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Hello everyone, as you might recall in our last class we started our discussion on the nature 

of electrons or the behaviour of electrons in solids. And we started discussing 1D solids 

and moreover 1D perfect solids in which there is no defect no lattice vibration.  

And in that sequence of discussion we saw that we cannot solve Schrodinger equation 

precisely for the potential profile in solids and but there is an approximation which helps 

us a lot in order to solve the Schrodinger equation analytically and that approximation is 

known as the KP Model that we will discuss in today’s class. 
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So, just to give a quick review a 1D solid looks a perfect 1D solid looks something like 

this it has a long sequence of atomic cores; atomic cores are positively charged, fixed and 

heavy particle so to say and in presence of these particles the potential profile the potential 

energy profile of the electrons will look like this. So, this is like an like a long sequence 

an infinite sequence of potential energy going to minus infinity and then going to an upper 

value and then again going to negative infinity. 



But this is not an exactly solvable potential profile in Schrodinger equation. So, that is why 

the chronic penny model approximates this potential profile by a very similar looking 

profile, but we avoid the negative infinities in the potential profile and instead we have the 

potential going from a lower value which is taken to be 0 here to an upper value which is 

taken to be U naught periodically to the extent of the entire solid ok. So, this is what we 

discussed in last class. 

This is what this is what we will solve the Schrodinger equation for, but even for this 

potential profile we cannot sort of solve the potential the Schrodinger equation for the 

entire extent of the solid because it is a it is like quasi infinite solid it is a very long solid 

in which if we had to solve the Schrodinger equation for the entire solid we would need to 

solve the Schrodinger equation for all the atomic cores corresponding to each atomic core. 

But here as we saw in the last class a mathematical theorem called Bloch’s theorem helps 

us and what Bloch’s theorem says is that if the potential is periodic which means U(x+a) 

is equal to U(x) where U(x) is basically the potential profile. Then the wave function of 

the particle is given as Ψ(𝑥 + 𝐴) = Ψ(𝑥)𝑒𝑖𝑘𝐴 where A is the period of the potential profile 

potential energy ok. 

And we also saw that an equivalence statement of this theorem is that this Ψ(𝑥 + 𝐴) which 

means the wave function of the particle in this potential profile can be written as an 

equivalent statement is Ψ(𝑥) can be written as u(𝑥)𝑒𝑖𝑘𝐴 where u(𝑥) is a periodic function. 

Which means u(𝑥 + 𝐴) equals u(x) basically. So, we also saw that these two statements 

of Bloch’s theorem are equivalent. 

But what is the physical implication of Bloch’s theorem? Physically it has made our job 

very simple because now we need to solve the Schrodinger equation in just one period of 

the potential profile and by using the Bloch’s theorem either this statement or this 

statement we can find out the wave function of the electron or wave function of any particle 

anywhere in the solid ok. So, this is the power of the Bloch’s theorem. This is highly useful 

theorem specially in a you know in solids or specially for potential profiles which repeat 

itself after certain distance ok. 
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So, today we will see how the electronic wave function would look like in a 1D solid and 

for that we would first need to define a single period of the potential profile which means 

we would need to see how the potential energy looks like in a single period of itself because 

the potential profile is periodic and it repeats itself after certain time. 

So, first we need to identify a single period or single length in which potential profile is 

not repeating itself and then we would need to solve the Schrodinger equation for this 

period ok. After that by invoking Bloch’s theorem, By using Bloch’s theorem we would 

be able to find out the electronic wave function everywhere the wave function can be find 

out anywhere in the solid ok. So, in this particular potential profile if we closely look at 

this we see that in this particular range of x values from here to here. 

From this point to this point, this boundary to this boundary there is a single one iteration 

of the potential energy and after this the potential profile repeats itself with the same 

frequency basically ok. So, just for the sake of convenience we define this point to be the 

x=0 point we define this point to be x = a and this point to be x = -b. So, in this case the 

potential is having a certain pattern from x equal to -b to x equal to a ok and there is a jump 

in potential at x equal to 0 which is visible in this figure. 

And then this particular pattern from x = -b to x = a it repeats itself throughout the entire 

solid. So, in this case the period of the period of the potential profile would be just a plus 

b. So, the potential repeats itself after (a+b) distance in space in this particular 1D solid. 



So, with this background we are now ready to sort of solve the Schrodinger equation. So, 

the potential in this single unit cell for potential profile looks like this minus b to a and 

then it repeats itself. 

And as we have seen a repeating potential or a periodic potential for a periodic potential 

we just need to solve the wave function for a single period and later on we can extend this 

wave function to the entire solid by using the Bloch’s theorem. So, in this case in the in a 

single period of potential as visible from this figure there are two regimes of potential from 

x =0 to x =a the potential energy of the electron is 0 from x equal to 0 to a. 

And the potential energy of the electron between -b and 0 is Uo . So, U(x) is 0 for x greater 

than 0 less than a between 0 and a and U(x) is a constant Uo between minus b and 0 ok and 

since the potential energy is different in these two regimes we would need to solve 

Schrodinger equation differently in these two different regimes ok. So, that is what we will 

do now we will solve the Schrodinger equation in these two regimes ok. 
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So, let us say this is regime a, this is regime b and as is clear the period of the potential 

profile is a plus b. I would take a pause here and sort of bring it to your notice that here 

this k parameter it comes from the Bloch’s theorem. In our earlier derivations this k 

parameter was coming from the derivation of the Schrodinger equation, but here it is 

coming differently. 



And if you go through the derivation of Bloch’s theorem in any textbook you will see this 

k is still like the wave number it still corresponds to the momentum of the electrons in the 

solids, but it is slightly different from all previous cases. Physically it is still the momentum 

parameter and in this case it is known as the crystal momentum we will see that later on. 

So, first we will solve the Schrodinger equation and in regime a the potential energy is 0 

and regime b the potential energy is Uo. regime a and regime b ok. 

So, in regime a the Schrodinger equation would look like 
−𝜕2

𝜕𝑥2 , let us say the wave function 

here is Ψ𝑎(𝑥) plus U(x) Ψ𝑎(𝑥) equals E times Ψ𝑎(𝑥) ok, but in this case in regime a U(x) 

is 0. So, it essentially is and there is 
−ℏ2

2𝑚
 as well here before 

𝜕2

𝜕𝑥2. So, it would look like 

𝜕2

𝜕𝑥2
Ψ𝑎(𝑥) + 

2𝑚𝐸

ℏ2
 Ψ𝑎(𝑥) = 0. So, this is quite like the Schrodinger equation for a free 

particle. 

So, this is the Schrodinger equation in regime a of the potential profile in regime b the 

potential energy is Uo. So, the Schrodinger equation now would look like minus 
−ℏ2

2𝑚
Ψ𝑏(𝑥) 

+ UoΨ𝑏(𝑥) the wave function in this regime is basically Ψ𝑏(𝑥) represented as Ψ𝑏(𝑥)equals 

energy of the electrons Ψ𝑏(𝑥). After rearranging these terms we can see that this can be 

written as and there is a double derivative here. 

This can be written as 
𝜕2

𝜕𝑥2 Ψ𝑏(𝑥) + 
2𝑚(𝐸−Uo)

ℏ2  Ψ𝑏(𝑥) = 0. So, this is the Schrodinger 

equation in regime b. So, let us sort of put them together at one place and as you might 

have already noticed the Schrodinger equation looks quite like our earlier Schrodinger 

equations that we solved for free particle and particle in a box cases. 
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So, putting them together Schrodinger equation for regime b would be 
𝜕2

𝜕𝑥2 Ψ𝑏(𝑥) + 

2𝑚(𝐸−Uo)

ℏ2  Ψ𝑏(𝑥) = 0 ok. So, this is a regime a and this is regime b ok. So, this parameter 

can be defined as sort of alpha parameter 𝛼2, let us define it to be alpha square and let us 

define this to be 𝛽2 as is clear here.  

So, once we define once we sort of encapsulate this energy term in alpha and beta then we 

can easily write down the solution of these Schrodinger equations in terms of sines and 

cosines as we did earlier in case of free particle and particle in a box. So, the solutions of 

the Schrodinger equation will look like this in regime a Ψ𝑎(𝑥) would be given as Asin(𝛼x) 

+ Bcos(𝛼x) and in regime b Ψ𝑏(𝑥) can be written as Csin(𝛽x) + Dcos(𝛽x).  

So, these two are the solutions of the Schrodinger equation in regime a and regime b 

respectively. As you can see there are four unknowns here and in order to solve in order 

to precisely find out the values of these unknowns we need to use boundary conditions as 

we did in case of particle in a box case ok. 

So, please remember these solutions specially the free particle solution and particle in a 

box case because these two solutions are easy to remember first of all and second these 

two are heavily used prototypes solutions in almost all quantum mechanics specially in 

solid state physics ok. So, please keep those things in mind and now we need the boundary 

conditions for this particular system. 
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And so there is one boundary here at x equal to 0 ok. So, the boundary condition at x equal 

to 0 basically means that from the postulates of quantum mechanics you might have easily 

guessed that the first boundary condition would be that the wave function should be 

continuous at x equal to 0. What it means is that Ψ𝑎 which is basically the wave function 

in regime a at x equal to 0 should be equal to Ψ𝑏 which is the wave function in regime b 

should be equal to Ψ𝑏(𝑥) at x equal to 0. 

So, the first boundary condition would be that Ψ𝑎(0) should be equal to Ψ𝑏(0) that comes 

from the continuity of the wave function as we discussed in the postulates of the quantum 

mechanics ok. So, this is the first boundary condition that we would use .The second 

boundary condition is that the derivative of the wave function should be wave function 

and should be continuous. Which means that derivative of Ψ𝑎(𝑥) at x =0 should be equal 

to derivative of Ψ𝑏(𝑥) at x =0. 

So, these two boundary conditions we obtain from the basic postulates of quantum 

mechanics ok, but there are 4 variables and we need at least 4 conditions  to solve for all 

4 unknowns here these A, B, C and D. So, the other two boundary conditions will come 

from the Bloch’s theorem itself and according to this theorem the potential as we can see 

in this single unit of potential profile the potential profile repeats itself after the interval of 

a plus b. 



So, it means that the potential here and here are again same potential at x = -b is again 

same as potential at x =a. So, what it means is that Ψ𝑎(𝑥 = 𝑎) is Ψ𝑏(𝑥 = −𝑏)𝑒𝑖𝑘(𝑎+𝑏). So, 

this comes from the Bloch’s theorem from this statement of the Bloch’s theorem and 

similarly a similar statement of Bloch’s theorem holds true for the derivative of the wave 

function. And from there we can see that 
𝑑Ψ𝑎

𝑑𝑥
(𝑥 = 𝑎) =  

𝑑Ψ𝑏

𝑑𝑥
(𝑥 = −𝑏)𝑒𝑖𝑘(𝑎+𝑏).  ok. 

So, this Ψ(x=-b) is basically Ψ𝑏 function and Ψ(x=a)  is Ψ𝑎 function similarly here and 

here. So, now, these are the 4 boundary conditions that we will use in order to find out 

these 4 unknowns A, B, C and D in the solution of the wave function ok. 
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So, once  we can find out these four sort of ,once we solve these four equations if we solve 

for. So, for example, if we solve the first equation first boundary condition. Now, things 

are getting the maths is getting slightly involved as we are progressing in real systems and 

that is the characteristics of quantum mechanics for most of the practical systems it is 

mathematically difficult.  

So, in this if we use this boundary condition Ψ𝑎(𝑥 = 0). So, if we put x=0 in this case the 

first term would be 0 and the second term would be b times 1. 
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So, this boundary condition says that Ψ𝑎(0) is B basically and Ψ𝑏(0) is similarly D. So, 

this says that B should be equal to D and the second boundary condition says that if we 

take the derivative of the wave function Ψ(x), Ψ𝑎(𝑥) it would be 𝐴𝛼 cos(𝛼𝑥) +

𝐵𝛼(− sin(𝛼𝑥)) and at x =0 it would be A times 𝛼 and similarly it would be C times 𝛽.  

So, these are two conditions or two relations that we obtain from the boundary conditions. 

So, from the boundary condition from these two boundary conditions we can directly see 

that B should be equal to D and A𝛼 is equal to C𝛽. This is regime a this is regime b the 

wave function in regime A is 𝐴 sin(𝛼𝑥) + 𝐵 cos(𝛼𝑥) and wave function in regime b is 

𝐶 sin(𝛽𝑥) + 𝐷 cos(𝛽𝑥) ok.  

So, we have already obtained two constraints which will give us the values of these 

constants and the other two constraints can be obtained from the boundary conditions 

arising from the Bloch’s theorem and if we use Ψ𝑎 equals a Ψ𝑎 at x=a it will be 

𝐴 sin(𝛼𝑎) + 𝐵 cos(𝛼𝑎) that should be equal to exponential. 

So, this 𝐴 sin(𝛼𝑎) + 𝐵 cos(𝛼𝑎) should be equal to 𝑒𝑖𝑘(𝑎+𝑏)Ψ𝑏 at x=-b which is Ψ𝑏 at x =-

b would be 𝐶 sin(−𝛽𝑏) + 𝐷 cos(𝛽𝑏). So, this is the third this is constraint number 1, this 

is constraint number 2, this is constraint number 3 and the fourth constraint will come from 

the derivative of these wave functions which is essentially. 



So, if we take the derivative of Ψ𝑎 with respect to x it will be 𝐴𝛼 cos(𝛼𝑥) − 𝐵𝛼 sin(𝛼𝑥) 

and its value at a would be 𝐴𝛼 cos(𝛼𝑎) − 𝐵𝛼 sin(𝛼𝑎) should be equal to e𝑒𝑖𝑘(𝑎+𝑏) 

derivative of Ψ𝑏 at x =-b. So, derivative of Ψ𝑏 would be 𝐶𝛽 cos(𝛽𝑥) − 𝐷𝛽 sin(𝛽𝑥)  and 

at x=-b it would be 𝐶𝛽 cos(𝛽𝑏) − 𝐷𝛽 sin(𝛽𝑏). 

So, this is constraint number 4. So, we have 4 constraints 4 unknowns are there A, B, C 

and D in principle by using certain mathematical techniques we can solve these constraints 

and we can find out the values of A, B, C and D. So, we can easily sort of replace B by D 

in constraint number 3 and 4 and we can replace A by C times beta by alpha and by putting 

these values of B and A in equation 3 and 4 we will be left with only two constraints and 

these two constraints can be solved or will have a non trivial solution if the determinant  

of the coefficients of the unknowns in these constraints  is 0.  

So, this is a standard mathematical technique from matrix algebra that these two 

constraints will have non trivial solution when the determinant made from the coefficients 

of the unknowns will be of value 0 . So, finally, by putting the determinant of the 

coefficient to be equal to 0 this is what we finally, obtain. 

1−2𝜉

2√𝜉(|1−𝜉|)
sin (𝛼0𝑎√𝜉)sinh(𝛼0𝑏√|1 − 𝜉|)+cos (𝛼0𝑎√𝜉)cosh(𝛼0𝑏√|1 − 𝜉|)=cos(k(a+b)) 
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This is the final relationship that gives the valid solutions of the Schrodinger equation. On 

the left hand side we have this parameter which is essentially E/Uo on the right hand side 



the left hand side is a function of E as you can see and the right hand side is a function of 

k just, apart from these two things all other parameters are system parameters or constants. 

So, there so in a way this equation  basically tells us about the relationship between the 

energy of electrons that can exist in a solid and the k values that these electrons can take 

in the solids or in other words this is the E-k relationship for solids this constraint give us 

the E-k relationship between solids ok. Please remember I would again remind you that 

this k comes from the solution of the Bloch’s theorem from the statement of the Bloch’s 

theorem and this is known as the crystal momentum or the momentum of electrons in a 

certain environment. 

And it is different from the k that we generally use in the solution, but physically 

mathematically it is coming from a different source, but even in Bloch’s theorem it is 

coming from the solution of the Schrodinger equation. So, do not worry about that 

physically it corresponds to the to a parameter called crystal momentum ok and again a 

mathematical solution is not impossible it can be done, but a graphical solution would be 

easier to understand which is our aim in this particular course ok. 

So, we will see how the solution of this equation looks like and that will give us the valid 

results in this particular solid. So, if we plot the left hand side and the right hand side of 

this equation on the same axis. we will get the solution and that is what we will see in the 

next class ok. 

Thank you for your attention. see you in the next class. 


