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Hello everyone, in today’s class we will study about the Ballistic MOSFET, the electrical 

characteristics of the ballistic MOSFET and as all of you know that we have concluded 

our discussion on the Landauer’s model of transport for the MOSFETs.  

And that was pretty much a generalization of the of what we had studied for a two 

terminal device during our discussion of the general model of transport. So, general 

model of transport and Landauer’s model of transport both of them are actually the same, 

it was given by Landauer and it was further generalized by Datta and Lundstrom ok. 
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So, let us quickly review what we have seen so far in last few classes, we have seen that 

that in the Landauer transport model this is the current equation that we obtain and this 

equation has a few important quantities few important parameters. One is the number of 

modes in the channel, second is the transmission coefficient of the channel and third is 

the difference between the Fermi functions of the source and the drain. 



So, that is quite important this term and that is also the term that drives the current that is 

also sort of the driving factor because if f1  is equal to f2 in that case the current becomes 

0 and there is no current essentially and the equilibrium is there. So, further we saw that 

in our discussion of the MOSFET. So, this is this is a pretty general expression of the 

current, the second expression is w times average charge times velocity. 

And so this velocity is actually what we are concentrating at the moment and further on 

we will talk more about the charge which will come when we discuss the electrostatics of 

the MOSFET. So, in this discussion in our discussion on the MOSFET this velocity is 

the velocity at which the charge in the channel is moving. But there is a situation in the 

MOSFET in the MOSFET if you if we plot the barrier profile this is how it looks like.  

This is the source side this is the drain side and this is the energy landscape in the 

MOSFET and this is the point or this is not a very precise I would say more precise is 

that its right start from this side. So, it is very close to the source and actually this is the 

point where the electric field is very small and this is the point from where in a way 

electrons start their journey to the drain side and a drain current is set up in the device.  

So, in this kind of energy landscape where is this velocity that we are concerned about? 

What is this velocity here? Because as we have seen that the electric field at various 

positions in the channel, so this is the channel region from here to here sort of in this the 

electric field is different at different positions at the top of the barrier the electric field is 

minimum. So, to say it is almost 0 and as we go towards the drain or towards the drain 

side the electric field becomes larger. So, this velocity may also not be in a MOSFET, 

the velocity may also not be actually the same everywhere in a way ok. 

Because especially in the in a diffusive transport based MOSFET in a long MOSFET 

what happens is velocity is dependent on the electric field. So, in order to do proper 

calculation of the current we cannot separately calculate the velocity and separately 

charge, actually they need to be considered together and actual calculation of the 

MOSFET involves the calculation of the drift diffusion equation and the Poisson’s 

equation. 

And if we are doing the quantum mechanical treatment as well the quantum mechanical 

equation of the transport self consistently. So, that way we are able to get the entire 

picture, but this discussion of ours in which we have taken we have tried to understand 



the Landauer transport model and applied to the MOSFET this gives a very good set of 

tools to us, this gives various concepts that help us understand the IV characteristics of 

the model MOSFETs very well. 

And here this velocity is actually the velocity at the top of the barrier that we are mostly 

concerned about. That is because at the top of the barrier the influence of the drain is 

minimum and we can say that the charge mostly depends on the gate voltage and then by 

calculating the velocity and the charge we can calculate the current in this, ok.  

So, and at top of the barrier the average velocity in the x direction is calculated has been 

calculated in this way, this is the expression of the average velocity the average has been 

taken over various angles and all the energy states in the channel.  

Actually ballistic MOSFET this the notion of the density of states will also change 

actually while doing the while doing rigorous calculation of the IV characteristics we 

need to consider the local density of states of the MOSFET at the top of the barrier, ok.  

So, in the Landauer transport just now coming back to the Landauer transport model 

apart from the average velocity which gives us the unidirectional thermal velocity of 

electrons to be [√(2kT/πm*)], this value plays quite an important role.  

And we will see in our coming discussion that the average velocity right at the beginning 

of the channel or the top of the barrier is heavily is related with vT intricately. So, apart 

from the velocity we have the number of modes in the channel which is quite an 

important parameter and this is this we have already derived from our in our general 

model of transport and this is how it looks like.  

So, it is given by (h/4) average velocity over angle or the velocity average in +x direction 

where average is taken over angle times the density of states in the channel. In most of 

our analysis we have considered a 2D channel and that way all the calculations have 

been done. But on the similar lines the calculations can be done for a 1D channel or a 3D 

channel as well. 

So, for a 2D channel this is the expression for the number of modes if we put the density 

of states for a 2D channel in the expression, ok. Second, the average or the steady state 

charge in the channel is given by this expression and while we put the density of states 



for a 2D channel and the Fermi function this is what we obtain ok. The density of states 

for a 2D channel is independent of the energy. So, this is independent of the energy and 

that is why we obtain this kind of expression for the charge.  

So, I would just halt for a moment here and tell you about an observation about these 

calculations. In these calculations you might have observed that there are various orders 

of Fermi Dirac integrals that are coming in the expressions ok. So, the thing is that 

wherever we just have, let us say we just have integral of Fermi function dE and 

something sitting here which is not a function of energy in that case we generally obtain 

the Fermi Dirac integral of order 0 after simplification.  

So, for example, in this expression we are obtaining the Fermi Dirac integrals of order 0 

in these expressions because the density of state is independent of the energy, so that is 

why it is coming like this. When we have let us say number of modes in the current 

expression, so in that case we will have something like this into Fermi function, this will 

be Fermi Dirac integral of order half this will give us the Fermi Dirac integral of order 

half ok. This is just a small observation, so that once you look at the expressions you can 

know what kind of thing is going on there. 

And if we have for example, something like this if we have typically if we have a 

derivative of the Fermi function in that case the derivative; the derivative comes outside 

of the integral if we have a derivative and this becomes a Fermi Dirac integral of order -r 

because the derivative reduces the order of the Fermi Dirac integral by 1. So, these are 

some small observations about the calculations.  

Because sometimes you might feel that that these Fermi Dirac integrals are some are non 

intuitive parameters and that might create a bit of confusion while understanding these 

equations. So, just by looking at the order of the Fermi Dirac integral you can know 

where this is coming from ok. 
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So, by using all these concepts we can calculate the conductance of the device and this is 

how it looks like the conductance expression is at actually (2q2/h) ∫T(E)M(E) (-δf/ δE) 

dE. And for a small I would say for a near equilibrium transport for small applied voltage 

in the linear region this is how the expression looks like and T(E) is essentially λ/L, 

M(E) is this and (-δf/ δE). 
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So, now using the ideas from the Landauer model of transport we will now try to 

understand the ballistic MOSFET and this is the first question that we ask and that is, 

what is the ballistic MOSFET? And I guess by now it should be clear to all of us that 

ballistic MOSFET is the MOSFET in which there is no scattering in the channel ok, 



which means that the electron which enters into the channel from the source side directly 

goes to the drain side. 

But please remember this as well that the source and the drain regions are large and there 

is no scattering in the channel, but does not mean that there is no scattering in the source 

or in the drain. 
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So, essentially what happens is this is how it looks like there is a source, there is a drain 

and there is a channel region, we are just looking at the channel region of the MOSFET 

and the electron starts from the source directly goes to the drain side. So, there is no 

scattering in the channel, but electrons undergo lot of scattering in the source and in the 

drain. So, almost always an equilibrium like situation is maintained in the source and the 

drain region.  

So, just remember this part apart from this is how the barrier in that ballistic MOSFET 

looks like, this is just like any just like barrier in any other MOSFET. And as we just 

discussed that the most important region of the barrier is the one where or this region 

right from the top of the barrier up to the right side. So, just to stop for a moment and just 

to sort of highlight one more point here that in a MOSFET this is how the geometry of 

the MOSFET is it is typically in an N MOSFET this is a P type material the source and 

the drain are n type materials.  



So, in a way there is as there is a p n junction at the source and the channel region at in 

this region and there is a p n junction in this region and depending on the doping of the 

channel and the contacts this depletion width will be there. So, the actual in a way the 

actual active region of the MOSFET is this region and this is what is shown here, this is 

the active device of the active device region in the MOSFET and in this region there is 

no scattering. 
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So, and in a MOSFET generally what we have seen is that the velocity at this top most 

point, the velocity here is quite important because by just by calculating the charge and 

the velocity at this point we can calculate the current in the MOSFET. So, we are mostly 

concerned about or mostly will be focused about this single point which is the top of the 

barrier in the MOSFET. And here in order to better understand the electrons behavior we 

need what is known as the local density of states which means the number of electrons 

per unit energy right at the top of the barrier.  

So, it is generally represented as the density of states as a function of energy, but at x 

equal to 0. So, this x equal to 0 is the point which is the point of top of the barrier ok and 

right at this point we also need what is known as the number of modes in the MOSFET. 

So, this is the situation with us we have a source Fermi function we have a drain Fermi 

function and in between we have a ballistic region where there is no scattering, but there 

is a scattering in the source and the drain region. 



So, in equilibrium equal amount of electrons are coming from the source and the drain 

side. So, that is why the current is 0, but as soon as some voltage is applied on the drain 

side there is this EFD and EFS are misaligned. EFD goes down if the applied voltage is 

positive and in that case there is a current which starts in the device. So, the current in 

the linear regime, so the expression of the current is if you recall it is (2q/h) ∫M(E)(fS – 

fD)dE is this is the general expression of the current and in the linear regime the applied 

voltage is very small.  

So, in that case this (fS – fD) can be approximated by. So, it is approximated by (-δf/ δE) 

times qV. So, q we have already taken outside and only the V is there. So, this is what 

we have, where V is the VDS in this case which is the voltage between the drain and the 

source. So, if we simplify this expression by putting the number of modes and taking the 

derivative of this is what we obtain. We obtain W times (2q2/h) gv is the valley 

degeneracy and [{√(2πm*kBT)}/ 2πℏ] Fermi Dirac integral of order minus half F-1/2(ηF). 

So, this is what we obtain in the linear region and as you can see that this linear region 

the current is directly proportional to the applied voltage. So, it is a linear relationship 

between the current and the applied voltage on the drain terminal as is expected from the 

linear regime. This parameter ηF is EFS minus Ec0 and just to take a note here this Ec0 is 

this exactly this point the top of the barrier point essentially, this is since this is x equal to 

0. So, the conduction band minima at this point is represented as Ec0. 

So, generally this is the point where we focus our attention because at this point we can 

in a way make a resolution between the effect of the gate and the effect of the drain on 

the current ok. So, this is pretty straight forward thing in the ballistic MOSFET this is the 

current in the linear regime, in the saturation regime starting with this expression. So, 

starting with this expression in the saturation regime the applied voltage is relatively 

large. 
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So, which gives us fS is greater than fD which means that now the current in the 

saturation regime IDSAT can be written as (2q/h) ∫M(E)fS(E)dE. So, so this M(E) is the. 

So, since if we are mostly we are considering a 2D channel. So, this for a 2D channel this 

is how it looks like and after doing the calculations it is this times this mathematical 

factor times Fermi Dirac integral of order half in this case.  

And as you can see that the current here is does not have a direct dependence on the 

applied voltage which implies that the current has saturated, it is no longer independent 

of the or no longer dependent on the VDS or it is independent of VDS, ok. So, these are the 

extremas of the current; one is the linear an extremely small applied VDS, one is the 

saturation regime where the large VDS is there.  

For a general expression we need to start from this and do the, so as expected we can 

calculate the current right from this expression and the general expression of the current 

will be by putting the number of modes which will now have Fermi Dirac integral of 

order plus half. But there will be two Fermi Dirac integrals please remember that one is 

because of the source Fermi function and second is because of the drain Fermi functions 

and that is shown here ok.  

So, I hope these mathematical expressions are now making sense I would again repeat it 

just to emphasize its importance that the exact understanding of ballistic MOSFETs or 

modern MOSFETs is better done when we do the calculations self consistently when we 



do the Poisson equation, the semi classical equation of transport and Poisson equation of 

electrostatics and solve them self consistently. 

Here we are first trying to understand the semi classical transport, the ballistic transport, 

Landauer model of transport and later on we will see the electrostatics. And then doing 

themselves consistently can also be easily or naturally that will be a natural consequence 

of both of these discussions that will be understandable once we understand these things. 

So, even then these equations are quite important tool to understand the IV 

characteristics of a given MOSFET ok. So, that is the main point here that they are quite 

an important they play quite an important role in understanding the; in understanding the 

any experimental characteristics or any characteristics that we obtained from the 

simulations. 

So, just to sort of highlight this that ηFS here is EFS - Ec0 and ηFD is EFD -Ec0 where EFS is 

the Fermi level of the source contact and EFD is the Fermi level of the drain contact and 

the difference between EFS and EFD is essentially q times VDS, Ec0 is again the conduction 

band minima at the top of the barrier point. 
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So, finally, the charge in a ballistic MOSFET can be calculated using the this expression 

which is pretty general expression. And here since the density of state of a 2D channel is 

independent of the energy, it means that it will now have this integral will have Fermi 



Dirac integral of order 0. So, this will be the charge expression. Now, all these 

calculations have been done for the for a 2D channel and in 2D channel typically what 

you have? You must have observed by now is that in the charge expression we obtain the 

Fermi Dirac integrals of order 0. 

In the current expression in the linear regime we have the Fermi Dirac integral of order 

minus half in the saturation regime we have the Fermi Dirac integral of order plus half. 

So, these are the various orders of integrals of Fermi Dirac integrals that we encounter in 

a 2D channel. So, now, this is again for you to do this is like an homework exercise for 

all of you to do in order to have a better understanding of this kind of maths. 

Now, I would recommend you to derive the current and conductance expressions for a 

nanowire MOSFET. So, nanowire MOSFET can be assumed to be a 1D channel. So, 

assuming the density of states of a 1D channel, now please do all these calculation the 

calculation of the current and the conductance also for the charge in the channel, that will 

give you proper insights on how these calculations are done. 
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So, in summary what we have so far is that by using this expression for the current (2q/h) 

∫M(E)(f1 – f2)dE, limits from Ec to ∞, and by using this expression for the charge density 

(1/2)[ D2D(E)f1 + D2D(E)f2 ]dE. So, by using these two expressions we can understand 

the steady state charge and steady state current in the device ok. 



And ultimately while solving these integrals it is converted in Fermi Dirac integrals of 

various orders. So, this analysis is in a way I would say complete, but we have also seen 

in the beginning that the current expression, the general current expression is something 

like this. So, if we try to reformulate this current expression in this form that will give us 

better understanding of how much channel charge is there and what is the average 

velocity of the electrons in the MOSFET at the top of the barrier, ok. 

So, that is what we do we try to we have this is the general expression of the current, it 

has a constant factor times Fermi Dirac integrals of order half and this is the expression 

for the charge. Now, if we try to reformulate this thing in this form, then what we need to 

do is. So, the charge is essentially Qn is -q times N2D/2 [Fo(ηFS) + Fo(ηFD)]. 

And this is the expression for the current that we obtained from the Landauer model. So, 

what we do here is that we now in the current expression in this particular expression of 

the current IDS is we take W outside and this N2D e is can also be expanded and that will 

give us Qn (VGS, VDS) because this is a function of VGS time VDS. And here what we 

obtain is [√(2kT/πm*)] times Fermi Dirac integral of order half divided by Fermi Dirac 

integral of order 0 times this factor comes in play. 

Now, 1 minus Fermi Dirac integral of order half ηFD times divided by Fermi Dirac 

integral of order half ηFS divided by one plus Fermi Dirac integral of order 0 ηFD divided 

by Fermi Dirac integral of order 0 ηFS. So, if what we do is we divide this expression IDS 

expression by Qn and then see what happens on the right side and then we take the Qn to 

the right side and this is what we obtain. 

So, we obtain IDS is equal to W times Qn times this factor here. So, this entire factor after 

Qn it can be considered to be the average velocity because if we compare this expression 

to this expression above. So, the current is effectively the current is this and if we 

compare this to this expression the average velocity this part this will be essentially this 

entire thing here ok. 

So, this is the average velocity right at the top of the barrier in a ballistic MOSFET and 

as you can see here that apart from the unidirectional thermal velocity components is let 

us may be cleanly right here this average velocity ok. 
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So, the average velocity will be ballistic injection velocity times [1 – (F1/2(ηFD)/ 

F1/2(ηFS))] /[1 + (F0(ηFD)/ F0(ηFS))] . So, this is the average velocity of the electrons right 

at the top of the barrier. So, this if this is the barrier in the MOSFET, this is the average 

velocity of the electrons when a VDS voltage has been applied in the device.  

So, as you can see that it depends on both ηFD and ηFS where this ballistic injection 

velocity is this velocity which is vT times which is [√(2kT/πm*)] that is the thermal 

velocity times Fermi Dirac integral order plus half Fermi Dirac integral of order 0 ηFS. 

So, this is what it is, this is the unidirectional thermal velocity, this is the ballistic 

injection velocity.  

Or, in a way if we just leave it to the source this is the velocity with which electrons are 

being pumped from the source side without any influence from the drain side this is what 

the ballistic injection velocity actually mean. And when in addition to the source voltage 

we have a non-zero drain voltage as well in that case the average velocity right at the top 

of the barrier is a function of the of both ηFD and ηFS. 

So, it depends both on the source voltage and also on the drain voltage ok. So, in the 

transport theory essentially now we have reached to the average velocity at the top of the 

barrier which is I would say the most important conclusion in the MOSFET transport. 

So, this is what we will discuss in more detail in the coming class and till then I would 

like you to do this calculation the current conductance and the charge calculation for a 



nanowire MOSFET and try to think more about this average velocity in the channel at x 

equal to 0 point. 

The ballistic injection velocity is essentially whenever we have equilibrium there is no 

effect of the drain in the system this is just because of the source, so that is the ballistic 

injection velocity it also is an important parameter ok. So, that is all for this class see you 

in the next class. 

I thank you for your attention during the class. 


