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So, welcome to this lecture on VHDL in the course digital system design with PLDs and FPGAs.

In  the  last  lecture  we  have  looked  at  basically  how  to  write  packages  basically  to  write

components in a package and put it in a library.

(Refer Slide Time: 00:41)

And instantiated in a some top level entity also we have looked at the configuration, specification

and configuration declaration, which talks essentially about how to say like here instantiating

some components from a library. So, the configuration specification bind this instantiation into a

specific library, specific package, specific entity and specific architecture that is a basic idea.

And configuration declaration does this thing in a separate design unit. Also it has additional

function. Suppose a top level entity has multiple architectures, it tells which architecture to be

use for that configuration specified. So, depending on how you write configuration even the top

level entity can have multiple architectures, that is the basic idea.



Because when we at the beginning of the lecture we have discussed that the VHDL can have

multiple architectures. But we did not say how the tools are going to infer which architecture you

require okay. So, this can happen in 2 scenario, one scenario is that, you have a 1 entity and

multiple  architectures  and  you  want  to  use  at  the  time  of  synthesising  or  simulating  or

implementing whatever maybe the case that a particular architecture.

Suppose you have an entity with 3 architectures and you are just going to use that entity alone,

that component alone. And you want to say out of the 3 which architecture to be used for the

current compilation okay. So, that is done by the configuration declaration. In addition suppose

in you are entity, you are instantiating components from library and you can specifically say a

particular component should come from a particular library.

Otherwise you will at the mercy of the tool. Because there could be similarly named components

in various packages and various libraries, and if you just say some library name and use that

library, package and various, maybe you will write some 5 use closes. So, the tool will pick

whichever comes first to a suppose, you have use a component called counter at the tool is going

to look at the first package, second package and so on.

Wherever it finds a name which is matching the instantiation and the arguments of like various

ports you have the you know you have the data type. And if the data type matches it is pick up

that particular component, probably that not the one you want then in that case you can very

specifically  say a particular  component  instantiation you can go to the level  of specifying a

particular label.

Suppose you have use xor gate 5 times like suppose a labels where x1, x2, x3, x4, x5 these

component instantiation labels. And you can say for x1 it has to come from a particular package

and for x2 maybe from another package and so on. So, it is very it can very specific very detail.

So, that is what we have seen in the last lecture. So, let us quickly look at the slides of the last

lecture for a revision.
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So, we have taken an example of a double synchroniser as a top level entity, and a flip-flop as a

component, and we have seen that in the normal course you will write the code for the flip-flop

so, the library, entity and architecture and in the same file or in the same project.

(Refer Slide Time: 05:08)

You will have the double synchroniser circuit the top level entity which has you know the input

and the clock and the output. And you declare the component which is just particular data flip-

flop declare the signal to interconnect. Because you have declare just declare this internal signal,

instantiate  it  twice  and  connect  all  the  signals  and  that  is  what  we  have  done,  declare  the

component declare the signal, the first flip-flop is instantiated with appropriate mapping. Second

one that is it.



(Refer Slide Time: 05:53)

But when you write a okay this is a bit about the package and library, the hierarchy is that library,

multiple  libraries  within  each library  you can have  multiple  packages  and within package a

within a package you can have components, functions, procedures and data types. And there are

predefined library, one is STD which contains these 2 packages, standard package and texitio

package.  This is  what which contains  the bit  binary the real  all  those definition,  and all  the

operators related to it.

And the textio is used for file operation, which can be used in test benches. And the work library

is the one which your current design whatever you write is compiled into the work library. And

normally it is understood that without these 2 no tool can work so, you do not kind of expressed

idly declare these like libraries, STD comma work is not required it is implicit it is understood.

Similarly, the essential package in the standard library standard.

So you do not have to say use std.standard all this is implicit, this is assume it is there and, but if

you have use the textio in the std library that is not implicitly declared. Because it is not used

often it is used only in the test benches and so when you want to use it you have to say use

std.textio.all.

(Refer Slide Time: 07:43)



And this is how we write the package so, the top you write a package header follow that with a

entity and architecture. And we are calling our component the same component dff. So, at the

bottom you have a library, entity  and architecture  of d flip-flop.  And at the top you have a

package header, package some name is end package within that you write the component of this

dff exactly same as the component declaration.

In the top level entity which is nothing but this entity whatever is inside the entity is repeated

there and that is it. Once you do that this particular component is the package definition is over

and this can be put it in a particular library. And that is tool specific, vendor specific how to

compile a package into a library, you have to refer to the manual are the user guide of the tools

use. But when we go for a demo we can definitely see that at least the package the tool we are

going to use how to use that within that tool we will see.

(Refer Slide Time: 09:02)



So, how to use this fact that you have put a component in a package and compile into a library.

But we have to see hot it has to be used in a top level entity in our case, this double synchroniser.

So, first thing is to note that we have put that package in a particular library so, you have to add

the library close library xylib that is where we have assume. We put this xy package and you

have to say use xylib dot xy package dot all.

Then comes the entity but in the architecture declaration region we do not have the component

declaration. Because now that is part of the package are part of the component which is in the

library. So, we do not have that we just the declare the internal signal which is required and then

we instantiate as previously this particular component that is all what is required and as I said.

You can have multiple component in a package there is does not matter suppose you have 10

components you can include the component declarations all the component declarations within

the package body and follow it up with the entity and architecture of all the components okay,

suppose  you  have  10  components  write  the  entity  and  architecture  of  the  first  component

followed with the second component and so on. You can write that in a single file compile it into

a library that is simple as it is and definitely.

(Refer Slide Time: 10:44)



When you instantiate you can use positional association or named association this is any time

better than this particular thing, where you have to keep we have to remember the order of the

formal parameters which is sometime difficult to no and more over.

(Refer Slide Time: 11:08)

When you write a component one would like it to be generic because if you have a counter then

you should be worried about 8 bit counter, 16 bit counter and so on. You should have a counter

which is generic in size and when you instantiated you should be able to specify the size we have

seen that.

(Refer Slide Time: 11:36)



And how we do is that instead of hot coding the size, we define a constant called generic is

nothing but an constant say here it is called size, and we say size is 4 we say size – 1 down to 0

so, the syntax is that in the entity the declaration, you include generic and open the parenthesis.

And within that you can write any number of generic depending on the requirement say here we

require only a size. But in the case of a FIFO we have discussed maybe you have a data width

and the size of the FIFO in terms of locations and so on.

So, here size is declared as an integer with the default value of 4, this is the default value, when

you instantiate if you do not specify anything, then it is treated as 4 okay. So, and definitely for a

4 bit  vector we have 3 down to 0.  So,  we say size-1 down to 0 and we have a signal.  So,

wherever required the size is required then you say size-1 down to 0. Then follow it up with the

architecture.

And at the top you have a component declaration which is nothing but similar to the entity. So,

all these appears at the component side, then you can put it into a library but then we have to see

how to use that okay how to specify the size we require when you instantiated.

(Refer Slide Time: 13:13)



So, that is what is shown here in the normal case if you say count that is a counter we have put

port map and the input signal, output signal the width will be 4. But you want us specific width.

So, like ports are map you have to say generics are map. So, the count generic map and 8, there

is only one generic here. So, that gets a value 8, so everything here is 7 down to 0 now okay. So,

you get an 8 bit counter and if there are multiple generics, then you have to say comma like here

you can say comma 16 and so on.

And this is nothing but positional association you can have a kind of named association which

say size that is what it say here, size and with the forward arrow 8 you can say. Then if there are

multiple generic then you put a comma and the next one and so on okay. And this is the normal

port map. So you can any number of parameters and we have seen an example of an nand gate

with propagation delay, tplh and tphl defined. And we have seen that the behaviour is specified

like o1 gets i1 NAND 2 after tplh+tphl by 2 okay.

(Refer Slide Time: 14:42)



And we have also seen that when you instantiate a particular component in a top level entity. The

top level entities generic can be pass down to the component which is instantiated okay. Example

we have treated was a counter which is a generic counter which is instantiated in a generic timer.

So, naturally the width of the timer will be width of the counter. So, when you instantiate the

counter in the top level entity of the timer, and top level architecture of the timer.

Then instead of hot coding it we say the generic of the timer twidth. So, when that is ultimately

specify you know it is going to be you know instantiated or specified. Then like the timer can be

instantiated in a CPU, then that will be specified at that time and that will be pass down to the

counter. So, that is the generic in hierarchy.

(Refer Slide Time: 15:48)



And this is a configuration specification which tells how to bind the instantiated components to

entity architecture pair. And this is specified in the architecture declaration region. Configuration

declaration has the 2 purposes one is  the same purpose bind the components to  a particular

library.  Also  it  binds the  top  level  entity  of  this  particular  top  level  design  to  a  particular

architecture it has okay and this is a separate unit, this is hierarchical okay we will see, what is

the meaning of that.

(Refer Slide Time: 16:30)

And we have seen an example a full order with 2 xor gate, 3 AND gates and 2 OR gates. So, you

know the component declaration is xor AND and OR.

(Refer Slide Time: 16:41)



(Refer Slide Time: 16:43)

And we have in the architecture statement region we have instantiated this. But in the declaration

region you can say for x1, x2 that those are the labels of xor2 instantiation, that it comes from

use entity, library dot Package here there is no package. But, because it in the work library, so,

the entity and the architecture okay. For a3 that means in the AND gate a3 alone, use entity this

library, this entity, this architecture.

And whatever the formal ports which is in the library is map to something called a1, just a name

change.  In  case  you  have  different  name  here,  we  have  not  use  we  have  use  a  positional

association, so probably this does not matter. But suppose you have said suppose instead of hsb.



Suppose here we write say for a3, we say instead of saying hsb map to s4. Suppose you had said

kind of a1 maps to s4 then this could be done to change it.

And there  are  2 special  syntax  for  all  or2,  that  means  for  all  the instantiation  of  or2 use  a

particular  entity  architecture  pair.  You  say  for  others  that  means  here  you  see  AND  gate

instantiation for particular a3 we have used a particular component from a library for all others

that means a1 and a2 use something for l square. That is a way to specify 

(Refer Slide Time: 18:25)

And when it comes to configuration declaration for a single binding of the entity, top level entity

to architecture you write a configuration name of the entity you say for a particular architecture

name end for, that means this entity is map to this particular thing that is all. But you want to

specify the component binding that can be done inside. So, you say for a1, a2, a3 use a particular

AND gate say end for; for others or2, end for.

That means we are not specifying anything, for all xor2, use configuration work dot xorcon, that

means the xor2 has a configuration as part of it entity architecture which say that which are the

where this particular thing should comes from and which is architecture to use all that. So, that

shows the hierarchy of the configuration.

(Refer Slide Time: 19:31)



So, I think this is what we have started briefly in the last classes. So, there are different packages

and different  packages are  different  operators,  functions  and it  can be little  confusing at  the

beginning which particular operator to use which particular function to use and so on. So, we

will look at and it is very difficult maybe it is not given in a textbook sometime.

And one way to know this particular operators definition is by looking into the library okay. That

would mean that you go through the source code of the library okay. That is a  very compare

something. Because you have to open the source in VHDL or very low you know go through all

the code and in the process you mix some changes to it. And then if you compile it for a some

tool, simulated tool, then it can give errors and all that.

So, I am giving you a brief about the various packages, various operators and functions. So, the

primary package we have come across other than the standard package is the standard logic

1164, where this standard u logic is defined with all the 9 values, we have seen that okay. And a

standard logic is nothing but a standard u logic. But it is going through a resolution function in

the case of multiple drivers.

And we have a standard logic vector, standard u logic vector and standard logic vector which is

defined as an a unconstraint array of standard u logic and standard logic respectively. So, it can

take any value of to raise 32 okay. And when we declare we constrain it by specifying the size



and standard logic 1164 contains only the logical operators for this particular standard u logic,

standard logic, standard u logic vector and standard logic vector.

So, if you want to do some arithmetic with it,  then we need to use a different package this

contains only the logical operators. So, please keep that in mind.

(Refer Slide Time: 22:06)

So, the next thing we have already seen in some example which is the package standard logic

unsigned this is also the an ieee packages.  So,  it  is  ieee dot Standard logic unsigned, it  has

standard logic and standard logic vector as a data type. The operators like +, -, *, / is overloaded

for it also it has relational operators all <, >, =, /=, <=, >= all that is there. So, you can the

moment you say use ieee standard logic unsigned you can use all these.

In addition, it has shift operators which is called SHR which is shift right and SHL which is shift

left  okay, mind you this  is  all  logical  shift  there no arithmetic  shift  which is  offered in this

particular library. So, if you are working with tools compliment maybe it is little difficult either

you will not be use this particular operator you may have to write code for arithmetic shift okay.

And as I said the digital I mean design when you design through the VHDL it enforces strict tight

checking. So, suppose you have a standard logic vector which has to be converted to integer,

then you have to specifically convert it to integer, it will not be you cannot assign a standard



logic vector to an integer maybe it is 8 bit. but you know that the 8 bit goes from 0, 255 for

unsigned.

But, that like you cannot assigned that when integer unless you convert standard logic vector to

an integer. So, this is this particular function convert this standard logic vector to integer you can

say conv_integer open the bracket and whichever is your standard logic vector you know the

object  you can put here until  return an integer you know. That is  how this  is  this  particular

function to be used.

(Refer Slide Time: 24:38)

And there is a synopsis specified library which is called std_logic_arith okay. Now that does not

use  standard  logic  vector  as  a  base  vector  type.  It  has  2  arrays  of  standard  logic  which  is

unconstraint, one is called unsigned other is called signed as this name suggest that can be used

for  arithmetic  you  can  have  unsigned  addition  and  signed  addition  it  is  exactly  similar  to

standard logic vector.

But then the name is unsigned and the name is signed here. So, you have this packages all the

operators overloaded for unsigned and signed. So, you have all the arithmetic operators all the

relational operators like in the previous case you have like standard logic unsigned you have

SHR and SHL. But if the type you are using is unsigned, then it is a logical shift. If it is a signed

data type you are using, then this will be an arithmetic shift automatically.



So, you do not have to worry, so if you play with the tools compliment number, then this can be

very useful. Because you do some kind of computation with the sign extension, then we have to

shift it properly with the sign bit, otherwise the value will not be correct, the result will not be

correct. So, this is taken care of in this SHR and SHL to provided use a proper data type signed.

(Refer Slide Time: 26:29)

So, it also has conversion function, so basically it has conversion function from standard logic

vector unsigned, signed and integer. So, there are 4 conversion function so, the convert integer

you convert from all the other 3 like standard logic vector signed and unsigned to the integer. So,

you just open the bracket and write whatever so, that means this convert integer is overloaded 3

times in this case for standard logic vector unsigned and signed.

Similarly  you have  convert  unsigned  which  will  put  from standard  logic  vector  signed  and

integer, converts signed, convert standard logic vector and all that okay. So, that it means that it

convert to standard logic vector convert to integer from these 3 types . Whatever is not mention

here is the is from kind of data type. Now if you want to use this libraries, synopsis libraries you

say library ieee.

Use ieee standard logic 1164 because the standard logic base type itself is defined here. Then you

say standard logic arith where in you can use kind of all the arithmetic relationship. And logical



operators and sorry functions and you say at the end ieee standard logic unsigned. Because the

shift operators unsigned has yeah there are arithmetic and shift and all that operators here.

And mind you this is put below this, so that main operators are from the arith. So, these are the

recommendation  for  all  the design use standard logic  arith  and unsigned you can use it  for

counters and test benches and do not use the package, there is a package called std logic signed

do not use it.  Now like there is  a  package from ieee standard like in  place of the synopsis

packages. So, these 2 are synopsis packages arith and sorry arith is a synopsis package.

(Refer Slide Time: 29:05)

So, there is another similar package from the ieee, so that is called numeric_std or we called

numeric standard similar to arith you have unsigned and signed specify as a array of standard

logic. And you have arithmetic operators now you not only you have +, -, *, /, you have absolute,

rem and mod you have in the numeric standard you have relational operators, you have logical

operators.
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You have shift operations in your shift left, shift right, rotate left, rotate right, sll, srl which is

nothing but this rol, ror which is nothing but this. So, exactly same and you have conversion

function 2 integer 2 unsigned, signed from like if you take 2 integer it is from unsigned or signed

or standard logic vector, and similarly others and how to use this particular package.

So, you say library ieee, library use ieee dot Standard logic 1164 all; that is required because

standard logic is defined there. And use ieee dot numeric standard dot all; okay. That is how the

ieee numeric standard library is used. In the earlier case we have seen that we have to use1164

unsigned and arith. But here is only numeric standard need to be use. So, that is the various

libraries, various packages operators and functions.

(Refer Slide Time: 30:53)



Now when it come to type conversion many a times you have to do, because we use different

libraries  and  so  you  have  to  move  between  sometime  standard  logic  vector  to  signed  and

unsigned and integer and so on. So, there are 3 ways you can convert, so it is automatic between

base type and subtype okay. So, suppose you have a a subtype then you do not worry you have

defined a subtype of something.

Then you do not have to worry it just assigned it will work, it is automatic you do not have to do

the type conversion. In some cases you have to use the express it conversion function like 2

integer, convert integer and so on maybe so, you have to convert from standard logic vector to an

integer. So, you can use either of this functions and you know that the signed, unsigned and

standard logic vector all are the unconstraint array of standard logic.

So, essentially though name is different the data type is same. It is only the name difference. So,

the VHDL allows you to do a  type casting as in  c.  So,  when you convert  between these 3

between any 2 of them. When you can just use a type casting say suppose you have a standard

logic vector called sl vect and you want to assign this unsigned vector usg vect to this.

You do not do a, you do not have call 2 standard logic vector or to standard logic or covert

standard  logic  just  say  std  logic  vector  (usg_vector)  and  get  the  standard  logic  vector and

similarly suppose you have usg unsigned vector and you want to assign a standard logic vector,



you just say unsigned then you give this standard logic vector as an argument then unsigned

vector will get it.

And particularly suppose you want to use some numerical value for whatever purpose. And say

you want to pass this signed number then you just say signed you know in the code you give that

numerical value of the standard logic vector it will be automatically converted to the signed data

type okay. So, that is about do the type conversion between the various similar data types.

Now you should be careful when we write when we call a function say suppose in some case, we

needed a standard logic vector to be converted to an integer okay. So, we will call a function,

which convert the standard logic to an integer okay. And if you know that suppose you have a 4

bit binary number to convert to an integer the algorithm is that just simple you know you trape to

the binary number bit twice.

Wherever there is 1 you say the you have an accumulator you say that accumulator is nothing but

accumulator + to raise to i, i is the current of that bit position okay. So, if you have 1010, so it is

basically to raise to 8 + sorry to raise to 3+ to raise to 1 which is 10 okay. And that you go

through an iteration like for i in 0 to 3 then if i is 1, then some variable is variable + to raise to i

and so on okay.

So, that is how it is computed, but like you should not think that this is doing to be synthesise

into a hardware okay the data type checking is enforced by the VHDL as a language okay. So,

the fact that we write some code to convert a data type, that should not be synthesised into a

circuit okay. So, basically that you should understand and so there are attributes which say like

when you write a library function for this type conversion. There are like attributes which is

inserted.  So that the synthesis tool will  not synthesise that part  of the code, that you should

understand, so, that is what is written here.
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But, having said that sometime when you convert suppose take an example memory okay. And

suppose you have an a memory with 8 bit address okay. And so, the number of locations are 256,

it will be normally address from 0 to 255 okay. Now like in VHDL code you can specify an array

of location index by the address okay. So, you will have a memory array which goes from 0 to

255.

So, when you suppose you are reading a memory location you would put the output of that

particular memory location to a data bus, and you need to specify the array index. So, to that

extend we will kind of convert the address which is in the standard logic vector to an integer.

And supply this as an index to the array okay. Now though the type conversion does not imply

any hardware.

But there is a hardware here which is hidden, that means you have converting and index which is

in the standard logic vector to an integer which is indexing an array okay. Then that represent a

an address decoder. Because you know that in a memory a particular location is access by an

address decoder, you specify the address, a particular decoder will go and select a particular

location.

And so, that like implicitly sometime this the type conversion not the type conversion alone. But

the fact that converted integer is indexed into a an array can represent a address decoder I maybe



what I have written is little kind of misleading . It is not the type conversion which implies an

address decoder. The fact that, that converted number is used as an index into array can mean

that it is an address decoder. So, that is what I want to convey. So, I hope you are kind of clear

about this particular type conversion.

(Refer Slide Time: 38:36)

So, let us see some examples of arithmetic okay maybe some kind of at least at the start this will

bring in clarity. Suppose imagine there are a, b these are the input kind of vectors, 8 bit vectors

which is defined as a unsigned 7 down to 0. S is we are going to assign some output unsigned 7

down to 0 all these a, b, s are 8 bit and we have an 9 bit s which is called s9 which is unsigned 8

down to 0.

We also have an s7 which is unsigned 6 down to 0 okay. Now very simple addition suppose, we

are kind of doing an addition or you are implementing an adder. Then the simple addition is that

you say s get a +b okay. Now a is 8 bit, b is 8 bit and s is also 8 bit. and which normally in a

digital course that you would have learned that you add 2 8bits and you end up with a 9 bit. but

when you work with a operator you add a and b.

And you just end up with in kind of 8 bit result, the carry is ignored when it is synthesise or

implemented. But in some case you in like when we suppose you are doing a multiplication we

are trying to design a multiplier, then you know that in the multiplier algorithm you need to add



the partial products. And there an AND then you have a shifting. So, there if you add 2 8bit, that

will result in a9 bit and we require the 9 bit okay.

In that case maybe in a simple addition we may not require the carry bit, but there are cases

where we require the carry bit. In such a case what we do is that see how we can get that 9 bit.

So, s9 is an 9 bit vector which as assigned then we up end 0 at the as a more significant bit of a.

So, you say 0 concatenate with a which is 8 bit + 0 concatenate with b. So, if there is a carry

from msp which is 7 a7 or b7 position.

Then that goes to the eighth position and you get a 9 bit result okay. Suppose you want to live

with only the 8 bit result, then you can definitely say like sorry a 7 bit result then you can say a6

down to 0 +b6 down to 0. Suppose you want to you have a larger input and you have a smaller

output, then you pickup the same size as a output. Then you will get there is no issue.

Because this is 7 down to 0 which is 8 bit, but a 7 is only 7, 7 bits y, so you use a6 down to 0 +

b6 down to 0. And some cases you may need to supply carry in okay maybe you have split the

add of whatever reason into 2 stages the carry out of the previous stage comma as a carry in of

the next stage. In such a case we do the opposite of upending 0 at the msp position, what we do

is that this is a 9 bit result.

And a and 1 at the lease significant base + b and the carry input okay. So, you get the s9 okay, 9

bit result. But this part should not be part of the address sorry part of the result okay. Because

which say that suppose we are interested in having the some outputs. We want to push some

carry if it is generated to the next the first stage. So, here you know you have made it 1. So, if the

carry in is 0 then the carry out from the first stage is 0.

But if it is 1, then 1 +1 is 0, the carry in to the second stage is 1 so, but this 1 output, the some

output itself, as the lease significant bit is not what we required. So, we ignore it, so ultimately

you just state the up to the first bit from the 8 bit and cast it to an 8 bit result okay. That is how

we use the carry in if required. So, this shows how to use a carry out, this shows how to use the

carry in with this standard operators and we have use,



So, you do not have to write a ripple order code or a look ward order code. Normally you can

stick with this + in the case of FPGA there are dedicated resources to implement the +. So, which

is very kind of high performance and so on. We will see that when we go to the particular FPGA

lectures and that is how that is about the arithmetic width kind of addition width the carry out

with carry in and so on.
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So, now we let us look at arithmetic with time that you know that time is specified as kind of

integer units. So, you say 1 nanosecond, 2 nanosecond you do not say 1.5 nanosecond. So, but

when you do some at least for simulation wise when you do some calculation like you want to

calculate the period and you want to multiply the period with something. Then you may end up

in a kind of real numbers.

So, it will be good if you can convert the time to a real numbers. So, suppose here I am showing

that we declare a variable which is period which is of type real and now we say period get real

that is a type casting. And time data which is in nanosecond say 100 nanosecond divided by 1

nanosecond. So, we remove the unit and you get a 100 and that is cast it is real and then you get

a period in real.



Then you multiply divide then you get the real number as a result. So, that is how we do the

arithmetic with time. So, briefly we have looked at the packages basically the ieee standard logic

1164 package standard logic unsigned which is ieee library, a synopsis package called standard

logic arith how to use that various arithmetic operators, relational operators, logical operators,

shift operators and conversion function.

And we have seen numeric standard how to use that. We also said the type conversion is not kind

of does not represent a hardware it is just for the language type checking. But when we in special

cases  when we convert  and when we use  it  for  indexing and array it  some represent  some

decoder, that should be should not be forgotten. And ultimately we have seen some example of

arithmetic like some similar size result as a input when you add.

And when you have a carry input what to do, when you have carry output how to get the result,

the  wider  result  with the  carry out  and so on.  And we have  ultimately  seen the  time some

computation  using the  time,  during simulation  where we convert  the time  unit  into  the  real

numbers. So, that you can multiply where you end with a fractions, then that can be preserve if

you convert to the real number.

(Refer Slide Time: 46:59)

So, let us talk about this particular topic and which is called delay modelling, how the VHDL

model the delay. We have already seen the syntax we say that something get after 5 nanosecond.



Then there is a delay for that output to display or to come out with the 5 nanosecond delay. So,

there are 2 types of delay specified in the VHDL one is called inertial delay and another is called

transport delay.

So, basically inertial delay will model the delay through capacitive networks you know that you

have a line with capacitants you apply some binary value. Then that capacitor has to charge up to

that  particular  value.  And  before  that  before  it  getting  fully  charge  if  the  input  applied  is

removed, then there won’t be any effect, so that is what is inertial delay and that works for the

gates with threshold.

Because you have an inverter and you apply a one at the input of the inverter. Then naturally the

there is a capacitance on the line. And the input has to charge up say previously it was 0 above

the threshold for the output to start appearing okay. So, there is like at the input there is some

certain pulse width then only like minimum pulse width, then only the input will go above the

threshold and the output will appear okay.

And also there is a propagation delay. So, inertial delay has 2 parts, one is a minimum a pulse

width which is required for the output to come okay. Suppose once again suppose you have a

inverter with 5 nanosecond delay. And if you apply a 1 nanosecond pulse at the input of the

inverter for sure you can be sure that it will not make any effect at the output.

It will not appear at the output, because the propagation delay was 5 nanosecond then you apply

narrow pulse a 1 nanosecond, so it will not appear okay. But we are not in position to say that

you appear apply a 4.5 nanosecond pulse whether it will appear at the output okay. That we are

not  able to  say at  the gate  level.  We have no great  way to predict  this  if  by simulation  are

anything like that.

But if you consider the equivalent transistor lay out and do like suppose you have made an and

gate or an inverter using say take an inverter with the PMOS transistor and NMOS transistor do

the lay out do the place and route of VLSI chip. And do as spy simulation then we you will able



to see the exact effect, but when we model this at the gate level. We do not have such across is

okay.

So, it is at a very gross level we are going to model and it has limitation. You should understand

that there are certain limitation with regard to this kind of modelling and that can be reflected.

There will be side effect if you are careful in simulation; you will see the effect of this in certain

cases  depending  on particular  model  used  to  represent  the  delay  in  the  VHDL output  code

particularly for simulation timing simulation so on.

So, it has two parameters one is the minimum pulse width required for the output to appear

second is the propagation delay itself okay. So, we will see so, that is the inertial delay so, we

will see the inertial delay and move on to the transport delay.

(Refer Slide Time: 51:13)

So, let us look at the inertial delay the syntax for is that say x gets a after 5 nanosecond okay.

That means the meaning of it is that between x and a there is a 5 nanosecond delay also it means

that anything less than 5 nanosecond suppose you apply to a will not appear at the x okay that is

a meaning of it. But exactly same if you say x is inertial a after 5 nanosecond it is same as like a

after 5 nanosecond.



Because the default delay is inertial, so whether you say a after 5 nanosecond or inertial a after 5

nanosecond does not matter. But in this  case the minimum pulse width is  5 nanosecond but

suppose you have a case where the pulse width required for the output appear is 3 nanosecond

and propagation delay is 5 nanosecond which probably may not be true like it maybe very close

to 5 nanosecond .

But take this case then you can specify you can decouple the minimum pulse width and the

propagation  delay. And the syntax for that  is  you say reject  3  nanosecond inertial  a  after  5

nanosecond okay. So, it means that anything below 3 nanosecond will be rejected and anything

above 5 3 nanosecond will be delayed by 5 nanosecond also you can say that you gets say 1 after

see 5 nanosecond, 0 after 8 nanosecond, 1 after 12 nanosecond.

It means that you will get a signal for first 5 nanosecond 1 next 3 nanosecond, because here we

have saying the real time okay real so, for first 5 nanosecond will be 1 next 3 nanosecond it will

be 0 and the next 4 nanosecond it will be 1. So, this is very useful kind of syntax to generate

some reform. And particularly this is useful in test benches. So, that is about the the inertial

delay.

And transport delay is the delay through a transmission line okay. Basically no pulse is rejected

you know you have a long line of bus okay. And you apply a pulse irrespective of the width of

the pulse. It is going to go the other end with the delay okay. But it won’t be rejected, because the

pulse width is some kind of less than something. And way to specify the transport delay is you

say z is transport a after 5 nanosecond okay.

You say instead of inertial you say transport a after 5 nanosecond, then you get the transport

delay so, maybe I will show some example the waveform and some kind of cases where the this

delay modelling is use for verification. But just for today we will wind up at this part. We have

told about delay modelling which is inertial delay and transport delay inertial delay a kind of

model.



The delay through capacity networks are delay of a gate with the threshold which essentially

means that you need some minimum pulse width at the input for the output appear due to this

threshold crossing and the propagation delay. And at the as I said again at the digital gate level, h

we have kind  or  gross  delay  we cannot  be  accurate.  But  if  you take  a  VLSI  transfer  level

implementation do as spies you will know the exact delay.

But this is very useful at least where such like from the spy simulation such delays are known.

Then we can if knowing the device characteristics you can model using this syntax reasonably

correctly, because it allows you to specify the minimum pulse width and the propagation delay.

So, we have seen the syntax for that default is inertial, so we have in the simple case. When you

say a after 5 nanosecond or inertial delay a after 5 nanosecond.

The propagation delay and the minimum pulse width is same when it is different user reject close

and you can generate wave form by specify you know the various values using the syntax and

the transport delay model the delay through a transmission line where in there is no reject like

there is no minimum pulse width requirement. And the syntax for is that z you know some output

get transport a after 5 nanosecond okay.

As I said in the next lecture we will some kind of an example of the syntax with the waveforms

and we will also maybe how to use this delay modelling to verify some timing of a flip flop we

will see that. Then we will go through some maybe the VHDL code examples in the next lectures

so, that your familiar you get some good familiarity with the VHDL language. So, I stop here

please revise and do not take it lightly it just because it is a language because it represent the

hardware you have to get in to the habit of thinking hardware than just treat it as a language. So,

I wish you all the best and thank you.


