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Electrons in Solids 

 

Hello, everyone. Today, we will see how electrons behave in actual solids. Just to review 

what we have discussed so far. 
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So, in the beginning I told you that the most important part of a device is of a field effect 

transistor is its channel. And the channel can be sort of understood as a two terminal device 

where we have a channel there is a source and there is a drain. And on application of a 

positive voltage on drain terminal electrons flow from source to drain. Now, as we know 

that in modern devices this channel region is getting smaller and smaller. 

And now this channel region is nanometer in length and that is basically causing as we 

know and this we have already discussed. This is causing a fundamental change in the way 

electrons behave in the devices and that is what we are trying to understand in this course 

that is what we will be trying to understand in this course and that is what we have already 

that discussion we have already started. 



So, ultimately in devices everything is basically the game of electrons everything is 

basically the dynamics of electrons how electrons behave in devices that is what we 

essentially need to understand in order to understand the physics of the device. And, in 

nanoscale nanoscopic devices when the channel region is few nanometers in length.  

Electron’s nature is no longer of a classical particle electron behave as a quantum particle 

and that is why we started our discussion with the basics of quantum mechanics. We 

discussed the basic postulates of the quantum mechanics and as you might recall some of 

the postulates of quantum mechanics are fundamentally different from the classical 

mechanics. 

So, for example, in quantum mechanics we have a wave function to describe everything 

about a particle or a system. And we on doing measurement on a quantum system there is 

no deterministic result we get one of many possibilities as the outcome of the 

measurement.  

So, quantum mechanics is fundamentally probabilistic whereas, the classical mechanics is 

a deterministic signs. We have also seen other postulates, how we define operators which 

correspond to physical observables in the system and after going through the basic 

postulates of quantum mechanics. 

Now, after going through the basic postulates of quantum mechanics; we went on to 

understand the free electron how a free electron behaves. So, this is the first type in order 

to understand how the electron behaves in a solid. So, we started with how an electron 

behaves when it is entirely free, it is free from all the interactions all other kind of all other 

particles as if it is alone in the universe. 

In case of free electron, we saw that the Schrodinger equation of the electron looks like a 

simple second order differential equation, where we have a parameter called k, which is 

also the known as the wave number just to sort of remind you a wave number can be 

understood as frequency in spatial dimension. 

So, it basically tells how a wave or how a wave function is distributed in the space how it 

is oscillating how it is essentially repeating itself in the space. So, it is also known as the 

frequency in spatial dimension. And we saw that for a free particle case for a free electron 



when the electron is free from all the interactions, the electron wave function looks like a 

sinusoidal just a plane wave where the wave function is a superposition of sin and cosine. 
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And, in this case the relationship between the energy of the electron and the wave number 

of the electron is a parabolic relationship. So, for a free particle if we plot E k relationship, 

it is a parabola around E axis basically.  

So, that is what we saw this is a simple solution a simple case of quantum mechanics which 

we can handle analytically. Generally, it happens that in quantum mechanics we cannot 

solve Schrodinger equation analytically precisely solve. So, we need to make many 

approximations. 

But for free electrons, we can solve the Schrodinger equation analytically and this is how 

the solution looks like and this is the E k relationship for free electron ok. After free 

electron case, we try to understand how the electron would behave when the electron is 

confined in a potential well, what do we mean by a potential well? 

Potential well has potential for has sort of potential boundaries between which between 

those boundaries the potential is 0 and in those boundaries beyond those boundaries the 

potential is infinite. So, what it means is that the electron is now confined between two 

points or two boundaries by a potential. 



And in this case, we saw that, now the electronic wave function is still a sinusoidal wave 

function sinusoidal kind of wave function, but the energy values are no longer a continuous 

set of values. Now, the energy values are discrete values which are given as 𝐸 =
𝑛2𝜋2ℏ2

2𝑚𝑎2 , 

which means that in a potential well, electrons can take only a certain set of energy values 

it cannot have any arbitrary energy and exist in the potential well.  

It can only take certain set of energy values and corresponding to those energy values the 

electronic wave function will be defined by this equation and these are some of the simple 

wave functions corresponding to various energy values. And in this case, we saw that now 

if we plot the E k relationship for a particle in a box it will not be a continuous plot because 

the energy values do not exist for all k values the k can only take the wave number can 

only take 
𝑛𝜋

𝑎
 these values, where n is an integer. 

So, the E k plot will be a discrete plot where the E values will still be lying on the parabola, 

but it will not be a continuous plot it will just be the points on this parabola like this. So, 

only these points will constitute the E k plot for a particle in a box. So, we consider two 

case one is the electron when the electron is entirely free and second case when the electron 

is entirely confined in a potential well. 

And there are a range of intermediate cases there are lot of cases in between. For example, 

we can have a finite potential well, where this potential V is not infinite inside on the 

boundaries it is a finite value. So, V is no longer infinite. And in those cases, also, we can 

solve the Schrodinger wave equation and we can find out the electronic wave function, 

which will basically be like a hybrid of free electron and the electron in an infinite potential 

well. 

Now, that key take away from this understanding was that when the electron is confined 

it leads to discretization and this was one of the earliest feature of quantum mechanics 

which was discovered and it was a paradigm shift in understanding of particles and their 

natures ok. 

So, with this understanding, now we will see how electrons behave in solids basically. So, 

as you know as all of us know actually that solids can be quite complicated, they are not 

like free particle case or not like not even like particle in a box case they can be quite 

complicated. 



Generally, the solids in devices that the solid that we use in devices are crystalline solids 

they are they have a regular defined lattice structure and, but still at finite temperatures 

those lattice points the solids and the lattice points might be vibrating and the solids might 

have many sort of non-idealities.  

For example, there might be a lattice vacancy then the latest points are all vibrating. So, 

these kind of complications might be there in solids. So, we will not directly go into an 

actual solid actually because it is not possible to solve Schrodinger equation analytically 

for a for an actual solid for an actual lattice. 
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So, what we do is we take the case of 1-D solids first 1-D solids and this case can easily 

be generalized to our 3-D solids and moreover in 1-D solids we do not consider lattice 

vacancies and lattice vibrations. So, we do not consider these two known idealities and we 

consider we first consider an ideal 1-D solid. 

So, an ideal 1-D solid will look something like this. So, in an 1-D; in a 1-D solid the atoms 

or to be more precised the atomic cores will be located at a regular interval from each 

other. So, let us consider the case of an infinite 1-D solid in which these atomic cores, 

basically atomic cores are atomic nucleus plus tightly bound electrons. So, atomic cores 

are atomic nucleus plus tightly bound electrons. 



So, the atomic cores and generally they have a +Ze charge. So, what it means is that in an 

atomic core a nucleus is there and some electrons are so tightly bound that we consider 

this entire system this atoms plus tightly bound electrons as one system, but Z number of 

electrons are Z number of electrons are free; which means that from each atom Z number 

of electrons are free to move in the entire solid. 

So, that is why the atomic cores have a positive Z times e charge where e is the charge of 

a single electron. So, these atomic cores are positively charged stable atomic or stable 

heavy atomic cores basically. So, these are fixed at a regular interval the period of this 

lattice is let us say is a. Now, if an electron exist in this system, where there are there is a 

chain of atomic cores and we bring sort of one electron here.  

So, we now we will try to see how an electron will behave in this particular system. And 

as we can see that in this system also like particle in a box system the potential is no longer 

zero; there will be some potential that the electron will feel because of the atomic cores, 

but just take a moment and think what will be the potential energy of the electron in this 

particular environment. 

So, in this environment as you might recall the potential due to each atomic core will be a 

constant times the charge of the atomic core k times Q, Q is the charge of the atomic core 

which is basically Z times e in this case divided by r. And the potential energy of the 

electron would be the charge of the electron which is minus e times e into k Q by r.  

So, the potential energy of the electron in presence of a single atomic core will be basically 

something like k times if we put the value of Q to be 
𝑍𝑒2

𝑟
. So, it is inversely proportional 

to the distance between the electron and the atomic core. And, if we plot this on 

corresponding to each atomic core, we will see how the potential profile looks like. So, 

corresponding to each atomic core the potential would be this basically inversely 

proportional to the distance between the electron and the atomic core. 
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So, now let us see how it actually looks like potential due to atomic core due to let us say 

this atomic core is this as we can see this is basically the potential energy of the electron 

is inversely proportional to 
−1

𝑟
. So, the potential energy of the electron will be this, this is 

a graphical representation of the potential energy this is we are not. 

In order to sort of have a good understanding of the nature of electrons we will sometimes 

use graphical representation of the system and their various parameters. So, the potential 

energy of an electron when it comes close to this atomic core will be this. And similarly, 

this will be the potential energy of the electron whenever it comes close to any of these 

basically any of these atomic cores. 

So, we can individually say that corresponding to each atomic core in the lattice the 

potential energy of the electron will look like this. So, the resultant potential energy of the 

system would be basically a sum total of all these potential energies. So, that will be the 

final potential that the electron will see or electron will feel in this particular lattice. Let us 

see just for a for an exercise let us see how this potential energy looks like. 
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So, let us say if the potential energy due to this atomic core is this and potential energy 

due to this atomic core is similarly can be plotted to be this. So, the resultant potential 

energy of these two from these two atomic cores will be something like this. So, this is the 

resultant potential energy of the electron in presence of two cores, two atomic cores ok. 

And, similarly for a chain of atomic cores the resultant potential energy of the system 

would be like this, but extended to all the atomic cores ok. 
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So, if we generalize basically this understanding this is how the potential profile or the to 

be more precise the potential energy profile of the electrons would be in a 1-D solid. So, 

in a 1-D solid if we precisely plot the lattice here the potential energy of the electron in 

this system would look something like this. 

So, this is how the potential energy would look like. So, this is the potential energy of the 

electron in a 1-D solid and as you might recall the. So, ultimately, we need to we need to 

solve the Schrodinger equation for electron in any system in order to understand the nature 

of electrons or the behavior of electrons in that system. 

And the Schrodinger equation looks like this in 1-D it would be 
−ℏ2

2𝑚

𝜕2

𝜕𝑥2 + 𝑈(𝑥), where 

U(x) is the potential energy times the wave function equals energy of the electron times 

the wave function, ok. So, as you can see this parameter U(x) is quite important in solving 

the Schrodinger equation. So, if we need to understand the behavior of electrons in 1-D 

solid we need to put instead of in place of this U(x) we need to put this potential profile in 

the Schrodinger equation and we need to solve this Schrodinger equation. 

And finally, the wave function that we will obtain will be the wave function of the electrons 

in this 1-D solid. So, that will basically capture all the information about the electrons in 

this solid. So, that is what we will try to do, but there is a cache here Schrodinger equation 

is not easy to solve always Schrodinger equation generally is difficult in most simple cases 

it can be solved.  

But as soon as there are multiple atoms there is a complicated interaction between the 

atoms this it becomes difficult to solve the Schrodinger equation and that is also the case 

here with this potential profile if we take precisely this potential profile for 1-D solids we 

cannot solve the Schrodinger equation precisely. 

But there is a way out here and this was given by Kronig and Penney and that is why it is 

known as the Kronig-Penney model. So, the technique that they use is that instead of 

solving the Schrodinger equation for this potential profile they sort of approximate or they 

solve the Schrodinger equation for a potential profile which is not exactly like which is 

not exactly the same as the potential profile of 1-D solids, but it resembles quite well with 

the potential profile of 1-D solids and this is the profile that the Kronig-Penney model 

takes. 



And instead of having negative infinite potential energies at certain points which is the 

case at these points the Kronig-Penney model takes a finite value of potential energy at 

these points. So, in this particular figure it is taken to be as the reference point and the 

potential energy is considered to be zero at these points and the upper value of the potential 

energy is taken to be u naught. 

So, this is not exactly the same profile as is there in 1-D solids, but this resembles quite 

well with the profile that is there in the 1-D solids and it turns out that this profile captures 

the most essential behavioral most essential characteristics of electrons in solids. So, if we 

solve Schrodinger equation for this profile in solids it will basically capture the all the 

essential components all the essential characteristics of the electrons.  

So, that is why we solve the Schrodinger equation for the potential profile taken in the 

Kronig-Penney model and it turns out it also turns out that the Schrodinger equation can 

be precisely solved if we take U(x) to be this profile with some mathematical techniques. 

So, this is what we will do. In order to understand the nature of electrons the behaviour of 

electrons in solids we will solve Schrodinger equation for this potential profile the 

potential profile given in the Kronig-Penney model ok. 
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So, that is going to be our sort of next task again as you might have realized this is an 

infinite sequence of atoms in a 1-D the solid atoms  can in principle be from minus infinity 



to plus infinity, but generally solids are finite in length, but the length can be extremely 

large on atomic scales. 

So, for all practical purposes this can be taken to be quasi-infinite in length which means 

a huge number of atoms are there in the solids which means there are huge number of such 

patterns in the potential profile as you can see here. If you closely observe in this potential 

profile this particular pattern this pattern starting from here to here this is repeating itself 

for a large number of times for the entire length of the solid. 

So, if we need to solve the Schrodinger equation for this entire solid essentially, we would 

need to solve the Schrodinger equation for all the for the entire length because the potential 

is changing  it is as if there are there is a sequence of potential wells and or potential 

barriers in the solids. 

And that is that in itself is also an extremely difficult task, but there is a rescue here I would 

say and the rescue is given by the so called Bloch’s theorem. So, what Bloch’s theorem 

says is that if a potential is repeating itself which means if there is a periodic potential then 

the wave function follows a certain pattern. 

So, what Bloch’s theorem says is that if a quantum system is in a periodic potential which 

means let us say let us take the period of the potential profile to be capital A because we 

are taking small a here. So, even in the statement of the Bloch’s theorem let us take it to 

be capital A ok. 

So, if the potential is periodic which means that after a period of capital A length the 

potential is again the same. Then the wave function will also be of this kind 

Ψ(𝑥 + 𝐴), would be Ψ(𝑥). 𝑒𝑖𝑘𝐴, the period where A is the period of the crystal. 

So, in simple words or simply it can be understood that if the potential is periodic the wave 

function of the system will also be periodic, but modulated by an exponential ok or the 

restatement of the Bloch’s theorem is that in a periodic potential which means if the 

potential profile is like this then the wave function of this system is 𝑒𝑖𝑘𝑥u(x).  Ψ(𝑥) is e is 

𝑒𝑖𝑘𝑥u(x), where u(x) is a periodic function ok. 

So, these are these two statements of the Bloch’s theorem are equivalent and we will see 

here. So, in this expression if we put Ψ instead of x if we take Ψ(𝑥 + 𝐴) it will basically 



be 𝑒𝑖𝑘(𝑥+𝐴)u(x+A) and as we know u(x+A) is essentially u(x) because u(x) by definition 

is a periodic function.  

So, this Ψ(𝑥 + 𝐴) would basically be Ψ(𝑥 + 𝐴) would be 𝑒𝑖𝑘𝑥 let us also decompose the 

exponential u(x). So, in place of u(x+A) we can put u(x) in this expression and 𝑒𝑖𝑘𝑥u(x) is 

basically Ψ(𝑥) as is clear from this equation. So, Ψ(𝑥 + 𝐴) would be 𝑒𝑖𝑘𝐴Ψ(𝑥)  which is 

essentially the earlier statement of the Bloch’s theorem this statement of the Bloch’s 

theorem.  

So, the Bloch’s theorem can equivalently be put in two statements in a periodic potential 

profile the wave function of the system would be Ψ(𝑥 + 𝐴) equals 𝑒𝑖𝑘𝐴Ψ(𝑥) or Ψ(𝑥) can 

be written as Ψ(𝑥) equals 𝑒𝑖𝑘𝑥u(x) where u(x)  is a periodic potential which means u(x+A) 

is the is same as u(x)  ok. 

So, these are two equivalent statements of Bloch’s theorem we will not be going into the 

derivation of the Bloch’s theorem in this class, but I would highly recommend you to go 

through the derivation of the Bloch’s theorem which is available in many standard texts 

on solid state physics and condensed matter physics. This is an this will be an interesting 

exercise this will clear many quantum mechanical concepts as well building on Bloch’s 

theorem. 

So, I am taking a detour in order to go into the details of Bloch’s theorem here this also 

means this statement of Bloch’s theorem means that this statement Ψ(𝑥 + 𝐴) equals 

𝑒𝑖𝑘𝐴Ψ(𝑥) this means; if we take the first derivative of Bloch’s theorem it would basically 

be 
𝜕Ψ(𝑥+𝐴) 

𝜕𝑥
=  𝑒𝑖𝑘𝐴 𝜕Ψ(𝑥) 

𝜕𝑥
. 

So, these two statements of Bloch’s theorem are equivalent to each other. So, in other 

words the Bloch’s theorem can be stated in terms of psi x plus A which naturally implies 

that the same expression holds true for the derivative of the wave function as well ok. So, 

there are two statements of Bloch’s theorem this one and this one and as we have seen 

these two are equivalent statements and the implication of this statement is that the 

derivative of the wave function can also be represented in the same form. 

So, today what we have seen is that the interior of solids or the potential profile in solids 

is slightly complicated. And we need to make some approximation in order to sort of solve 



the Schrodinger equation inside the solids and that approximation was done in Kronig- 

Penney model of electrons in solids. 

And there also we cannot just take the potential profile and solve the Schrodinger equation 

there also we need to invoke Bloch’s theorem and in next class ,in next lecture we will see 

how by using Bloch’s theorem we can solve we can analytically solve Schrodinger 

equation in 1-D solids with Kronig- Penney approximation. 

Thank you and see you in the next class. 


