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Hello everyone. Today, we will discuss about Thermoelectric Effects and as we have 

seen in our previous class that even in all the electronic circuits heat is generated. So, it is 

quite important to understand the relationship between heat and charge currents 

basically.  

So, we will discuss about two important thermoelectric effects in today’s class basically 

Seebeck effect and Peltier effect. Before going into this discussion, let us quickly review 

what we have seen so far. 
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So, so far we have seen quantum confinement in MOSFETs and we also discussed about 

the strain engineering in silicon specially in nanostructures in ETSOI MOSFETs. And, 

what we saw was that if we grow the channel silicon on a silicon germanium substrate, in 

that case we can change the band structure of silicon in such a way that first effective 

mass is modified such that the mobility is increased and second the intervalley scattering 

in silicon is reduced. 



So, by using strain in proper direction, we can enhance the mobility or injection velocity 

of electrons in the silicon channels. And that is one of the, I would say one of the very 

smart ways of improving transistor performance without changing the dimension of the 

transistor. 
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So, also we also started discussing thermoelectric effects and we started with this 

familiar expression. And, this is the expression for current in a conductor, in a conductor 

like this is a semi-conductor material which has contact 1 on left side, contact 2 on the 

right side. The current through this bulk semi-conductor is given by this expression and 

this we have already seen, this expression essentially comes from the this comes from the 

Landauer’s general model of transport. 

So, what we understand here is that (f1 - f2) is the is an important quantity, it is actually 

the forcing function for the current. So, if (f1 - f2) is 0 in that case the current will also be 

0 and there is no electrical conduction in the circuit, but if (f1 - f2) is non-zero in that case 

there is a non-zero current in the circuit.  

And, what we also saw was that (f1 - f2) can become non-zero by number 1 voltage 

difference, if there is a voltage difference between terminal 1 and terminal 2, in that case 

(f1 - f2) will be non-zero. So, this is properly understandable from this point, in this case 

V2 the voltage on terminal 2 is greater than V1 which is the voltage on terminal 1. And, 

we are assuming in this case that the temperature on both terminals is equal.  



So, in this case the if V2 is greater than V1, in that case the Fermi level of terminal 

contact 2 will go down and the Fermi function, Fermi Dirac distribution function on the 

contact 2 will be shifted to the left side this way. So, as you can see in a small energy 

range around the Fermi levels (f1 - f2) is non-zero, (f1 - f2) is positive in fact. 

And, that way the current is positive which means electrons are flowing from contact 1 

to contact 2 and the current is flowing from contact 2 to contact 1. So, the positive 

current in this particular discussion was assumed to be in -x direction, because this is the 

x direction and we are assuming positive current from contact 2 to contact 1 which is 

minus x direction ok.  

So, this we have discussed in great detail now that because of the voltage difference 

there can be a current in the in a conductor. Also due to temperature difference also (f1 - 

f2) can become non-zero. And, this is the scenario in this case V1 is equal to V2 which 

means that the voltage on both the contacts is equal, but the contact 2 is at higher 

temperature now TL2 which means the lattice temperature of contact 2 is more than the 

lattice temperature of contact 1.  

And, in that case what happens is that this at higher temperature as all of us know the 

Fermi function modifies and at higher temperature the Fermi function sort of broadens it, 

basically becomes non-zero for a wide range of energy values. So, f2 becomes like this 

because T2 is now greater than T1 and as you can see (f1 - f2) is non-zero is positive in 

this regime and (f1 - f2) is sorry (f1 - f2) is negative above Fermi level and positive below 

Fermi level ok.  

And, the Fermi level does not shift because of the temperature difference ok. So, what it 

means is that the current specially this kind of charge current can be induced by two 

factors: one is the voltage difference and second is the temperature difference between 

the two contacts. 

So, far we have only considered the voltage difference, we have not discussed about the 

temperature difference in the conductor. So, that is what is the subject matter of 

thermoelectric devices or thermoelectric effects. So, if there is a temperature difference 

which means ΔTL which is TL2 - TL1, the difference of temperature of contact 2 and 

contact 1, if this is greater than 0 in that case in near equilibrium situation near 

equilibrium.  



Means, that this ΔTL is not very large, it is still very small difference. But, the contact 2 

is now hotter than contact 1, but it is not too hot. The temperatures are almost equal, 

there is a small difference in the temperature. In that case (f1 - f2) can be given by -

(δf/δT) times ΔT, where ΔT is the temperature difference between the two contacts TL2 - 

TL1.  

So, ΔT is actually ΔTL which is this value and so, what we can say here is that for n-type 

conduct. So, if this semi-conductor is an n-type material which means that the current 

conduction happens in the conduction band. So, in n-type material this is the conduction 

band, this is the valence band edges and the Fermi level is close to the conduction band. 

And, most of the conduction happens in the conduction band. So, the conduction 

happens above Fermi level in case of n-type material and if there is a temperature 

gradient or if there is a temperature difference between the two contacts in an n-type 

material.  

So, we need to focus here because in this regime current conduction happens and in this 

regime (f1 - f2) is negative. So, that there will be a negative current which means negative 

current means electrons will flow from contact 2 to contact 1. 

And, current will flow from contact 1 to contact 2 or there will be a current in positive x 

direction ok. Similarly, in a p-type material, the Fermi level is close to the valence band 

maxima. 
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And current conduction takes place at the bottom of at the top of the valence band here 

and the current conducts due to holes. In this case, we need to and in this case if there is 

a temperature difference, in this case we need to see (f1 - f2) below Fermi level. And, as 

you can see (f1 - f2) is positive which means there is a current in minus x direction and 

minus x direction. 

So, depending on the I would say the doping of the semi-conductor, the current direction 

will be determined when a temperature difference is applied on across the semi-

conductor. And, this is very important because let us say if we have a an unknown piece 

of semi-conductor and in that case we do not know whether it is p-type or n-type in that 

case what we just need to do is, we need to heat on the on one side. 
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Let us say we will heat the semi-conductor on this on contact 2 and if the current is in 

minus x direction, in that case the semi-conductor is p-type and if the current is in plus x 

direction, the semi-conductor is n-type. So, we can find out about the polarity of the or 

about the doping the nature of the doping in the semi-conductor just by measuring the 

current due to temperature difference. 

So, now what if we have both voltage difference and temperature difference. So, what if 

we are applying a battery across the semi-conductor and there is also a temperature 

difference between contact 1 and contact 2. So, in that case we need to combine the 

contribution of both of these terms this one and this one in (f1 - f2). 

So, in that case (f1 - f2) will be given by -(δf/δE) times qΔV from here -(δf/δE). So, this -

(δf/δT) becomes -(δf/δE)  into (E-EF/TL) times ΔTL. So, this we derived in our previous 

class if you recall. So, when there is a voltage difference across the semi-conductor and 

there is also a temperature difference in that case (f1 - f2) will look like this. 

The plots will look like this and as you can see we have applied a positive voltage on 

terminal 2 which means EF2 is now shifted to the left side. And, also we have heated the 

contact 2 which means f2 is now spread out, f2 is now more broader as compared to f1. 

So, in this case which is a very general case (f1 - f2) will be given or we need to consider 

both of these terms, while calculating (f1 - f2).  

And, please remember that this is near equilibrium situation, near equilibrium means that 

the applied voltage is also is small is quite small, also the temperature difference is also 



small; it is we are not applying a large voltage or a large temperature difference. So, with 

this background what we can say is that the current will conduct because of the two 

driving factors. 

One is the voltage difference and second is the temperature difference across the 

conductor. And, in order to properly model the current in any conductor, we need to take 

into account both of these parameters while doing the actual current calculation. With 

this I think this is a good time to introduce a new kind of current in conductors, because 

electrons are particles that carry both charge and heat; electrons carry charge as well as 

heat ok and this we discussed last time. 
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So, this is how we define the charge current and in this case this expression becomes the 

expression for charge current because we have this factor of q here. So, if we remove this 

factor of q from here, in that case this will be this expression will gave us just the particle 

flux. When there is a difference in the Fermi functions of on between the left contact and 

the right contact.  

So, this is a generic particle flux or I would say the particle current and if we multiply 

this by charge it becomes charge current and this is what we derive in the derived in the 

general model of transport. And, this is what we use in calculating the current in all the 

devices in fact, but as we know that apart from the charge, electrons also carry heat in 

terms of their in the form of their kinetic energy.  



So, when there is a flow of electrons apart from a charge current there will be a heat 

current as well, it will be as if a heat is also flowing through the material. So, that is what 

we need to define. 

(Refer Slide Time: 14:28) 

 

But, the charge current at a particular energy is given by this value, just by removing the 

integral and without q, this is the number of particles flowing at a certain energy E. If we 

put q here, in that case it becomes the charge current actually ok. So, as we have seen 

that (f1 - f2) is or when there is a gradient in voltage as well as in temperature. So, if 

across a conductor we have ΔV as well as ΔT, in that case (f1 - f2) is given by these two 

terms. 

And, if we put these two terms here then the charge current becomes like this. So, this is 

the general or the most general form of the charge current, both in presence of voltage 

difference and temperature difference. So, both of these terms need to be taken into 

account and we will discuss more about it in coming slides in after few minutes. But, let 

us take a pause and define the heat current as well. 

And, in order to define the heat current, we just need to replace q in this expression or in 

this expression by E - EF. And why E - EF? The reason for this is that generally in most 

of the cases most of the conduction takes place around the Fermi level, specially in 

metals almost all the conduction takes place at the Fermi level. All the electrons are in 



metal a new electron is entered at the Fermi level or any electron exit from the Fermi 

level itself, Fermi level energy. 

Even in semi-conductor, the Fermi level defines in a way the distribution of particles in a 

material or distribution of particles in the semi-conductor. So, in order to define heat 

current, the amount of energy that is in access to the Fermi level E - EF is the heat in that 

system ok, that is. So, this comes mainly from the metals or conductors. And, if we just 

put replace q by E - EF in this expression, it will give us the heat current. 

So, heat current will be heat current at a certain energy E will be 2(E - EF)/h into integral 

T(E) times M(E) times (f1 - f2) ok. So, please remember that this is not charge current 

and that is why this is the heat current and this is that is why this, its unit will also be 

different. So, I will give you few minutes and so, just think about what would be the 

units of Iq ok and we will come back to this in coming slides. 

So, this is the typical picture of conduction in a semi-conductor in which we have a semi-

conductor in this is the semi-conductor. This is the conduction band of the semi-

conductor, minima of the conduction band. 
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And, there might be EV the valence band maxima and this is the conduction band 

minima. So, and if so, let us first draw the equilibrium picture, in the equilibrium what 



happens is that on left contact we have Fermi level EF1, on the right contact we have 

Fermi level EF2.  

And, if we are using an type material n-type semi-conductor, the Fermi level in the semi-

conductor will be will be EF. And, if it is n-type the Fermi level will be closer to the 

bottom of the conduction band as compared to the top of the valence band. So, this is the 

left contact, this is the right contact and this is the semi-conductor in between and this is 

the equilibrium I would say the equilibrium band diagram of the system.  

And, as you can see in equilibrium all the Fermi levels are aligned to each other, there is 

a single uniform Fermi level in the entire device. But, if there is a voltage applied on 

contact 2; so, that EF2 goes down there is a if there is a positive voltage on contact 2 and a 

current will start conducting in the material. There might also be a temperature gradient, 

there might be so, contact 2 might be heated. 

Let us say the temperature of contact 2 is TL2 and the temperature of contact 1 is TL1, let 

us assume TL2 is greater than TL1 and in that case there is as a net flow of electrons in the 

system. So, the way electrons flow is that electrons will start from the left contact jump 

into the semi-conductor conduction band. And from the semi-conductor conduction 

band, they will jump to the right contact Fermi level. 
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So, in this case the heat current from contact 1 to the semi-conductor is given by I’Q1(E) 

at any energy E and this is 2(E - Ef1)/h times T(E)M(E) (f1 - f2). Similarly, heat current 

from semi-conductor to contact 2 is 2(E - Ef2)/h times T(E)M(E) (f1 - f2). So, this is the 

way we analyze heat current in any device. 

When there is this term (f1 - f2) is non-zero and in general if we put if we consider that 

ΔV is non-zero as well as ΔT is also non-zero, in that case (f1 - f2) needs to be replaced 

by these terms in near equilibrium situation. And, in that case the heat current can be 

written in this general form. So, as you can see heat current is dependent both on voltage 

difference and temperature difference like the charge current. 

So, we will very soon go to these parameters G, S, T, TL, ST and K0 as well. But, this 

discussion was just to show you that that apart from charge current, we also need to 

consider heat current when there is an electron flow through any device. And, heat 

current is defined by replacing q by E - EF and in that case both charge current and heat 

current are dependent on the voltage difference and temperature difference ok. 

(Refer Slide Time: 22:03) 

 

So, so, this analysis we have already done because, (f1 - f2) we have analyzed in our 

previous class, it is dependent both on voltage difference and temperature difference. 

Because, from this picture we can see that the Fermi function is both a function of 

voltage and Fermi level and Fermi level is dependent on the applied voltage. So, it is a 

function of both temperature and Fermi level and Fermi level is dependent on voltage.  



So, that is why the Fermi function becomes a function of both the applied voltage and the 

applied temperature difference across the conductor ok. So, so far just to quickly 

summarize we have seen that specially when there is a temperature when we talk about 

temperature difference across a semi-conductor, we need to understand the notion of that 

there will be a notion of heat current as well apart from the charge current. 

And, both heat current and charge currents are dependent on the applied voltage ΔV and 

applied temperature difference ΔT. And, from these ideas will come to we will come to 

Seebeck effect and Peltier effect later on. 
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So, let us first analyze how the charge current looks like. So, charge current I’(E) which 

is the current at a certain energy E is given by (2q/h) T(E) M(E) (f1 - f2), T(E) accounts 

for the scattering transmission coefficient, M(E) accounts for the modes in the semi-

conductor, the conduction pathway is in the channel. And, (f1 - f2) is the forcing function 

for the current, q is the fundamental charge unit and if we do not have q, it just becomes 

the particle current number of particles flowing per unit time. 

So, the total current is the sum of contributions from each energy channel. So, we need to 

integrate this I’(E). So, the total charge current I is given by the integration of this, the 

this differential current, this differential current is given by this value. And, as we now 

know very clearly that (f1 - f2) is -(δf/δE)qΔV - (-δf0/δE) (E-EF/TL)ΔT. 



So, (f1 - f2) is dependent both on applied voltage and applied temperature difference. So, 

if we just put (f1 - f2) in this expression and integrate this what we obtain is we just if we 

just put (f1 - f2) here, I’(E) will be (2q/h) T(E) M(E), (f1 - f2) is -(δf/δE)qΔV , + (2q/h) 

T(E) M(E) (δf/δE) (E-EF/TL)ΔT. So, we have just replaced (f1 - f2) by this in the 

differential current expression. 

So, here now this thing is known as the conductance function and this thing is 

represented as ST times ΔT. So, ST actually is related to the solid coefficient, it is related 

to the electro thermal diffusion which means electrical diffusion due to thermal energy 

due to temperature difference. So, the differential current has a contribution both from 

the conductance function and the this solid diffusion, electro thermal diffusion. 

So, in order to calculate the total current; so, this G’(E) will be (2q2/h) T(E) M(E) into (-

δf/δE) and this electro thermal conductance is ST’ is -(2q2/h) T(E) M(E) (E-EF/qTL) (-

δf/δE) ok. So, I leave this to you to sort of figure out to exactly come to this point, this 

expression. And because, in this case we have been multiplying by q divided dividing by 

q and in that case this is what it becomes negative, negative becomes positive. So, that is 

why we have a positive term here. 

So, the total charge so, this Soret coefficient S’T(E) is given by (–kB/q) times (E-EF/ 

kBTL)  times G’(E). So, even S’T can be represented in terms of G’(E), even this Soret 

coefficient is related to the conductance function or the differential conductance of the 

material. 
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So, finally, after integrating this expression; so, the total current will be the integration of 

the differential current with respect to energy. And, it becomes G’(E) ΔV + S’T(E) ΔT 

integrated over all possible energy pathways. And, this turns out to be GΔV + ST ΔT.  

So, where G is the conduct electrical conductance of the system of the conductor of the 

semi-conductor in under consideration. And, ST is the Soret coefficient of the semi-

conductor or the electro thermal diffusion coefficient of the semi-conductor. 
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So, this is the most I would say the most general form of the charge current through any 

conductor and this has contribution both from ΔV and ΔT. So, we need to consider both 



electrical conductance as well as electro thermal diffusion, electro thermal conductance 

ok. So, this is how things get modified when we consider the thermoelectric effects as 

well in our system. 
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So, in the similar way the heat current is defined as all of us know, the heat current from 

contact 1 is defined or if just to sort of recall the differential heat current is given as (2/h) 

times (E-EF) into T(E) M(E) (f1 - f2). And, if we need to find out the heat current from 

contact 1 to the semi-conductor, we need to integrate this over all possible energy 

channels and, this is what it turns out to be. 

Similarly, from contact 2 it is and if we assume the near equilibrium conditions in that 

case (f1 - f2) is given by this familiar expression, that we have all of us have seen. And, if 

we put this value of (f1 - f2) in the differential heat current expression in that case, this is 

what the heat current actually becomes like. So, just replace (f1 - f2) by this right hand 

side in this equation and see what you get. 

So, let us do a quick calculation here IQ’(E) is (2/h) times (E-EF) into T(E) M(E), (f1 - f2) 

is replaced by -(δf/δE)qΔV , + (2/h)  (E-EF) T(E) M(E) (δf/δE) (E-EF/TL) times ΔT. So, 

this is this becomes the differential heat current in the system. And, if we have a closed 

look on this side, this coefficient apart from ΔV, this is closely related to the Soret 

coefficient, because this S’T in our previous derivation is given by this expression. 



So, this first term becomes essentially this first tern becomes -TL times S’T times ΔV and 

the second term becomes K0’(E) times ΔT, where this K is now known as the electronic 

heat conductance and this K0 is known as the electronic heat conductance coefficient. So, 

in order to find out the total heat current, we need to integrate this differential heat 

current over all possible energy values. 
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And, that is why we need to integrate on the right hand side as well and the final 

expression for the total heat current that we obtain is this. And, this is -TLSTΔV -K0ΔT, 

where this K0 is given by this expression. And, I will leave you leave this calculation on 

you how K0 turns out to be this value. 

This is a very straightforward calculation and you should be able to do it. So, as we have 

already discussed that the heat current is also dependent both on voltage difference and 

temperature difference. And, but there is a key distinction here that in heat current IQ is -

TLSTΔV -K0ΔT. 
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So, this ST appears with ΔT in with in the case of charge current, if you recall ST appears 

with ΔT in the case of charge current, but it appears with ΔV in the case of heat current. 

And, that is an interesting aspect because both of these currents are sort of coupled to 

each other, that is sort of indicate that. 

So, now we have a decent background, a decent mathematical background of both charge 

current and heat current in conductors. Now, we are in a good shape to define one of the 

most popularly known thermoelectric effects that is the Seebeck effect. And what is the 

Seebeck effect? Seebeck effect is essentially the development of an emf due to 

temperature difference in a conductor.  

What it means is if there is a temperature difference in a conductor an emf electromotive 

force will be developed across the conductor. In other words, a voltage difference will be 

developed across the conductor and if we have the conductor open circuited in that case, 

we will have an open circuit voltage due to temperature difference.  

This is known as the Seebeck effect which in other words means that if we heat a 

conductor on one end, there will be a non-zero voltage difference between two of its 

terminals. 
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And, now with the background that we have seen, this is not a not something unfamiliar, 

because what we have seen is that the charge current is directly proportional to ΔV as 

well as ΔT. So, if there is even if we do not have any applied voltage even, if this is 0 

and this is non-zero in that case there will be a non-zero current which means the 

electrons will flow, because of the temperature difference. 

And, if the semi-conductor is open circuited in that case this flow of electrons will result 

in an open circuit voltage which will balance the flow of electrons, because of the 

temperature difference ok. And that is the root of the Seebeck effect. So, in a way the 

charge current that we have discussed is actually this Seebeck effect is a natural 

consequence of this idea. Seebeck effect naturally comes from here even, if we do not 

have any voltage difference across the semi-conductor which means ΔV 0. 
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In that case, I is given by ST times ΔT which means there will be a flow of electrons in 

the conductor. And, if the conductor is open circuited, electrons will accumulate on one 

side of the conductor creating an open circuit voltage and, that is essentially the Seebeck 

effect. This open circuit voltage is also known as Seebeck voltage and the way to 

understand this is that is just from the Fermi function. And, this we have seen in other 

forms as well. 

This is the Fermi function at temperature f1 is the Fermi function at temperature TL1 and 

f2 is the Fermi function at temperature TL2 and TL1 is less than TL2, let us assume that this 

end of the semi-conductor is hot and this end of the semi-conductor is cool which means 

TL2 is greater than TL1. So, the Fermi function on this side of the semi-conductor will be 

like this red plot and the Fermi function on the left side of the conductor will be like this. 

And, since there is no voltage applied across the semi-conductor EF will be the same 

across the this conductor. So, if this is an n-type semi-conductor in that case, we need to 

consider the flow of electrons in the conduction band. And, what happens in the 

conduction band, conduction band is above the Fermi level, above Fermi level f1 is less 

than f2 essentially. So, which means that f2 is greater than f1 in conduction band. 

So; that means, that the number of electrons or the probability of electrons on the right 

contact in the conduction band is more. The probability of electrons being found close to 

the conduction band energies is more on the right contact, the hot contact as compared to 

the cool contact, cold contact essentially. So, the electrons will try to from the from as 



we discussed in the general model of transport, this contact will try to bring this semi-

conductor in equilibrium in itself. 

So, the electrons will start flowing from hot contact to the semi-conductor and from 

semi-conductor to the this left contact ok. And, that way electrons will accumulate on 

this side of the semi-conductor, that will leave a positive voltage on the right the hot 

contact and a negative voltage on the cold contact. And, that will create this kind of open 

circuited voltage ok and if we connect any electronic system here that can result in a 

current as well. 

So, that way we can produce an electric current by a temperature difference, just by a 

temperature difference we can produce electric current. So, essentially converting heat 

into electricity using semi-conductors. So, that is how the thermoelectric devices are 

made by using the Seebeck effect, we will not be able to discuss about thermoelectric 

devices in this course. So, what we will do is we will discuss the basics of Seebeck effect 

and a related effect known as Peltier effect. 

And, essentially most of the devices work on the underlying principle of these two 

effects. So, if these two effects are clear then we can understand most of the 

thermoelectric devices mechanism. So, if there is a temperature difference an open 

circuit voltage will be developed across the semi-conductor and that is known as the 

Seebeck effect ok. 

(Refer Slide Time: 41:12) 

 



So, from the charge current expression, this is what we have I is G ΔV + ST ΔT which 

means, if we rearrange these terms G ΔV is equal to I - ST ΔT or ΔV is equal to (1/G) I – 

(ST/G) ΔT. So, this is the charge current. So, this is what we obtain 1/G, G is the 

electrical conductance, it is R I - (ST/G) ΔT. 

Now, if the two ends of the semi-conductor, if the two terminals of the semi-conductor 

are open circuited, we have not connected anything. There cannot be a flow of current, 

this I will be 0 in steady state. So, in that case ΔV is equal to -(ST/G) ΔT and this ΔV will 

be the voltage that or the voltage difference that appears across the semi-conductor. 

So, this is when I is 0 in open circuit case and this term is known as the Seebeck 

coefficient essentially, (ST/G) is known as the Seebeck coefficient which is defined as S, 

S is (ST/G). So, what is the Seebeck coefficient? Seebeck coefficient is essentially 

becomes from this equation ΔV is equal to -(S)ΔT at I = 0. So, S is –ΔV/ ΔT when the 

current is 0. 

So, this is the technical the formal definition of the Seebeck coefficient. This is the ratio 

of the voltage difference to the temperature difference when the current in the circuit is 

0. So, what it also means is when we have a temperature difference across a conductor 

ΔT, ΔV of voltage difference will be produced, when the conductor is open circuited. 

And, the ratio between ΔV and ΔT with a negative sign is known as the Seebeck 

coefficient.  

So, this is an important I would say important thermoelectric coefficient and all of us 

should be very clear about its definition as well, also its physical mechanism. The 

underlying physical mechanism is essentially this one ok. 



(Refer Slide Time: 44:30) 

 

So, as we will expect that the sign of the Seebeck voltage which is the ΔV voltage is also 

known as the voltage on the hot side minus voltage on the cold side is positive for an n-

type conductor and the Seebeck voltage is negative for the p-type semi-conductor. And, 

this can also be used to determine the type of semi-conductor that we are using. So, this 

is this we have also discussed here, also I would also like you to think more about it and 

also see how electrons will flow in a p-type semi-conductor. 

So, in this particular example we have taken an n-type semi-conductor. So, I will 

recommend all of you to look into the situation when instead of n-type semi-conductor, 

we take a p-type semi-conductor; in that case how the electrons will flow when the left 

contact is cool and the right contact is hot ok. So, with this let us maybe finish here today 

and in the next class we will start with the discussion of Peltier effect ok. 

So, thank you all, see you in the next class. 


