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1D and 2D Realistic Conductors 

 

Hello everyone. In the last class, we started seeing how practical 2D and 1D channels look 

like, how do we sort of need to analyze those things in those channels in more with more 

nuances and. So, today we will complete this part and we will begin with the introduction 

of MOSFETs ok. 
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So, let me quickly review what we have been doing. In this in last few classes, we have 

been discussing how the notion of resistance and conductance is different in classical 

understanding in the conventional understanding, and how it is different in the general 

model of transport both for 1D, 2D and sorry for all 1D, 2D and 3D conductors. 

Apart from this we saw that in a ballistic conductor the power dissipation takes place at 

the contacts half of the power is dissipated at the left contact and half is dissipated on the 

right contact. Similarly the voltage drop also takes place on the contacts. And this is 

actually quite opposite to what happens in the conventional macroscopic devices ok. 



So, these are some new things. So, ultimately the equation to begin with or the central 

equation to calculate the conductance is this. And please keep in mind that this is true for 

near equilibrium transport; near equilibrium means that we are not applying high voltages 

because in that case (𝑓1 − 𝑓2) cannot be approximated just by the first order of the Taylor 

series ok. 
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So, with this background we started discussing how 1D and 2D resistors, practical 1D and 

2D resistors are different from the ideal cases. In a realistic 2D conductor apart from its 

length and width, we also have a finite thickness and that we need to actually take into 

account while doing the calculations for the current in a channel that is 2D channel ok. 

So, there is a finite thickness. So, the electrons will be confined in this direction because 

this is of the atomic scale and because of the quantum mechanical confinement electrons 

energy will be discrete. So, in the confined direction generally the energy of the electrons 

is given by this number. So, the 𝜀𝑛 energy is 
𝑛2𝜋2ℏ2

2𝑚∗𝑎2   where a is the extent to which electrons 

are confined the carriers are confined. So, in this case instead of a, we might have t because 

t is the thickness in which electrons are confined. 
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So, and in 2 directions, if we just consider 2 directions if we just if we consider ideal 2D 

conductor, the energy of the electrons can be in 2-dimension the energy can be 
𝑘2ℏ2

2𝑚∗  ok. 

So, let us consider the case of a practical or a realistic 2D channel. In a realistic 2D channel 

the electrons are confined again the electrons are confined in z direction, if this is the z 

direction electrons are confined in this direction and electrons are free to move in x and y 

direction. 

Now, if we just see the confinement in the z direction, this is the thickness t and because 

of this confinement in this dimension t, the energies will be discrete the energy of the 

electrons will be discrete and this energy will be given by these numbers. And if we start  

this calculation, the energy of the first level let us say 𝜀1 of the second level call it 𝜀2, for 

third level let us call it 𝜀3. So, 𝜀1 is essentially 
𝜋2ℏ2

2𝑚∗𝑡2. Similarly  𝜀2 is 4 times  𝜀1 and  𝜀3 is 

9 times  𝜀1 ok. 

And please keep in mind that  these are the energies because of the confinement in z-

direction, ok. In x y direction there is no confinement electrons are free to move or we can 

say that relatively the length and width of the semiconductor are large. So, electrons energy 

is not properly discrete it may have bands and band gaps because of x y direction. 

And there will be from the E-k diagram we or from the E-k relationship we might have 

this parabolic relationship specially near the bandages. So, now, any electron that exists 



inside this device, any electron this energy of this electron will be the summation of the 

two components the energy because of the motion in x y direction and energy because of 

the motion in z direction where the motion is confined ok. 

So, now there is an interesting fact here. In x y direction the energy can be as low as 0 

actually. So, energy can go to very low levels ok. So, this E xy typically it can be from 0 

to any high values, but Ez the energy in the confined direction this is the discrete values 

and this is always greater than 0. 

So, it is never 0 even the lowest possible state has a non-zero energy which is given by 

this value ok. So, if let us say if the electron has energy epsilon 1 in z direction or electron 

is in the lowest possible state in the z direction then because of the energy in x y direction 

electrons energy, the total energy of the electrons which is essentially the sum of Exy + 

Ez. 

And here if we put Ez to be  𝜀1; so, it would be Exy +  𝜀1. So,  for these electrons the 

energy can be anywhere from epsilon because this Exy can go from 0 to high values very 

high values as well or a certain value let us say. So, the electrons may have energies from. 

So, the electrons that have energy  𝜀1 in z direction may have total energy anywhere from 

 𝜀1 to a high value alright. 

So,  these lines essentially show the that the electrons can have any energy from epsilon 1 

to high values and, but the electrons let us say the electron if the electron is sitting in  𝜀2 

state or in z direction the electronic energy is  𝜀2. In that case the total energy of the electron 

will be Exy +  𝜀2 and this value can go from  𝜀2 to a very high value.  

So, the electrons sitting in this state in z direction may have any energy starting from  𝜀2 to 

a very high value. So, this may be the energy of electrons in the total energy of the 

electrons, those electrons who are sitting in the  𝜀2 state. So, now, an interesting situation 

arises the electrons that are in  𝜀1 state may have energies here in this regime. 
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So, in this regime also the electrons with energy or electrons sitting in state  𝜀1  can have 

energies in this regime. Similarly, the electrons sitting in state  𝜀2 can also have energies 

in this regime. Electrons sitting in state  𝜀3 can have any energy above  𝜀3. So, they can 

have any energy here or electron sitting in  𝜀1 can have any energy total energy to be this, 

ok. 

So, now this overlap here in this range, in this range electrons can exist in two 

configurations in this range. They can be sitting in  𝜀1 state and have energy sufficient to 

be sufficient so that their total energy is in this range or they can be sitting in  𝜀2 state and 

have the energy equal to the difference between  𝜀2 and energy in this range.  

So, these 2 are different configurations and these 2 are allowed configurations for 

electrons; and this leads to a sort of degeneracy in the systems ok because now there are 2 

type of electrons that can take this energy in this range energy in this range. 
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And these are known as the sub bands, overlapping sub bands. Similarly in this range, 

electrons sitting in  𝜀1 can also have energy, electrons sitting in  𝜀2 can also have energy 

and electrons sitting in  𝜀3  can also have energy in this range. And here the degeneracy or 

there might be three configurations of electrons above  𝜀3. 

So, in other words what we can say is that  these kind of solids have sub bands starting 

from the discrete energy levels because of the confinement. So, the discrete energy levels 

are because of the confinement in one direction that gives  𝜀1, 𝜀2, 𝜀3 in the direction of 

confinement. 

Now, because of the free motion in other two directions electrons energy can be from 0 to 

any value; and in that case the electrons might have an energy configuration in which their 

energy can be  𝜀1 in z direction and Exy in or any arbitrary energy in x y direction. So, 

electrons might have a sub band at  𝜀1, another sub band at  𝜀2, another sub band at  𝜀3. 

And some of these sub bands may be overlapping with each other if these energies are not 

sort of far apart from each other. Now, something interesting happens in this case. In this 

case let us say we have this is the channel this is a real 2D device as has been shown here. 

This we are making a two terminal device with this 2D conductor this realistic 2D 

conductor. So, what it means is that we are putting contacts on 2 sides of it and please 



always keep in mind that these are bulk contacts. So, we are putting contacts on this device. 

This is the source contact, this is the drain contact. 

Now, the Fermi level of the system is let us say here somewhere here EF is this point ok. 

Now, if we need to calculate the total number of electrons in this system in this channel at 

T equal to 0 kelvin, let us say which means that all the states all states up to the Fermi level 

are filled ok. So, all the states up to this Fermi level are filled which means that, and how 

many states can be there up to the Fermi level? 
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So, let us say this was our original potential box this is epsilon 3, this is epsilon 2 and all 

the states below the Fermi level are now filled. There cannot be any allowed electronic 

state below  𝜀1 that is disallowed by the quantum mechanical nature of the electrons. 

So, it means that in this particular case there are 2 states 2 discrete states below EF. So, 

there can be 2 sub bands in the system and the number of electrons in the system will be  

because of this sub band and because of this sub band, which means that there are 2 

configurations of electrons possible in this system. 

One is those electrons that have energy epsilon 1 in z direction and any energy from 0 to 

EF -  𝜀1 in x y direction. Similarly, the second configuration can be that the electrons might 

have energy epsilon 2 in z direction and any energy from 0 to EF -  𝜀2 in x y direction. 



So, that is why we need to calculate generally the formula to calculate the number of 

electrons is the density of states times the Fermi function dE. Now, in order to account for 

both the sub bands and this is from 0 to infinity for all possible energy states. Now, we 

need to do this from 0 to or 𝜀1 to EF because of the first sub band. 
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Or let me write it in a more cleaner way. The number of electrons in the system will be  𝜀1  

to EF because of the first sub band and g(E)  is the density of states. So, g(E)  is the density 

of states; f(E) the Fermi function below Fermi level will be one at T equal to 0 kelvin. We 

are assuming the case to be T equal to 0 kelvin. So, it will be 1 times dE plus yeah. 

Because of the second sub band from  𝜀2  to EF g(E) times 1 times dE ok. So, in a way this 

will be N = ∫ 𝑔(𝐸)𝑑𝐸
 𝜀2 

 𝜀1 
+  2 ∫ 𝑔(𝐸). 1. 𝑑𝐸

 𝐸𝐹 

 𝜀1 
. So, this could be the total number of 

electrons in the system. So, this we need to keep in mind actually while doing calculations 

for the realistic 1D and 2D conductors that now the sub bands are formed because of the 

confinement in the smaller atomic dimension and those sub bands may result in 

degeneracy in the system and that we need to keep in mind and that we need to take in 

account in all our calculations ok. 
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So, similarly this was the case of a practical 2D conductor, a real 2D conductor. Similar 

analysis will hold for a 1D conductor as well. In 1D conductor we will have confinement 

in 2 directions. So, the potential well will be in 2 directions and electrons are free to move 

in 1 direction. So, that the total energy. So, in a real 1D conductor let us say this is x 

direction, this is y direction, this is z direction. 

So, the electrons are confined in y and z direction and the total energy is Ex + Eyz. And, 

now this Eyz is now a discrete value will be a discrete value and that is what essentially 

we need to take into account now ok like we did for. So, there will be sub bands and now 

the sub bands will be even more because this potential well now be in 2 directions and we 

need to solve for the potential for electron confined in 2 directions. 

So, accordingly we will obtain the discrete energy states. And on based on those discrete 

energy states the sub bands will be there and all those sub bands need to be taken into 

account while doing calculations ok. This analysis is pretty much similar to the analysis of 

the 2D channel ok. 
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So, just to sum it up the confinement results in the formation of sub bands and these sub 

bands are based on the discrete energy levels that arises because of the confinement. If the 

confinement in 1 and 2D resistors or if the confinement direction is extremely thin sub 

bands are far apart from each other; and if not sub bands are very closely spaced. 

So,  if a 2D conductor is extremely thin it might happen the other sub bands are very far 

apart from each other and it does not make any difference in that case. So, for example, if 

 𝜀1 is here,  𝜀2   is here or maybe the higher energies are even higher. And if the Fermi level 

of the system is here in that case there will be just this sub bands will not come into picture, 

because yes there will be only 1 sub band that will affect the system and that will be this 

one. 
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By taking sub bands into account the expressions that we derived previously will modify 

like this. So, the expression for the modes will modify in this way, we need to take into 

account all the sub bands and in the even in the expression of even with energy 

corresponding to a sub band we need to take into account this epsilon n number here. 

There is this another number that is known as that is written as gv this is known as the 

valley degeneracy. So, typically what happens is that sometimes in the E-k diagram of the 

semiconductor we might have a situation like this is the E-k diagram or energy axis can be 

here as well. 

So, in this case what happens is that at the bottom of the conduction band or top of the 

valence band there are multiple solutions or multiple E-k plots overlap with each other 

generally at the band edges. So, in this case what happens is that we need to. So, the 

electron can be sitting in, electron can either follow this curve or it may sit in this band or 

it can also follow this curve. 

So, at this energy electron has two choices to take for the E-k relationship for the wave 

function and this introduces this kind of degeneracy that is known as the valley degeneracy. 

And, this is given by gv ok. So, if there are two E-k plots two E k curves or two bands that 

are overlapping with each other right at the bottom of the conduction band then the valley 

degeneracy will be gv ok.  



So, there are two kind of degeneracies that can come into picture; one is, because of the 

overlapping bands and second is because of the sub bands and both of them we need to 

account while doing calculations for the number of modes in our practical devices in our 

realistic devices. So, this summation is over the sub bands and corresponding to a sub band 

there is this  𝜀𝑛   energy. 
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 So, finally, just to sum up everything. The number of sub bands or the number of modes 

in a 1D conductor, this number of modes in a 1D conductor is actually 1 in 1D conductor, 



but because of the practical constraints because of the confinement in two directions the 

number of modes will be equal to the number of sub bands ok. 

In ideal 1D conductor it is 1, but in a practical realistic 1D conductor it might be it is equal 

to the number of sub bands at energy E. In a 2D conductor, the number of the modes are 

given by this expression modes are M(E) is in a 2D conductor M(E) is given as W times 

M2D(E) or it is written as M gv if gv is the valley degeneracy √2𝑚∗𝐸 or generally like this. 

But, with now with sub bands we need to modify this expression like this we need to sum 

over all possible sub bands and in addition we need to introduce this energy term here in 

the square root as well ok. Similarly in the 3D practical resistors the this is for the 2D case. 

In 3D case the number of modes expression is actually given by the area of times M3D(E) 

which is 
𝑚∗(𝐸−𝐸𝐶)

2𝜋ℏ2
. 

And if gv is the valley degeneracy this gv will appear here. And this will not change actually 

because the practical 3D conductor is actually the way an ideal 3D conductor will look 

like. So,  with these modifications in number of modes, now we need to modify the 

expressions for the conductance, because here we need to take the average of modes in the 

Fermi window and we take the average of the transmission coefficient or average of the 

scattering mean free path in each mode over the Fermi window.  

So, this will also get modified accordingly this will be all these things will be modified. 

And finally, in a practical when we sort of have a new device when we have a new material 

and we want to make a device out of it we first need to calculate its density of states then 

number of modes from there we can calculate the and we in addition we also need to 

calculate its transmission coefficient if it is a bulk device or if scattering is happening we 

need to calculate the mean free path or transmission coefficient. 

Then depending on the carrier confinement in other directions we need to find out how 

many sub bands arise in this system and by taking all that into account we can finally, 

calculate the device parameters device I-V characteristics and conductance or resistance 

of the device. So, this is how things actually work in real life ok. And ok so, this is the 

expression for the conductance in a more general case. So, all these things will be modified 

if we take the sub bands into account. 
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So, in summary what we have is while we need to calculate the conductance of the system, 

we always start with this expression ok and this is true for the near equilibrium transport. 

If the transport is not near equilibrium then we will start with the current equation ok.  

Then we have seen here that conductors have finite resistance even in the absence of 

scattering. So, even in the ballistic case the conductance conductors might have finite 

resistance and that is because of the scattering in the contacts ok. We also saw how to use 

conductivity equation when temperature is uniform across the conductor. 

If the temperature is varying that will result in variation in the Fermi functions and that 

will also need to be taken into account that we will see while discussing the thermoelectric 

systems. This ballistic resistance that is the resistance in the absence of scattering in the 

channel that sort of sets a lower limit to the resistance no matter how short the resistor is 

ok. And this is also known as the quantum of resistance and this is given by this formula 

or 1/12.9 𝑘Ω. 

Transport from the ballistic to diffusive limit can be easily calculated if we know the 

scattering mechanisms. So, by knowing scattering mechanism I mean we need to know 

the mean free path and we need to know the transit time in the channel. So, if we finally, 

if we encounter a new material or a new nanostructure and we need to know its resistance 

or its I-V characteristics we need to begin with these set of equations that we discussed in 

our general model of transport. 
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And this slide essentially reviews all those equations that we discussed in detail. So, with 

this we will now see how MOSFET actually works and specially a nano scale MOSFET. 

In this there is one missing point that we have not discussed and that is the derivation for 

this mean free path ok. 

So, if time permits we will do that later, but that is not extremely essential in order to 

understand this entire dynamics ok. So, in the next class we will begin with the discussion 

on the basics of MOSFETs and then we will move to the nanoscale MOSFETs. 

Thank you for your attention, see you in the next class. 


