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Lecture - 48 

Ballistic Injection Velocity 

 

Hello everyone in today’s class if you recall we, in the last class we stopped at the 

concept of the injection velocity in a MOSFET. In today’s class we will discuss that 

concept in greater detail. So, that is I would say the most important idea in the MOSFET 

transport that is to understand the injection velocity right at the top of the barrier in the 

MOSFET. 
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And in this case, we are considering a ballistic MOSFET and we are trying to understand 

the injection velocity in a ballistic MOSFET. Before going into those details let us 

quickly review what we have seen so far. So, what we have seen is that in steady state in 

a ballistic MOSFET the charge in the channel which is the inversion charge is given by 

this expression and this comes from the Landauer transport model, this is actually 

another form of this expression which is q times ∫D (f1 – f2)/2 dE, where this negative 

sign is there. 

Because the charge involved is the electrons and D is the density of states which is 

represented by D2D here, f1 is f1(E) f2 is f2(E). So, this is this the inversion charge can be 



calculated from this simple expression and the current can be calculated if you recall 

from this expression for a ballistic MOSFET ok. And as you can see, as we now by now 

we have seen this in more details in quite a lot of details, that depending on the factor in 

the in this integral we will obtain Fermi-Dirac integrals of various orders when we 

simplify this integral ok. 

So, Fermi-Dirac integral of order plus half is obtained when we have square root of E 

times Fermi function in the integral ok. 
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So, this is the current expression that we obtain and the charge expression is this and if 

we try to understand this expression in our more general form of current expression, 

which is given by this expression I is equal to W times Qn times average velocity. 

So, in this case this is what we obtain and from here what you can see is at the average 

velocity right at the beginning of the channel is this ballistic injection velocity times this 

factor which is a complicated looking factor involving various Fermi-Dirac integrals in 

it. So, this is the charge, the ballistic injection velocity is just the thermal unidirectional 

thermal velocity times Fermi-Dirac integral of order plus half divided by Fermi-Dirac 

integral of order 0. 

And when a VDS voltage is applied across the system then in that case this EFD is EFS - 

qVDS and as a consequence of this ηFD is ηFS – (qVDS/kT). So, now, this average velocity 



is this total this expression and this is what we will try to understand today, this is the 

central topic of today’s discussion. 
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So, in a ballistic MOSFET this is how the energy landscape looks like, this is the top of 

the barrier point and the injection velocity is essentially the average velocity right at the 

top of the barrier, which can also be written as average velocity in positive x direction at 

x equal to 0 point when we have applied a VGS and a VDS voltage to the system. 

So, this is a more correct way or more elaborate way to write down the injection velocity 

in MOSFETs. So, as we have seen that this is how it looks like, just before going into the 

details of its discussion, here this ballistic injection velocity which is the velocity defined 

in equilibrium which means that no drain voltage has been applied, what is the typical 

order of that velocity, let us try to see that ok. 

So, if we do this calculation and if you just try to put various constants in this expression, 

[√(2kT/πm*)], you would realize that the order of this velocity is around 1.2 times 10 to 

the power 7 centimeter per second. So, this is quite higher velocity and generally the 

velocity saturates in MOSFETs. 

And one of the reasons of velocity saturation is the scattering in the MOSFET as. So, 

typically in long channel MOSFETs the velocity is dependent on the electric field in a 

linear way. So, as the electric field increases the velocity increases, but after a certain 



electric field because of the increased collisions as well the velocity saturates, but the 

velocity also saturates in this case as well ok. 

And in even in the ballistic MOSFET and in the ballistic MOSFET there is no collision 

in the channel so that is the central topic of today’s discussion; how does the velocity 

saturates in a ballistic MOSFET and what is the underlying physical principle of that. So, 

here we show the injection velocity as a function of inversion layer density, as a function 

of the charge density. And as you can see that it is actually as the charge increases 

inversion layer density increases the injection velocity also increases. 

Because of these various these Fermi-Dirac integrals involved in the expressions and this 

is a simulation of these expressions ok. 
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Yeah; so this is the main topic here that and this is a real simulation for a ballistic 

MOSFET and taken from this reference, where it is taken in which it is taken from a 

paper and. 

So, this calculation has been done by assuming the Fermi-Dirac statistics in the ballistic 

MOSFET and this has been done by assuming the Maxwell-Boltzmann statistics. As you 

can see that although their values are different, but they are fairly similar to each other. 

Although note this is not exactly the same, but they can explain the behavior of electrons 

pretty much in the same way and as you can see that the current is saturating after a 



certain drain voltage, which is in this order which is it starts from for low gate voltages it 

starts from 0.25 to 0.3. 

But typically when the gate voltage is also high, it starts from 0.4 volts and above. So, 

from 0.4 volts and above drain voltage when VDS is 0.4 volts and above or maybe 0.45 

volts in that case the current is getting saturated and this is from a real simulation of a 

ballistic MOSFET and this is what we will be trying to understand today, why is this 

saturation taking place even though there is no scattering in the channel. 
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And this is the plot of the average velocity as a function of the drain voltage and as you 

can see, that initially the velocity is linearly dependent on the drain voltage, but for 

higher drain voltage it starts saturating and it approaches the unidirectional thermal 

velocity. So, this is precisely the reason that this current is getting saturated after a 

certain drain voltage. 

So, now we need to understand what is the reason for the velocity saturation in ballistic 

MOSFETs, just think about it, give it a thought for a moment and then we will go into 

the details of this idea. This is the energy picture of the device, when the VDS the drain 

voltage is 0 this is how the barrier looks like. And when we have applied a certain VDS 

this is how the barrier or this is how the bottom of the conduction band looks like when 

we are applying a drain voltage to the system. 



So, this expression, this particular expression which gives us the velocity at x equal to 0 

for an for a VGS and VDS, if we assume the Maxwell-Boltzmann statistics and let me just 

quickly tell you why we can do that. 

So, as you can see that the distribution of electrons is governed by the Fermi-Dirac 

distribution and this is how it looks like, f is 1/[1+exp((E-EF)/kT)] and in a typical 

semiconductor when the semiconductor is non degenerate in that case the Fermi level is 

reasonably far away from the bottom of the conduction band. 

So, for the electrons sitting in the conduction band this quantity E-EF is many kTs is 

multiple kT value. So, this parameter becomes larger as compared to 1. 

So, ultimately this can be approximated by this one can be removed from here by kT. So, 

it becomes exp(-(E-EF)/kT) and this is the Maxwell-Boltzmann distribution. So, for non-

degenerate semiconductors and specially in the MOSFETs when we are not applying 

high drain voltages, high current is not flowing in that case assuming a back Maxwell-

Boltzmann distribution for electrons is not a very bad idea. 

It is quite reasonable approximation and if we do that then the Fermi-Dirac integrals 

simplify pretty much and Fermi-Dirac integral of order j actually can be approximated by 

exp(ηF). So, this order of the Fermi-Dirac integral is not relevant when Maxwell-

Boltzmann statistics is there in the picture. So, if we do that then all these Fermi-Dirac 

integrals here, they can be approximated by the exponentials. 
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And as you can see that on the numerator here, on the numerator we have a Fermi-Dirac 

integral order half ηFD. 

So, it can be approximated by [1 – (F1/2(ηFD)/ F1/2(ηFS))] = 1 – exp(ηFD – ηFS), and the 

denominator is [1 + (F0(ηFD)/ F0(ηFS))] = 1 + exp(ηFD – ηFS).  

So, this actually simplifies to. So, as you are aware that ηFS - ηFD is – (qVDS/kT). So, this 

simplifies to exponential this velocity injection velocity at x equal to 0 is thermal 

velocity [√(2kT/πm*)] times [1 – exp(qVDS/kT)]/ [1 + exp(qVDS/kT)]. 
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So, this is what becomes of the expression for the injection velocity while we assume the 

Maxwell-Boltzmann statistics, which is a fair assumption at low biases particularly and 

in equilibrium. 

So, for small voltages if this VDS is small is very small in that case this exponential thing 

here is qVDS/kT, if we expand this, this is 1 + qVDS/kT + (1/2!) (qVDS/kT)2 and higher 

order terms. Even the second order terms can be ignored. So, this can be approximated 

by 1 + qVDS/kT. So, [1 – exp(qVDS/kT)] is essentially -qVDS/kT. 

So, it is just - qVDS/kT and the denominator in this expression which is 1 + qVDS/kT, this 

is 1 +1 + qVDS/kT. So, it is 2 + qVDS/kT and this VDS is very small as compared to kT by 

q, so it is just 2. So, this thing here, this velocity for small voltages for small VDS it is vT 

times in the numerator we have -qVDS/kT, in the denominator we just have a factor of 2. 

So, this velocity is actually vT times 2kT/q times -VDS here ok. So, if we multiply and 

divide by length here, this is the this becomes the electric field in the device. So, it is 

[vTL/(2kT/q)]Ē and if we compare this to our conventional expression of the velocity 

conventional relationship between velocity and electric field, which is that the velocity is 

mobility times the electric field. 

So, this the first term here which is [vTL/(2kT/q)] that will just be the ballistic mobility 

or that can assume to be the ballistic mobility in the system. 
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So, if we compare this to this in the ballistic case this μB, will be equal to [vTL/(2kT/q)]. 

So, this is an important expression for the, if we need to if somebody asks you what is 

the ballistic mobility for a given ballistic MOSFET, this is how we calculate that we first 

calculate the unidirectional thermal velocity. 

And then by if we know the channel length and then these are just the constants using all 

this, we can calculate the ballistic mobility of the channel. 
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So, this is this I would say that this was a small site discussion here, but what our central 

aim is that is to understand the velocity saturation in the ballistic MOSFETs why this is 

happening. 

So, for that we need to understand the velocity from a microscopic point of view we need 

to understand the distribution of velocity in the device. So, the device is something like 

this, in an actual MOSFET the source the drain is there, even the gate is there and there 

is a small channel region here which is just like a 2D device this channel is almost like a 

2D channel. 
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So, that is why most of our analysis which is for a 2D channel will hold true in this case. 

So, our analysis is for a device something like this, in which there is a source, there is a 

drain and the channel is a 2D channel, even in an actual MOSFET the channel is a quasi 

2D entity there. So, this is the length, this is the width, this is let us say x direction this is 

let us say the y direction in this. 

So, we need to in order to understand the velocity saturation, we need to understand the 

distribution of velocities whenever an electron starts from the source side to go to the 

drain side what is its vx what is its vy and how these velocities are distributed for various 

electrons in this device. So, that is what we need to understand and we will start with the 

Fermi-Dirac distribution function in order to understand that. 

So, the Fermi-Dirac distribution function says that this is how the electrons are 

distributed in various energy levels in the device. And just now, we saw that that for a 

non-degenerate semiconductors we can approximate this factor is large. So, this one can 

be ignored. 

So, ultimately this becomes exp(-(E-EF)/kT) or exp((EF-E)/kT) ok. So, this is what 

becomes of the Fermi-Dirac distribution, when we are considering the non-degenerate 

semiconductors because this parameter is many kT value. 



So, this one can be ignored and it boils down to the Maxwell-Boltzmann distribution of 

the electrons. Now, if we look at just at the top of the channel at x equal to 0 and try to 

understand the velocity here, we will come to that. So, what is this e here this is the total 

energy of the electrons and if we draw the bands this is the valence band, this is the 

conduction band. 

And the total energy of any electron that is sitting in the conduction band is E is Ec + 

(1/2)mv2 where this m is m* which is the effective mass and v is a 2D velocity. So, it can 

be broken down in its components. So, v2 is vx
2 + vy

2 ok. 

So, the total energy of the electron that is sitting in the conduction band is the potential 

energy which is the bottom of the conduction band plus the kinetic energy. And if we put 

this energy value in the Fermi-Dirac distribution function here which is which becomes a 

Maxwell-Boltzmann distribution. 
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So, if we put E is Ec + (1/2)m*v2 in this function what we obtain is the distribution of 

various velocities. 

So, what we can say is that the distribution of velocities is exp((EF-E)/kT) or E is being 

replaced by Ec + (1/2)m*v2. So, this will be Ec - (1/2)(m*v2/2kT). This kT is the 

common denominator here by  kT. So, this can be this constant part can be taken out. So, 

which is exp((EF-Ec)/kT) times exp(-m*v2/2kT). 



And now this v2 is actually the 2-dimensional velocity. So, this v2 is vx
2 + vy

2. For an 

arbitrary electron which is starting in the channel. So, if there is this arbitrary electron it 

will have this is the velocity at any angle it will have a vx component and it will have a vy 

components, this is the net velocity, this is source, this is drain and this is the channel. 

So, this is how we obtain the distribution of velocities in the ballistic MOSFET. And 

what is the meaning of this distribution of velocities? So, this is in a way the probability 

that the that an electron will have a velocity v in the channel. 

(Refer Slide Time: 25:00) 

 

And if we simplify this further, it will be this v2 can be written down as vx
2 + vy

2. So, this 

velocity distribution function can be written as fo(vx , vy) is equal to exp((EF-Ec)/kT) 

times exp(-m*( vx
2 + vy

2)/2kT). 

So, this velocity distribution function which is also known as the Maxwellian distribution 

of velocities is the probability that a certain electron will have the vx velocity in x 

direction and vy velocity in y direction, that will be given by this function. That is why it 

is known as the velocity distribution function also known as the Maxwellian distribution 

of velocities. Because the Fermi-Dirac distribution has boiled down to the Maxwell-

Boltzmann distribution in this case. 
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So, now we can see how this saturation thing is coming in picture in our case. So, in a 

MOSFET typically, if we just draw the barrier in the MOSFET. This is how the barrier is 

without any VDS, this is the source side this is the drain side and this is how the barrier 

becomes when a drain voltage is applied in the system. 

So, there will there would be some electrons that will come go from source to drain and 

there would be some electrons that would go from drain to source. So, some electrons 

will be travelling in positive x direction and some electrons will be traveling in negative 

x direction and the channel is along the x direction. 

So, we will be focused more on the vx component of the velocity and for the electrons 

travelling from source to drain side or positively travelling electrons or electrons 

travelling in +x direction this EF will be EFS, because the source is the electron where 

they are coming from. And the electrons that are coming from the drain side the drain 

contact will be the origin of the electrons. So, instead of EF we will have EFD ok. 

So, this will be the Maxwellian distribution of velocities for electrons travelling in plus x 

direction from source to drain and this will be the Maxwellian distribution of velocities 

for electrons travelling from drain to source, the only difference is in EFS and EFD ok. So, 

this tells us about something important and here in generally in MOSFET we are 

concerned only about this point which is the top of the barrier. 



So, for this point Ec becomes Ec0 and these functions will give us the probability that a 

positive velocity electron is there. So, this will be the probability that an electron with 

velocity vx and vy is travelling in +x direction and this will be the probability that an 

electron is travelling in -x direction with velocity vx and vy. 

Now, let me show you some something important here. So, this is the plot of the 

Maxwellian distribution of velocity for various drain voltages. So, this is the plot for VDS 

equal to 0 volts, this is for us very small VDS 0.05 volts this is slightly larger VDS 0.1 

volts and this is a very high VDS 0.6 volts and this is the key to understand the velocity 

saturation in the ballistic MOSFET. 

So, when there is no drain voltage VDS is 0 volts, in that case this distribution function 

fo(vx , vy) in this function both positive components and negative components are equal 

and as you can see in this 3D plot here that that this is exactly a symmetric distribution of 

velocities. And so, the number of electrons or the electrons having positive velocity, the 

probability of electrons to have positive velocity and the probability to of electrons to 

have negative velocity is the same. 

So, the net velocity is 0 in that sense and that is the equilibrium condition. When a small 

VDS is applied, in that case this EFD goes down a little bit and that essentially reduces this 

EFD - Ec0. This actually this screwed things are now screwed now f+ and f- are not the 

same. And as you can see here that now more electrons have positive velocity as 

compared to the negative velocity. 

So, there is a net current in the MOSFET, for slightly larger VDS the negative velocity 

electrons drop down abruptly and only the positive velocity electrons are there. And 

finally, for higher values this totally diminishes the negative component totally goes 

away and only the positive component is there and this is the situation, when the 

negative component is totally gone away. 

This is the case when the velocity is saturated because even on increasing VDS further, 

the velocity the net velocity will not increase. Because the net velocity is the difference 

between the positive and the negative functions here. So, at a certain VDS this negative 

component goes to 0 and that essentially saturates the velocity in the MOSFETs. 



So, I will let you think more about this and in the next class we will conclude this 

discussion and we will start with the electrostatics part of the MOSFET and that will put 

everything together so that this MOSFET theory becomes clear. So, that is all for the 

day. 

Thank you for your attention, see you in the next class. 


