of the day ok now we are looking at this one of the registers, so this would not possible

theme of designing a register so you have it flip flop and Q7 to Q0 is going to 8 Tri-state gate

the enable of 8 Tri-state gate is controlled by the common register a neighbour and you see

and just do not be confused with this kind of connection.

This just shows that input and output is connected to the same data bus that is all, my mind is

do not think that is some kind of feedback or something like that it shows that the data bus

same and now what we want is at latch signal along with the clock or enable the latching of

the data the input ok. So when the clock edge comes and the latch signal is high then the data

gets latched.

So we can say this and that together latch is clock is qualified by the large ok, it is a simple

scheme in this awesome timing issue we will discuss that later, but if you look at it the design

is over because we have broken down the register into 8 flip flops, 8 Tri-state gate and one

AND gate. All these are blocks are known blocks at the high level even very simple circuit.

So at this point the design get over, there is nothing further design. So at the level 2 the

registered design get over, it is in 8 bit register, 8 Tri-state gate and 1 input AND gate ok. So

now let us go back and look at this program counter ok, how to design this program counter.

So as I said that the program counter the program counter 16 bit program counter ok. So you

can imagine already there is a 16 bit register which is holding the program counter value.

And that is driven that is present and this Q2 to 1 mux control when the program counter

need to drive it is selected this path when the stack pointer need to drive the controller will

give select this path ok, but internal if you look at the program counter operation when I say

anything like jump and address come say the jump get large a register the address come by

quite know the least significant bit comes first.

As I said that has be stored in a temporary register then it cannot be loaded the into the loaded

into the part of the program count because then the address is kind of wrong address because

one part whole old address and one part was a new address that cannot be done. So it is stored

in memory register and when the new the most significant bite comes I think that along with

this stored value can be loaded parallel to the 16 bit register ok.

So you can see that there are in would shall I park which selects various input to the program

counter because you know that the power on reset the program counter as to load with some

specific starting location okay. So that as for the input of the program counter register will be

different part, 1 part could be from the data bus, 1 part could be from this reset value.

Similarly when interrupt comes the program counter is going to some address location.

That is a input program counter register. Another operation happens in the program counter is

that after the execution of a instruction the program has been implemented ok. So that

implement there is a increment insights after every instruction. The program counter is

increment and loaded back okay that increment value loaded onto the program counter

register.

So and ultimately when it drives the program counter output drives a data bus it has to be

true at right side bus, so this enable ok and when in an instruction like call the current at the

program count of values stored in just back in that case there is a 16 bit value we just go to an

8 bit bus you know in 2 steps and that is kind of control by this output select. So my point of

discussion as that if you know of the program counter.

And if you describe it you can already know what is what is the internal structure of the

program counter, so knowing the operation of the program counter and knowing the various

then we can in for the blocks how it is interconnected and we do not need to worry too much

about the timing because the timing is given by the controller that can be worried up and that

can be handle much later.

So when you design a blog at the level 2 you need to know what all the block does and you

should be able to design that blocked. So let us look at the program counter design ok now

maybe I will skip this particular design for a register ok. So I have shown a possible

implementation of register there is another possible implementation here which is like you

see the earlier cause the latch signal was kind of handed with the clock.

But in this case the latch signal goes to a 2 to 1 mux ok and when the latch signal is high the

input comes to the to the flip flops are registers and the clock when the clock comes in gets

latched, but you see the clock is not control clock is continuously clocking the flip flop. So at

every clock the input the latched, so when the large is 0 we have to give the input to the

register as what is its output.

Otherwise to get corrupt so we feedback or re-circulate the output back to the input when the

large signal is inactive. So this is a very nice way of controlling the register very useful way

or the earliest scheme has its own problems as I said we will discuss it.

(Refer Slide Time: 47:01)

So let us get back to the program counter and we have described the operation and let us look

at the program counter so when it comes to the level to design of the program counter here

looks like this and I would like him that the program gown dresses 16 bit register and that is

broken into two part the most significant byte call PC1, the least significant byte call PC0,

both get clock.

And latch signal so that the input can be latched, ok now you can see this the most significant

part is blue line 8 bits and least significant bit is red line which is a 8 bit. Now you can see

that this 8 bit and this 8 bit goes to a 16 bit increment or a plus one circuit and it goes back to

the respective program counter sections ok. So normally after running in section is executed

this particular path selected.

So that program increment value of the program counter is loaded back to the program

counter ok. Now this part this green path shows how the program counter is loaded with a

new address like in the case of a jump or a call in that case the lease significant byte of the

address comes here and that comes to a temporary register and that has a latch signal and the

clock signal coming from the controller.

So what the first byte the large signal is given and the up on the clock at the least significant

bit get latched here and when the most significant bike comes the controller select this

particular path green path by this input select line of the marks this path. So this most

significant byte come here, this temporary register just bike comes here and the controller

gives a latch signal and it gets latched ok.

So that is what is this path is about and similarly upon the reset the program counter is loaded

with a specific starting location, so that red lines show that path. So at the time of reset the

controller give select this red path and the recent value get loaded. Similarly when the

interrupt comes the appropriate the timing appropriate time this reset interrupt location is

loaded into the program counter by giving the proper input select, by giving the latch signal

and so on ok.

So that is about the input that is all this 4 to 1 mux use one to choose the increment of part 1

choose the path from data bus, one to choose the reset address, one to interrupt address okay.

Now we can see that the program counter drives address bus through 221 marks which is the

16 bit and the other port is coming from the stack pointer and the select line is coming from

the controller ok, that is address bus.

And we have said that when there is a call instruction or interrupt instruction because it goes

to that subroutine and it has to return back to the main program. So the return address has be

stored somewhere. So in that case normally this goes to the to the memory ok. So then like

we have to drive the values on program counter 1 and 0 back to the data bus and that just be

done byte by byte.

We can see that the orange line goes here, the blue line goes, so when such a scenario comes

the controller gives an output select line to select the least significant byte and enable the tri-

state gate and then it goes to the data bus. The next clock cycle this path is selected and in

drives data bus. So that is the design of the program counter , as you knowing the operation

of the program counter we are able to kind of break into pieces and we are able to design the

data path through this means of the block.

So essentially it is composed of three 8 bit registers two 4 to 1 multiplexer which is each part

is a bit. So we can say it is an 8 bit, 4 to 1 multiplexer two numbers ok. Data has a 16 bit

increment, it has a 2-1 16 bit multiplexer, it has a 2-1 8 multiplexer, it has 8 Tri-state gate. So

at this point of time all the blocks and we know these are register, simple register, their marks

increment Tri-state gate.

We can say the design is completed, we might know the code the design in a hardware

description language or we draw schematic does not matter, we are broken down that

complex block into simple blocks which is known high level combination blocks like the

mux coder, encoder, decoder, adder, subtractor. Then you can be we know the circuit than that

can be design.

(Refer Slide Time: 52:36)

So that is how we design from top to bottom maybe you can handle the stack point of

yourself you can give a try with you not try at that and so have looked at the flat design where

there is a symbol counters design, a top down design in the keys of the CPU and that is as I

said any complex systems design top down, there something called a bottom of design which

is like say you start with a very simple block like say you design the program counter then

you come you design the register.

The new design try to integrated which does not work in practically but what can be done that

you have tried to design the CPU you are made the level 1 diagram then the level 2 diagram

then at that point you are not very clear about the program counter maybe you can start

bottom up by putting the blocks. Otherwise all complex design has to be come down

otherwise putting worth.

And then at each level up to worry about the functionality, timing, electrical characteristics,

power disipassion and so on ok. So that is in a nutshell how you design a complex circuits. So

in this lecture, today's lecture we have looked at I have jump from a very simple design to

very simple complex design we have looked at the design of CPU and we said it cannot be

handled in one shot like a flat design.

It has to be partitioned into non functional blocks and then each block has to be further

maybe partition and designed to a level where we know the blocks you not to the level of

registers and non completion block, then we can stop this design ok. So that is top down

design, that is applicable to any complex system and we have looked at the level 1 diagram of

the CPU.

And we have looked at what is the data path, data path is where data operation happens I

know it is composed of registers and combinational circuit in the CPU you have most the data

moving between the memory and the instruction register or between the various register ALU

and back to the resistance between registers and memory and so on and the memory and the

program counter all that is why the data movement happens.

So all that forms data path and then there is a controller with controls the latching of the data,

enabling of the data to the data bus choosing various path in the data path. All that is the job

of the controller and it does no computation and controller does absolutely no competition, it

coordinator sequence operation in the data path, so this kind of divisional allows us to

concentrate on functional partition without worrying about sequencing right.

We can handle the old sequencing timing of the control signal later when the controller is

designed, knowing the operation we can design the block into pieces and then we can handle

the timing. Then after that we have looked at the registers how to design the register we have

broken down and bring it into a kind of some gates and the flip flops then we have looked at

the various operation of the program counter.

And we come out with the scheme with the program counter is designed in detail and we

have you found that it is composed of registers and multiplexers and Tri-state gates various

different type of multiplexer and that what we are going to see in the design we will see lot of

multiplexer which is choosing various parts ok. So that is off you kind of partition and go

from top level 2 top to bottom and design the circuit.

And in the next lecture now we look at the important part of the controller, what is the

behaviour of the controller and what is the structure of the controller, how to find what is

basic idea by which that control structure works and how to design, how to design a

controller and all that we will study in the next lecture. So please go back now we are starting

the design seriously. So you may not be used to designing complex designs.

So please revise and if you are not familiar with the microprocessor read some book on

microprocessor and grasp the fundamentals of the microprocessor, so that you can follow it

very nicely. So please work on this topic and I wish you all the best and thank you.

