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Hello, everyone. Hope all of you are doing well, in today’s class we will conclude our 

discussion on energy bands and we will try to understand the notion of effective mass. 

And, before going into that discussion let me quickly summarize what we discussed in the 

last class. 
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In the last discussion, we saw that the K- P model solution gives a constraint which 

naturally tells us that there are certain energy values in a solid which are disallowed for 

the electron to take. And, there is a certain energy range which the electron can take in a 

solid ok, and this is the graphical representation of the constraint the function that is there 

in the solution of the K-P model. 

And, this is the intuitive picture of allowed and disallowed energy values of electrons in a 

solid. This is the crystal momentum, these are the edges of the crystal, these are atomic 

cores here. So, that is why the potential energy of the electron is going to negative infinity 

at these points and these shaded regions these are the allowed energy values that the 

electron can take in the solid ok. 
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So, now, extending this discussion if we plot the e values the electronic energy values and 

the k values, this is what we get basically. This is the plot that we obtain. And as we 

discussed in the last class there are certain conditions that naturally come from the solution 

of the that naturally come from the Bloch’s theorem which we can see from its derivation. 

But, which we can also see from the statement of the Bloch’s theorem and one of those 

conditions says that all k values can be all sort of all k values lie in a range of 0 - 2𝜋 by 

period of the potential profile or from −
𝜋

𝐴
 𝑡𝑜 

𝜋

𝐴
, where capital A is the period of the 

potential profile. In our solution the period of the potential profile is capital A is (a+b). 

So, all possible k values will be between −
𝜋

𝑎+𝑏
 𝑡𝑜 

𝜋

𝑎+𝑏
 and corresponding to these k values 

we will have many energy values basically. The solution of the Schrodinger equation and 

Bloch’s theorem statement of the Bloch’s theorem also sort of conveyed that tthere will be 

an energy range  for which no k value will exist and, this we can see from here. 

So, these energy ranges this y-axis is the energy axis, x-axis is the k-axis these highlighted 

portions on the energy axis, these are the energy range these are the energy values which 

do not have valid wave function of electrons which means the electrons cannot take these 

energy values in the solids or there is no k-value corresponding to these e values and these 

are also known as the band gaps. Because this is a gap in the energy axis, this is the gap 

where no electron can exist on the energy axis, ok. 



Also, one of the conditions that we also studied that if we shift the k value by 2𝜋/period 

of the potential profile, the wave function remains the same basically the wave function 

does not change. It corresponds to essentially the same wave function, ok. So, this  will 

sort of tell us by making use of this condition we will see that there is an alternative way 

of representing or alternative way of visualizing the E-k relationship for a 1D solid and 

which is essentially can be given by this. 

So, what we can do is we can now shift this plot by 2𝜋/(𝑎 + 𝑏) in either direction left or 

right. So, that is what we do and if we shift this to the left by 
2𝜋

𝐴
 and this to the right by 

2𝜋

𝐴
 this to the right this to the left by 

2𝜋

𝐴
 and this to the left, this to the right by 

4𝜋

𝐴
 here it is 

4𝜋

𝑎+𝑏
 this is what we obtain. 

Here y-axis is the energy axis and x-axis is the k-axis and on this E-k axis system, this is 

the allowed values of energies as a function of k. And, as is also clear from this plot, certain 

energy values for example, this range of energy values these are the disallowed energy 

values or the band gaps of the solid, ok. 

So, this is so to say this is the first band, this is the second band, this is the first band gap 

the band gap between band number 1 and band number 2, this is third band, this is fourth 

band  which we can easily visualize here ok. Along with this there is a plot of E-k 

relationship for a free particle as well. 

If you recall from one of our previous discussions for a free particle E is related to k as 

ℏ2𝑘2

2𝑚
. So, it is a parabolic relationship which we can also see here ok. 
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So, we have the E-k relationship for a free particle free electron. So, to say electron which 

is free from all the interactions and we have E-k relationship for an electron in a 1D solid. 

As you can see for higher energy values for when the energies are quite high the E-k 

relationship for the electron in the solid and the E-k relationship for the free electron they 

approach to each other, basically they converge. 

So, what it means is, that if an electron has extremely high energy then it is quite like a 

free particle free electron ok, but the E-k relationship for electrons in solid in a 1D solid 

and a free electron is quite different for low energy values for the low energy electrons 

when the electronic energy is not so high. 

What it means is low energy electron means that the electron is confined in the solid. 

Electron is tightly confined or not I would not say tightly because that word has been used 

in a different context. Electron does not have too much of energy to sort of move away 

from atomic course, but it is still moving in the solid. It is not like a free electron, but it is 

moving inside the solid. 

And, for low energy values, the E-k relationship between E-k relationship for a 1D solid 

and for free electrons are very different as we can see here. So, this is one observation and 

with this we also comes the notion of the Brillouin zone. So, Brillouin is not the precise 

pronunciation of this word. This is a French name, but still for the sake of better sort of 

understanding I will use the Brillouin pronunciation. 



Brillouin zone is a set of k values corresponding to an energy band. So, the set of k values 

which correspond to first energy band they are known as Brillouin zone 1, similarly 

corresponding to energy band 2 they are Brillouin zone 2, similarly corresponding to third 

band they are Brillouin zone 3. This is how this is defined. 

And, this is very important concept in solid state physics and generally whenever we 

analyze a new material whose property we do not know beforehand, we first try to find 

out the relationship between E and k for that material. So,  that tells us a lot about how 

electrons will behave in that new material. So, this notion of E-k relationship notion of 

Brillouin zone it is quite important for understanding the nature of electrons in solids. 

There is a one more point here for an electron in a solid although we did not do it 

mathematically a precise analytical solution we did not do here most of after a stage we 

are using a graphical solution for the sake of better understanding, but at the boundaries of 

Brillouin zones 
𝜕𝐸

𝜕𝑘
 is 0. What it means is that at these points, these boundary points the 

gradient of  E-k plot is 0 ok, also at this point. 

So, this notion, this idea will be useful for us in the next discussion which is the discussion 

on effectiveness. So, this is essentially the broad idea of energy bands in a solid how the 

energy bands arise in a solid and that is a consequence of periodic potential in solids and 

using K-P model we can see that we can visualize that mathematically as well as 

graphically ok. 
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So, but we at the outset, in the beginning our aim was to understand how the electrons will 

behave and what I mean by behave is how the electrons will be transported in a device or 

the transport behavior of electrons in a device. 

And, we started with a simple two terminal device like this where we have two contacts 

source and drain contacts in between we have a channel region. And, we saw that the 

channel region is becoming smaller and smaller in modern devices. Generally, we apply a 

positive voltage on the drain terminal which makes electrons flow from source to drain or 

a current from drain to source. 

So,in this we need to know how electrons are travelling, we need to know about the motion 

of the electrons. So far, our discussion has been primarily focused on what is the allowed 

energy value that the electron can take in a solid or in a particular environment and what 

are the k values that electrons can take in a solid or in a particle in a box situation or as a 

free particle. 

So, our discussion so far has been focused on the allowed energy values or the k values. 

So, in that sense we have solved the Schrodinger equation, where the energy and 

momentum are precisely defined. So, energy of the electron is precisely defined and the 

momentum of the electron is also precisely defined, but that is not sufficient for 

understanding the motion of electrons in actual solid. 

So, we cannot understand the motion of electrons in solid using this and the reason for that 

is that quantum mechanics has another principle which is a consequence of the 

measurement of quantum mechanics that this principle is known as Heisenberg’s 

uncertainty principle. 

And what it says is that there is a set of complementary variables there are many 

complementary variables in quantum mechanics which cannot be measured 

simultaneously and these variables are known as complementary variables or conjugate 

variables. 

So, energy and time is one such pair if we know about the energy of an electron precisely 

we cannot say about it is sort of motion about it is dynamics. If we know the position or if 

we know the momentum of the electron precisely we cannot tell about the position exact 



location of the electron and this is known as the Heisenberg’s uncertainty principle and 

this is the mathematical inequality that captures the Heisenberg’s uncertainty principle. 

What it says is that the uncertainty in energy and uncertainty in time to which we can 

precisely measure an electron is always greater than equal to h bar and similarly, the 

product of uncertainty of momentum and product momentum and position is greater than 

equal to h bar. 

So, what it means is that if we precisely try to measure the momentum, the uncertainty in 

position will be high and similarly, if we try to precisely find out at a certain time where 

the electron is, how it is behaving, what is its wave function, its energy will not be well 

defined. 

But, in our discussion up to this point, we have sort of precisely defined the energy and 

precisely defined the momentum of the electron which is momentum of the electron is 

related to the this k parameter, the wave number parameter basically. So, based on the 

discussion that we have done so far, we cannot sort of visualize we cannot understand the 

motion of electrons in actual solids. 

Although, building on this, this is the building block, this the discussions that we have 

done so far is the building block of our understanding of electrons and in this context this 

notion of effective mass basically arises. So, we will see that what it is  for a single wave 

function as we have seen the energy and momentum is precisely defined. 

But, if we have an electron for example, if we in this device an electron is starting from 

the source going through channel up to drain, we have an idea or we have basically 

determined the path of the electron we have electron which is confined in certain 

dimension of the space which is confined between source and drain. So, if the electron is 

in channel, it is confined in a certain length. 

So, what it means is that now there is some clarity about the position of the electron. So, 

in that sense the momentum of the electron cannot be precisely defined. There will be 

uncertainty in the momentum, uncertainty in the k values as well. Similarly, if we want to 

understand what is the position of electron at a certain time at a precisely at a certain instant 

its energy cannot be precisely defined. 



So, that is why, generally in all practical devices in all sort of for all practical purposes 

where the electron is we know that electron exist in this regime of space in this for 

example, in channel in this region of space in that case a single wave function cannot 

describe the electron because a single wave function has precisely defined energy and k 

values. And, now the energy in k values energy in momentum values are not precisely 

defined because some clarity is there about the position and the time, ok. 

So, that is why in all practical devices, in most of the practical devices the electrons are 

characterized by a bunch of wave functions. Electrons will have wave functions 

corresponding to different energy values so that the energy uncertainty will be there and 

this bunch of wave functions is known as the wave packet. This term appears in classical 

wave mechanics as well. 

So, in practical devices when we have some clarity about the position of the electron, 

generally the electron will be characterized by electrons will be defined by a collection of 

wave functions or by a wave packet. So, a wave packet is essentially collection of wave 

functions corresponding to different energy or k values. 

So, I hope this point is clear that in an actual device where we have clarity about the 

position and timing of the electron that at this time the electron is moving from this to that. 

Although, we might not know where that is precisely located the electron is precisely 

located, but in that case energy and momentum will not be precisely defined. So, we cannot 

define electron by a single wave function and that is why the electron will be defined by a 

collection of wave function or wave packets. 

Now, we have wave packets of different energies, different momentums and that will make 

sort of a bunch of waves and that bunch of waves or wave packet will move with certain 

velocity that is known as the velocity of the wave packet. And, from the classical 

mechanics dispersion relationship, the velocity of the wave packet is given by the 

dispersion relation vg, the group velocity of the wave packet is given by 
𝑑𝜔

𝑑𝑘
 where 𝜔 is the 

frequency central frequency and k is the central wave number of the wave packet. 

So, the wave packet will consist of waves which will have frequencies centered around 𝜔 

for our case energy equals ℏ𝜔 which means vg is 
1𝑑𝐸

ℏ𝑑𝑘
. So, please keep in mind here we are 

trying to understand the motion of electron, how the electron actually moves in a solid or 



in a device when they are confined or when they are in a actual device like they are moving 

in a channel. And, in that case we borrow some ideas from classical wave mechanics like 

the idea of a wave packet and its group velocity the notion of the group velocity. 

And, now, we will try to see if we apply a voltage on the device or electric field on the 

device which will exert a force on the electron electric force in the electron how this wave 

packet will move. So, that is what we will try to see here. And, so, if we apply a force F 

by virtue of a applied voltage using a battery the amount of work done by this force will 

be F times dx where dx is the distance or the displacement of the electron. 

So, this will also be the change in energy, amount of work done will be equal to the change 

in energy of the electron. So, the change in energy of electron will be dE equals Fdx and 

dx can be written as vgdt. So, dx by dt will be the velocity which is the velocity of electron 

wave packet in the group velocity times dt. So, this dx by dt will be vg. And, in this case 

this expression will be dE equals F times vg times dt. So, this implies that F will be equal 

to 
1

𝑉𝑔

𝑑𝐸

𝑑𝑡
, ok. 

So, this is the relationship that we obtained and this can further be expanded as dE by dt 

can be written as dE by dk times dk by dt by multiplying and dividing by dk, ok. So, now, 

we use this relationship between the group velocity, velocity of the wave packet and the 

energy as we derived earlier. 

So, we have this relationship between the applied force and the vg or it can also be written 

as 
1

𝑉𝑔

𝑑𝐸

𝑑𝑘

𝑑𝑘

𝑑𝑡
. 
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So, by using this expression 
1𝑑𝐸

ℏ𝑑𝑘
 and writing 

𝑑𝐸

𝑑𝑘
 from this expression from. So, from this 

expression 
𝑑𝐸

𝑑𝑘
 will be 𝐹𝑣𝑔

𝑑𝑘

𝑑𝑡
  ok. So, this is the expression for the relationship between𝑣𝑔 

and 
𝑑𝐸

𝑑𝑘
 and so if we differentiate this expression with respect to t, then we obtain 

𝑑𝑣𝑔

𝑑𝑡
=

 
1

ℏ

𝑑

𝑑𝑡
(

𝑑𝐸

𝑑𝑘
). 
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And, now, this 
𝑑𝐸

𝑑𝑘
 can be written from this equation ,from using this equation we can write 

𝑑𝐸

𝑑𝑘
. And, that will give us basically 

𝑑𝑣𝑔

𝑑𝑡
=  

1

ℏ

𝑑

𝑑𝑡
(

𝑑𝐸

𝑑𝑘
) can be written as Fvg

𝑑𝑡

𝑑𝑘
 and 

𝑑

𝑑𝑡
 goes 

away. 
1

ℏ

𝑑

𝑑𝑘
(𝐹𝑣𝑔)  by writing 𝑣𝑔 as 

1

ℏ

𝑑𝐸

𝑑𝑘
𝐹. 

So, by using this expression we can deduce the relationship between the this 
𝑑𝑣𝑔

𝑑𝑡
 is like 

acceleration in classical mechanics, the relationship between the force and the 

acceleration. So, this ultimately turns out to be 
1

ℏ2 (
𝑑2𝐸

𝑑𝑘2)𝐹 ok. 

So, if we equate this with so, in this case from here we can write force is equal to 
1

1

ℏ2(
𝑑2𝐸

𝑑𝑘2)

𝑑𝑣𝑔

𝑑𝑡
. 

And, this first term can now be written as like a modified mass because if we write, it like 

a modified mass it will be like our classical motion equation classical equation of motion, 

Newtonian equation classical mechanics equation of motion. 

So, in this case F, the applied force, is basically the acceleration of the electronic wave 

packet times a parameter which we write as m* we do not call it the mass of the electron. 

It is not the mass of the electron, it is a modified mass and this is known as the effective 

mass of the electron and it is defined as the 
1

1

ℏ2(
𝑑2𝐸

𝑑𝑘2)
 by this parameter basically. 

And, this is an important result because now, in a way the quantum mechanical treatment 

of the electron in solid has been encapsulated in the idea of the effective mass here. And, 

by encapsulating the quantum mechanics in the notion of effective mass we can now use 

the classical equation of motion to find out the effect of an applied voltage or applied force 

on the electron, ok. 

So, that way it is quite an elegant concept because it simplifies the understanding and the 

calculations. So, we just need to sort of instead of using the mass of electron we need to 

use effective mass of electrons and at many places we can still use our classical concepts, 

if we properly define the group velocity or the electronic wave packet, ok. 

So, I will recommend you to read more about the notion of effective mass from especially 

from the text by Robert Pierret, titled as Advanced Semiconductor Fundamentals. This 

book discusses the K-P model, the E-k relationship for solids and this idea of effective 



mass in a very concise and very simple way, easy to understand way. And, please go 

through this and I will see you in the next class. 

Thank you for your attention. 


