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Hello everyone. Today, we will conclude our discussion of Effective Mass and if time 

permits, we will start the discussion of Density of states in Solids particularly in electronic 

devices. 
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So, let me quickly review what we have been discussing so far. We are trying to understand 

how electrons behave in nanoscale devices how electrons behave when they are confined 

in extremely small regions of spaces, which is the case in our devices; in our modern 

devices where the channel length is of few nanometer length. And in order to understand 

that we started the discussion on electrons in a 1D solid. 

And in order to understand the behavior of electrons in a 1D solid we need to solve the 

Schrodinger equation  in a 1D solid and that is done by using the so, called Kronig-Penney 

model this is also known as KP model. Using KP model and by invoking Bloch’s theorem 

we deduce that in solids electrons can occupy certain ranges of energies. So, this is the 

energy axis and electrons can occupy certain energy ranges and  there are certain ranges, 

which the electrons cannot occupy. 



So, the allowed electronics energy states are known as the energy bands and the disallowed 

energy range is known as the band gap. And this is what we deduced from our 

mathematical and graphical analysis of the solution of KP model basically. In this figure 

we analyze the relationship between energy and crystal momentum k the so called E k 

relationship for solids, E k relationship for solids. 

What we see here is that there are two ways of representing E k relationship one is the so, 

called reduced zone representation and in which we can we plot E values corresponding 

to the k values in the range of−
π

a+b
 𝑡𝑜

𝜋

𝑎+𝑏
. So, as we saw during our discussion of Bloch’s 

theorem we concluded that all possible or the complete set of k values lie in the range of 

2π by period of the potential profile. 

And here the period of the potential profile was a plus b so, the complete set of distinct k 

values lie in the range from −
π

a+b
 𝑡𝑜

𝜋

𝑎+𝑏
. And when we plot E k relationship in this range 

2𝜋

𝑎+𝑏
range this representation is known as the reduced zone representation of the solids. But 

we also saw that if we add 
2𝜋

𝑎+𝑏
 to any k value that will give the same wave function. So, 

we can equivalently have an extended zone representation in which k values are 

continuously increasing and we are seeing energy as a function of k when k values are 

continuously increasing.  

So, these two are equivalent way of representing the E k relationship and various in this 

case these allowed values of energies. So, for example,  this is the E k plot this is a part of 

E k plot. So, what it signifies is that this range of energies electrons can take and the 

corresponding k values will be these. So, corresponding to this point we will have the k 

value to be this ok. So, this is known as 1 electron band and corresponding to a band the 

set of k values is known as Brillouin zones. 

So,by this also we can also find out Brillouin zones from the E k relationship. This can be 

easily visualized in case of 1D particles in case of 1D solids it can be easily graphically 

analyzed, but in case of 2D and 3D solids the visualization becomes difficult because the 

plot E k plot becomes 3D and 4D actually. 

So, for 2D solids E k plot is 3D and for 3D solids it is 4D. So, this visualization becomes 

difficult so, that is why we are trying to understand these concepts in 1D case so, that the 



understanding or the visualization is simpler and we can grasp as many concepts as 

possible. So, this is about the bands and Brillouin zones one more thing here that we need 

to notice is that between two bands so, this is one band and this is another band. Similarly, 

we will have another band possibly like this another band will be like this ok.  

So, the band which is the highest occupied band or the band up to which electrons exist in 

a solid is generally known as the valence band. So, in this case if electrons are taking 

energy for example, up to this value which means that at t equal to 0 kelvin all the 

electronic states up to this energy value are filled. So, this band will be known as the 

valence band and the band just above this band will be known as the conduction band. 

This is generally how we define valence band and conduction bands. 

The bands can be even more complicated, sometimes there might be overlapping bands 

we can have E k relationship in which two bands might be like this, which means that the 

E k relationship the E and k values which satisfy the Kronig Penney constraint or which 

give a valid Schrodinger equation solution they can give rise to E k values which can have 

a plot like this ok. 

So,  there are multiple possibilities in which electrons can occupy energies corresponding 

to k values in solids, ok. After this idea we discussed the idea of effective mass and the 

notion of effective mass comes from the fact that the solution of Schrodinger equation is 

done for a given value of E and we have a certain value of k for which we analyze the 

wave functions for which we obtain the wave functions. 

So, in a way in Schrodinger equation solutions we get fixed k values and fixed E values 

and because of the Heisenberg’s uncertainty principle when the energy is fixed the time 

evolution will be uncertain which means the time uncertainty in the particle would be there. 

And similarly, if k value is fixed the position uncertainty will be there in the particle. 

But in actual devices where we know that electron will be travelling through the device at 

a given time. So, we broadly know that electron will have a certain position at a certain 

time in that case we cannot have a definite value of E defined for the electron, which means 

for most practical purposes we cannot have a single wave function of electron in the 

devices. 



So, in devices we will have many electronic wave a bunch of wave functions describing 

the electron and these bunch of wave these various wave functions in that bunch of wave 

functions will have different energies. So, that is known as the wave packet. So, if one 

wave packet will have many waves corresponding to a given energy and given k value ok. 

So, that is why we actually need to deal with wave packets in our devices. 

And as soon as we deal with the notion of wave packets this is the equation that we obtain. 

We obtain a relationship between an applied force and a parameter m star and v g where v 

g is the group velocity of the wave packet. And this is a very important idea actually this 

relationship is extremely important because if you recall this relationship looks exactly 

like the Newton’s second law of motion. 

(Refer Slide Time: 10:49) 

 

So, this is the relationship between the applied force and the 
𝑑𝑣𝑔

𝑑𝑡
. So, in case of classical 

particle vg is the velocity of the particle in case of electron wave packet vg is the group 

velocity of the wave packet. And m* is defined in this way m* is by drawing parallels 

between this equation and Newton’s second law of motion m* is known as the effective 

mass of electron or we can also say this is the effective mass of the electron wave packet. 

So, now we can use an equation which is exactly like Newton’s second law of motion, but 

instead of using mass we need to use effective mass m*, which is given by this relationship 

and instead of using the particle velocity v we need to use vg which is the group velocity 

of electron wave packet ok. But this is an important result because as you can see the mass 



or the so called effective mass here it depends on the E k relationship. It is in fact; 𝑚∗ is 

inversely proportional to the curvature of the E k plot.  

So, 
𝑑2𝐸

𝑑𝑘2 is the curvature of E k plot. So, the effective mass of electronic wave packet is 

inversely proportional to the curvature of the E k diagram for an electron in solids. The 

advantage of having this kind of equation is that. Now, we can treat electron almost like a 

classical particle, but the mass will be taken as the effective mass which we need to draw 

from E k plot and the E k plot comes from the quantum mechanical solution. And the 

velocity we need to take as the group velocity of wave packet instead of the velocity of a 

particle ok. 

So, in a way the quantum mechanics which is encapsulated in the E k plots is captured by 

the effective mass of the electron ok. So, this equation F = 𝑚∗ 𝑑𝑣𝑔 

𝑑𝑡
 is very useful because 

now the quantum mechanical nature of electron the quantum mechanical nature and 

crystalline potential. This periodic potential due to crystal due to the solid this can be 

captured in the idea of the effective mass and the group velocity of electron, ok. 

So, as you might have already seen that in many you might have already come across some 

books on this idea already where they do not deal with quantum mechanics directly instead 

they define effective mass and the group velocity. And they start the analysis of electronic 

devices from this point by considering the electron as a classical particle.  

But by instead of using electronic mass they use effective mass and that is a valid actually 

that is a fairly good treatment of electrons. So, this is an extremely useful equation in 

electronic analysis because we cannot always solve Schrodinger equation for electrons in 

solids that is extremely difficult job. So, that is why having this idea of effective mass this 

sort of helps us analyze electronic behavior and devices to a great extent. 
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So, now we will see, what are the implications of this equation? The first implication is 

that now the electron can be considered as a quasi-classical particle and there is an 

interesting scenario which can arise which actually arises in many solids. So, for example, 

if a solid has E k relationship in which the E k plots are like this. 

So, we have the E k relationship in which there are two curves very close to each other, 

but these curves have different curvature so, to say. So, let us say this is curve a this is 

curve b and if we just focus on the bottom of this band, these are two bands essentially. 

So, if you focus on the bottom of these bands and if we try to calculate the effective mass 

of electrons at the bottom of these bands we will see we see from this equation that m star 

is inversely proportional to the curvature. 

And as you might have already guessed the curvature of this plot a is less as compared to 

the curvature of plot b. Plot b is having more curvature and that can be mathematically 

deduced as well if we have the exact expression for exact relationship between E and k for 

these two bands. The curvature or 
𝑑2𝐸

𝑑𝑘2
  for b would be more as compared to curvature of 

plot a. 

Which means the effective mass of electrons at the bottom of band a will be more than 

effective mass of electrons at the bottom of band b because the curvature of a is less 

effective mass would be more, curvature of b is more effective mass would be less as 



compared to a. So, electrons behave differently in these two different bands although their 

energies are quite similar. 

So, the energy of electron at the bottom of band a and the energy of electron at the bottom 

of band b is almost the same it is very close they are very close to each other, but they 

behave differently when a force is applied on the system. Electron a behaves as a heavy 

particle and electron b behave as a or electrons in b behave as light particles, ok. 

So, this is one interesting observation that we can deduce from the notion of effective mass 

and E k plots. Second thing is as you have seen in for example, in the E k relationship for 

solids you have seen that generally the bands take this kind of shape. So, the bands in a 

1D solid they take this kind of a shape. 

Similarly,  this shape would be there the exactly similar shape would be there in 2D and 

3D solids. So, the bands have this kind of shape. So, on the E k plot if we draw the E k 

plot the bands will be having this kind of shape. So, this is the E k relationship this is the 

bottom of the band this is the top of the band ok. 

So, at the bottom of the band and  at the top of the band the curvature might be the same 

actually. So, we will see that if we differentiate E with respect to k and plot it as a function 

of k so, if we plot from this plot if we plot 
𝑑𝐸

𝑑𝑘
 as a function of k the curvature at this point 

the curvature is basically the tangent at the bottom of the band it is the curvature is 0. As 

we start moving away from the bottom of the band it starts increasing the curvature takes 

maximum value at this point where it is a positive value.  

Then again, the curvature or the tangent starts taking less the value of the tangent starts 

reducing and finally, at the top of the band we again have 
𝑑𝐸

𝑑𝑘
 to be 0. So , for example, if 

this is the bottom of the band and this is the top of the band the curvature at this point 

bottom of the band is 0 it gradually increases to a maximum value and again it decreases 

to 0 at the top of the band. So, the curvature at bottom is 0 top is 0 and in between it 

gradually increases to a maximum value and again goes to 0 as we approach the top of the 

band. 

So, for this E k relationship this is the relationship between 
𝑑𝐸

𝑑𝑘
 and using the same logic if 

we plot 
𝑑2𝐸

𝑑𝑘2
   which means the relationship between the curvature of this plot as a function 



of k. So, 
𝑑2𝐸

𝑑𝑘2  is the curvature of this plot. So, if this is the bottom of the band this is the 

top of the band the curvature here as you can see curvature is tangent it is positive, the 

curvature the value of the curve or the value of the gradient of this plot starts reducing. 

At this point the value of the gradient tends to 0 after this point the gradient starts becoming 

negative and at this point it takes even more negative value. So, the gradient of this plot 

which will be the curvature of E k plot is first positive then it decreases goes to 0 and then 

it becomes negative and then goes to a more negative value. So, this 
𝑑2𝐸

𝑑𝑘2  plot will be first 

it is positive in the middle it goes to 0 and then it becomes a negative value something like 

this and as you have already guessed effective mass is inversely proportional to the 

curvature.  

So, at the bottom of the band curvature is positive at the top of the band the curvature is 

negative. This negative curvature implies that the effective mass will be negative at the 

top and positive curvature at the bottom of the band implies that effective mass will be 

positive at the bottom of the band. So, this notion of negative mass is entirely new for us 

actually in classical mechanics we cannot have negative mass for a particle. 

But in actual solids at the top of the band when we apply a force electrons behave as if 

they are having a negative mass and what does that mean? Electrons accelerate in opposite 

direction to a classical particle electrons will accelerate in electron will move in a direction 

opposite to the direction of a classical particle. Had the classical particle been in the same 

situation now the electron moves in opposite direction to that. 

So, this is an entirely quantum mechanical idea this comes from the E k plot which 

basically comes from the solution of the Schrodinger equation that electrons behave as if 

they are having a negative effective mass. And that  is a very important result and the 

notion of holes in solids, in semiconductors that essentially comes from this analysis ok. 

So, that is why this idea of effective mass is extremely useful because by defining effective 

mass we can do away with our quantum mechanical analysis we can avoid doing quantum 

mechanics for the device at least for the transport. And, but at the same time this idea 

results in such kind of implications where the electrons effective mass can be negative and 

it can behave a particle. 



It can behave like a particle which is opposite to a classical particle which moves opposite 

to a classical particle in same situation and that is why and that is where this idea of holes 

come from in solid state devices. So, this is broadly what the idea of effective mass is. 
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A last point in this notion is that we cannot always use the idea of effective mass or we 

cannot always use this equation for our analysis. There are certain constraints or certain 

conditions in which this equation or the idea of effective mass can be used to analyze 

electrons behavior in solids and one of these things is that effective mass should not be a 

function of E. 

So, for example, in a certain E k regime if effective mass is a function of E in that case this 

idea cannot be used properly because then it will give rise to many complications in 

calculation. So, if effective mass changes with E then this equation will not be very useful 

because it again we will need to go back to the E k plots and ultimately we will we would 

need to do the quantum mechanical calculations for the device. 

So, that is why if we observe a typical band like this at the bottom of the band and at the 

top of the band this band is quite like a parabolic band. So, this is as you might have already 

observed also in the E k plot for 1D solid this is the typical band structure that we see and 

just at the bottom of the band and just at the top of the band this band structure can be 

approximated by a parabola. So, at the bottom of the band and at the top of the band it can 

be approximated by a parabola. 



And what is the advantage of parabolic approximation so, if the bands can be approximated 

by a parabola in a certain regime. So, for example, at this k value if we can assume that or 

if we can approximate the bands to be parabola which means the relationship between E 

and k is square relationship and there would be a constant let us say p here in that case 
𝑑2𝐸

𝑑𝑘2
  

would be constant. 

So, in those regimes of E k plot where the plot can be approximated by a parabola there 

the effective mass is independent of energy the effective mass is constant. And in those 

regimes if electrons are having those energies and k values E and k values. In that case  

this equation can be directly used and the idea of effective mass is highly applicable and 

highly useful and simple as well. 

So, these are few things that we need to keep in mind these two things differential masses 

of electrons and even the negative mass of electron this comes from the idea of effective 

mass. And here we talked about the applicability of the idea of effective mass and  this 

equation of motion when a force is applied to a system. So, this basically concludes our 

discussion on the effective mass and electronics equation of motion in actual solids which 

we started with our discussion of quantum mechanics.  

So, we have discussed basic postulates of quantum mechanics ,we have discussed how 

electrons behave when electrons are confined in a certain regime of space. We then 

discussed how electrons behave in 1D solids and in that discussion the idea of bands  and 

band gaps that naturally comes up. We also analyzed blocks theorem which is an extremely 

important theorem in solid state physics.  

Then we saw how we can sort of deduce the idea of effective mass from that analysis, 

which is a very simple concept, but which also encapsulates the quantum mechanical 

nature and the crystalline potential of the solids. So,  we do not need to worry about the 

periodic potential of crystals and quantum mechanical nature of electrons if the effective 

mass of the electrons is properly defined in a device ok. So, all this discussion was done 

in order to understand the transport of electrons in devices and in order to understand the 

idea of density of states in the devices. 
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So, you might recall from one of our earlier classes if this is a two-terminal device in a two 

terminal device where we have a source a drain and a channel region. And generally, the 

source is grounded we apply a positive voltage on the drain and a flow of electrons start 

in the device, the electrons start moving from source to drain basically. 

So,  in these kind of devices , this is the outline of the device modern devices in this device 

in these devices the source and the drain regions are they are still bulk material like the 

material that used to be  have in other words that have macroscopic dimensions. And the 

channel is now mesoscopic or nanoscopic channel is now nanoscale. 

So, the electronic concentration in source and drain this can be easily defined by defining 

the Fermi function by the Fermi function in source and drains, but the electronic 

distribution in channel can be understood from the idea of density of states. Because in a 

small region electrons cannot occupy a continuous energy electrons cannot take 

continuous energy values, electrons will have discrete energy values and moreover in 

solids we have seen that there may be bands and band gaps in the solids. 

So, we need to see how many electrons can exist in the channel and how they are 

distributed in the channel and that is defined by the idea of density of states. So, this idea 

of density of states which basically captures the allowed electronic states in the channel 

and how many sort of how many states are there, what are bands and band gaps  in the 



channel this is basically captured by the density of states and this is what we will discuss 

in our next class. So, see you in the next class. 

Thank you. 


