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Hello everyone, today we will discuss or we will complete our discussion on the 

Landauer Model of Transport in the context of MOSFETs and then we will discuss some 

of the ideas related to the Ballistic MOSFET particularly ok. So, this is going to be an 

interesting discussion because how do we understand the IV characteristics in ballistic 

MOSFET and how do we understand the saturation of IV characteristics in ballistic 

MOSFET. 

That is what we hope we will possibly understand during the course of this discussion 

may be in this class or in the coming class ok. 
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So, let me quickly review what we have seen so far. So, in the Landauer formalism of 

transport this is the current equation that we start with and this equation was although 

derived for a two terminal device in our discussion, but this is equally applicable to the 

MOSFET device as well and while we try to use this equation in the context of MOSFET 

we will generally compare this to our conventional equation this equation. 



And that way we can try to understand what is the velocity average velocity with which 

the charge carriers are moving in the MOSFET and what is the total charge in the 

MOSFET. This charge can also be calculated from our expression of charge which is 

which looks like this in the steady state. So, this is the charge in the steady state it also 

comes from the general model of the transport and this is generally can be written as 

D(E) times (f1 + f2) /2. 

So, this is the total number of charge carriers at steady state in the channel q is the charge 

in this case it will be negative. So, we will use a negative sign while doing the discussion 

of the charge in the MOSFET. 

(Refer Slide Time: 02:47) 

 

So, as you know that in our Landauer approach of transport generally this you might 

recall from our previous discussion as well that generally we try to understand the I V 

characteristics for small biases or in the linear regime. 

Because a small biases in the linear regime of the I V characteristics of the MOSFET and 

for large biases which is the saturation regime and at extremely low temperatures this 

entire analysis becomes very easy it is it becomes pretty easy to understand and at higher 

temperatures since the Fermi window the idea of Fermi window or this term f1 - f2 this 

becomes quite complex and that is why we need to use the Fermi - Dirac integrals. 



In order to account for the scattering in the channel we use a transmission coefficient 

parameter which is T(E) parameter and this parameter from our derivation this turns out 

to be λ /L, where λ is the mean free path and more precisely it is T(E) is λ(E)/ [λ(E)+L]. 

And in our previous class we discussed that the unidirectional thermal velocity is the 

velocity which is defined as the velocity of electrons going from the source side to the 

drain side. 

And it is averaged over angle and averaged over various energy states and this is what is 

the expression of the double average and unidirectional thermal velocity is generally 

defined as the velocity in the case of when we consider the non degenerate 

semiconductor and this is the expression of the unidirectional thermal velocity because 

this Fermi- Dirac integral in the numerator and in the denominator they will cancel out 

each other when we are considering a non degenerate semiconductor ok. 

So, this is what we have and this is also the situation below threshold in the MOSFET 

because below threshold not much charge is there in the channel which means that still 

the conditions like non degenerate semiconductor conditions are maintained and there is 

one interesting aspect here which is that for the electrons sitting in the conduction band. 
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In the case of non degenerate semiconductor the electrons sitting in the conduction band 

will look something like this we will have electrons here ok and for the non degenerate 

semiconductor this EF the Fermi level is significantly far away from the bottom of the 



conduction band ok. And the energy of electrons which is just above the bottom of the 

conduction band is larger than EF and it is quite significantly larger than EF or it is many 

kT times or what we can write is E is EF + kT times c where c is a good number c is 

maybe 9, 10 or maybe more than that. So, in that case this Fermi Dirac distribution 

function this in this exponential term becomes large and as compared to 1 and it can be 

approximated by a the Maxwell distribution function. 

So, this Fermi - Dirac distribution function can be approximated by the Maxwell 

distribution function in the case of non degenerate semiconductors which is actually the 

case in most of the practical devices and that is why these Fermi - Dirac integrals can be 

approximated by exponentials and that is why we can cancel out the term in the 

numerator and the denominator and that is why this thermal velocity is defined as 

unidirectional thermal velocity is just defined as the this thing without the Fermi - Dirac 

integrals. 
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Because this is the velocity at equilibrium which means we are assuming that the below 

threshold conditions are prevailing and below threshold conditions are the conditions 

which are quite similar to the non degenerate case conditions. However, when current is 

flowing through the device in that case we cannot make this approximation we cannot 

approximate the Fermi - Dirac integrals by the exponentials and we need to explicitly 

solve for them ok. 



In some cases although in order to have a better understanding we try to actually 

approximate the Fermi - Dirac integrals by the exponentials. So, I hope this idea of the 

unidirectional thermal velocity is clear and a related idea is the idea of the injection 

velocity ballistic injection velocity that will become apparent in the discussion of the 

ballistic MOSFET. 
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Before going to the topic of the ballistic MOSFET let us quickly revise the idea of modes 

in the Landauer transport model. In the modes are defined as the conduction pathways 

and this we have I guess repeated many times by now that modes are defined as the 

conduction pathways and the reason is that when electrons travel through the channel 

they travel through the energy states, but because of the finite lifetime of electrons in 

these energy states. 

These energy states are broadened and that results in a broadened pathway in the channel 

which is different from the energy states or this parameter m which is the modes it 

becomes different from the density of states and that is precisely the reason that we need 

to introduce a new parameter in the general model of transport which is known as the 

modes in the channel ok. 
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So, for a 2D channel the modes are defined as M(E) is equal to (h/4) times average 

velocity in x direction times the density of states of the device for a 2D channel. 

(Refer Slide Time: 10:28) 

 

And for a 2D channel we can do this calculation explicitly. The density of states is given 

by m*/πℏ2 and the average velocity this average is taken over the angles this will be 

given by (2/π)v(E) and if we put these expressions together then this is what we obtain. 

So, the modes in a 2D channel is 2 m* (E-(EC+€1)) divided by πℏ, where this €1 is the 

energy or the ground state energy of the first sub band. 



So, actually a 2D material is practically a quasi 3D material because there is a finite 

thickness of the material. So, there is a confinement in the third direction as well and 

because of that sub bands arise in a 2D material and that results in this. So, that modifies 

the ground state of the electrons and so that is why we need to account for this parameter 

€1 as well. 

So, this is the parameter that also appears in the current expression and while explicitly 

calculating the current in the channel we will use this expression actually. 
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And this is the difference between the density of states and the modes as is clear, they are 

quite different from each other in a 2D material the density of state is independent of the 

energy of the state it is the same for all possible energies in the conduction band. 

But the number of modes as you can see it is low for energies close to the bottom of the 

conduction band and it increases as we go away go far away from the bottom of the 

conduction band which means that very few conduction pathways are there at the bottom 

of the conduction band in a 2D channel. Although so these two ideas are related, but 

physically and intuitively they have quite different implications. 

So, this is just to quickly review the idea of modes. So, we will use this idea of modes in 

a while calculating the current in the MOSFET particularly in ballistic MOSFET or even 

in a diffusing MOSFET using the Landauer model of transport. So, once we have this 



idea of modes with us we can calculate the conductance of the channel as well 

conductance of the device as well. 

And if you recall our discussion the conductance expression can very cleanly be 

calculated for near equilibrium transport, which means near equilibrium means that the 

applied voltage is not so high. So, it is a small applied so, at small applied voltage is the 

conductance is given by (2q2/h) ∫T(E)M(E) (-δf/ δE) dE and at T equal to 0 Kelvin this 

expression assumes a very clean form because this derivative here this changes to a delta 

function. 

And so, this integral vanishes and which means that at T equal to 0 Kelvin this turns out 

to be (2q2/h) ∫T(E)M(E) δ(E- EF) dE this is delta function at the Fermi energy. So, it 

becomes transmission coefficient at energy EF times the modes at energy EF ok and if we 

make this calculation explicitly and for a ballistic conductor T(E) is 1 and this 2q2/h is 

1/(12.9 kΩ). 

So, the conductance is equal to the number of modes divided by 12.9 kilo ohms which 

means that the conductance of a single mode is 1/12.9 kilo ohms or thus unit of the 

conductance is the inverse of the ohm this ohm comes in the numerator. When the 

temperature is not 0 Kelvin at room temperature in practical situations what happens is 

that this current expression then takes the integral in the current expression is converted 

to the Fermi - Dirac integral. 
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So, this idea of number of modes and the idea of conductance is I guess I hope clear. 

Now, this. Now, we come to this an important idea which is the carrier densities or 

number of charge carriers in the channel in the Landauer transport model and if you 

recall in an arbitrary semiconductor the number of electrons or the number of charge 

carriers in the conduction band is given by this integral from Ec to ∞, D(E) number of 

electrons per unit area will be the charge density will be and this is actually the D2D(E) 

parameter. 

In a device in a two terminal device and also in a MOSFET the charge carriers or the 

charge carrier density will be given by this parameter (½)[D2D(E)fS(E) + D2D(E)fD(E)]dE 

So, this will be the carrier density in the channel. And if you remember our general form 

of the current this is the general form of the current in the MOSFET. So, this charge in 

the channel the charge density in the channel is actually obtained by this expression here 

ok. 

So, please keep this in mind this is an important parameter and it depends on the 

electrostatics of the MOSFET that we will study in coming discussions. But a 

straightforward way to calculate the carrier density the charge density the number of 

electrons per unit area in the channel is by using this expression ok. So, in order to 

calculate this expression let us first see how this expression actually looks like. 

This is the expression for a general semiconductor when there is when it is in contact 

with a with or when it has a Fermi function f(E) and density of states D2D(E). So, in that 

case in a 2D case this is how it looks like D2D(E) is m*/πℏ2 and the Fermi function is 1/[1 

+ exp{(E-EF)/kT}].  

Now this integral is again transformed into a Fermi - Dirac integral by replacing the 

variables like this (E - EC), η is defined as (E-EC)/kT and ηF is defined as (EF-EC)/kT. So, 

which means that {(E-EF)/kT} is actually η - ηF. 

And this is the exponent in the Fermi function. So, this exponent (E-EF)/kT can be 

replaced by η - ηF and this D(E) can be replaced by kT times dη. So, finally, this carrier 

density ns turns out to be m*kT/πℏ2 square limits transform from 0 to ∞, dη/[1 + exp (η - 

ηF)] and if you remember the Fermi - Dirac the form of the Fermi - Dirac integral this is 

the Fermi - Dirac integral of order 0. 



So, this becomes (m*kT/πℏ2) F0(ηF), Fermi - Dirac integral of order 0. So, this is the 

number of electrons in the channel per unit area, this is the density of electrons in the 

channel at a finite temperature. Now by using or by having a generalization of this 

expression we can calculate the electrons in the MOSFET as well or the carrier density 

charge density in the MOSFET as well using this equation. 

This equation and this equation and this is again please remember that this is an 

important parameter because this tells us about how much charge is there in the channel 

while the MOSFET is conducting ok. 
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So, generally this parameter m*kT/πℏ2 is defined as N2D, where N2D is the modified 

density of electrons. So, this carrier density becomes capital N2D times Fermi - Dirac 

integral of order 0 ok. 
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Now, it gives us an expression for the conductance as well. So, in a device the charge the 

carrier density is defined as this which is essentially this. So, this means just to quickly 

review what it means this means that the source contact the left hand side contact is 

trying to fill the channel up to the source Fermi source Fermi level. 

And the drain contact is trying to fill the channel up to the drain Fermi level and in 

steady state the channel will be can be assumed to be filled up to the halfway of the two 

Fermi level. So, for example, if the source Fermi level is here EFS is here, the drain Fermi 

level is here, it can be assumed that in steady state the channel Fermi function will be in 

the midway of the two Fermi levels. 

Or the channel Fermi function can be assumed to be the average of the source and the 

drain Fermi functions. So, this f of the channel can be assumed to be the (fS + fD) /2. So, 

this calculation we have already done because this D2D(E)f(E)/2 is essentially N2D times 

Fermi - Dirac integral of order 0. 

So, this first term the carrier density in the channel is (1/2) N2D, because this (1/2) will 

come out Fermi - Dirac integral of order 0 ηFS, where ηF please remember that it should 

be actually ηFS, + (1/2) N2D Fermi - Dirac integral of order 0 ηFD. Because now this 

parameter ηF will be different for the source contact as compared to the drain contact. 
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So, this ηFS can be defined as (EFS – Ec)/kT and ηFD is defined as (EFD – Ec)/kT and 

which ultimately gives us and please remember that EFS - EFD is q times the applied 

voltage qV. So, which means that ηFS - ηFD is qV times kT or ηFD is essentially ηFS – 

qV/kT. 

So, this ηFD can be replaced. So, if we assume that ηFS is ηF. So, this ηFD can be assumed 

to be ηF – qV/kT. So, that is what it finally, becomes this becomes N2D Fermi - Dirac 

integral of order 0 ηF + Fermi -Dirac integral of order 0 ηF – qV/kT. So, this is the steady 

state charge density in the device in the MOSFET according to the Landauers formalism. 

And similarly, this conductance can also be calculated in this way ok. So, we have 

already seen the calculation of the conductance, this is quite a general this is just a 

generalization of the Landauer model of transport that we discussed for a two terminal 

device to the MOSFET device. So, I would recommend all of you to do this calculation 

on your own we have already done this. 

So, this will be a good exercise on your part. So, this essentially concludes our 

discussion of the main points of the Landauer model of transport in MOSFETs. So, we 

are now ready to understand the electrical characteristics of the ballistic MOSFET and 

just to quickly review the ballistic MOSFET cannot be understood in terms of the basic 

in terms of the conventional conduction theory of electrons which is based on the 

Drude’s model. 



So, that is why we need this Landauer model of transport and since we have discussed 

the main points of this new transport model we are now ready to understand the ballistic 

MOSFET. 
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So, in a ballistic MOSFET the first term the first thing that comes to our mind is that 

there is a left contact, source contact, there is a channel, there is a right contact in the 

device, there would be a third contact as well which is also known as the gate contact or 

the control terminal. 

So, in a ballistic MOSFET the electron starts from the left contact and directly goes to 

the right contact without any collision in the channel. So, it travels without collisions, 

which means that the transmission coefficient is 1, there is no collision no scattering in 

the channel. So, the transmission factor is 1. 

So, in all the expressions that we have discussed so far in the Landauer model of 

transport we need to put T(E) to be equal to one while we are dealing with a ballistic 

MOSFET and there are many interesting ideas in the ballistic MOSFET. So, since there 

is no collision in the channel the question is where is the resistance coming from and this 

question we have addressed in detail, this resistance is coming from the contact source 

contact and the or from the interface between the between a bulk contact and a ballistic 

channel. 



So, the energy or the resistance is at the interface of the channel in the contact, the 

energy is dissipated in the channel dissipated in the contact not in the channel. So, all 

these things are all these ideas must be clear because there might be a false notion that in 

ballistic MOSFETs the resistance will be 0, that is not the case the resistance is there and 

that is there because of the interface between the source and the channel and the drain 

and the channel. 

So, the current expression is by putting T(E) is equal to 0 in Landauer formalism the 

current expression becomes (2q/h) M(E) modes times (fS – fD) times dE this is the drain 

current in a ballistic MOSFET. 
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So, in the linear regime when the applied voltage is very less in that case the source 

Fermi function is very close to the drain Fermi function. 

And in that case this (fS – fD) can be approximated by (-δf/ δE) times qV. So, the current 

in the linear regime actually becomes (2q2/h) M(E) times (-δf/ δE) times V times dE and 

from here we can define the conductance of the MOSFET which is (2q2/h) ∫M(E)(-δf/ 

δE)dE. 

And in the saturation regime, which is when a high voltage has been applied on the drain 

terminal in that case the source Fermi function or the source Fermi level is well above 

the drain Fermi level and in that case this difference between the source and the drain 



Fermi functions can be approximated by the just the source Fermi function and it means 

that in saturation the drain current in the MOSFET is (2q/h) ∫M(E)fS(E)dE ok. 

So, these are the equations to start with while trying to understand the ballistic MOSFET. 
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So, now the question is how does the transport happen in a ballistic MOSFET? So, that is 

the first question that we will ask here how does electron travel through this barrier in the 

MOSFET and I will first let you think about this and then in the next class we will start 

with this discussion how the electron is essentially transported in a ballistic MOSFET 

first intuitively and second mathematically. 

And then we come across an interesting fact that the current in ballistic MOSFET also 

saturates even though there is no velocity saturation because of the scattering and there is 

no pinch off. So, called pinch off according to the conventional theory, but still there is a 

saturation and there is a different reason for the saturation that we will see here ok. 

So, please think about the electron movement across the barrier in a ballistic MOSFET 

and we will start from this point in the next class. 

Thank you for your attention see you in the next class. 


