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The Idea of Mobility 

 

Hello everyone, today we will discuss the Idea of Mobility in ballistic case and in diffusive 

transport case, because this is the only topic I guess that is left that we did not touch upon 

in our discussion of the electron transport in nanoscale devices. 
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 As you might have recalled by now that, we are discussing the or we are sort of contrasting 

the conventional idea of conductivity conductance and resistivity with the modern ballistic 

conductivity or diffusive conductivity of the material. 
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So, this is what we have seen in last few classes. We started with this discussion that this 

is the conventional understanding of the resistance and conductivity and in this expression 

as you can also see that there is a term mu that appears. So, for example, we are since we 

are discussing a 2D case, in 2D case the resistance is inversely proportional to the 

conductance which is inversely proportional to the conductance. 

It is given as resistance is given as 
1

𝑛𝑠𝑞𝜇𝑛
 

𝐿

𝑊
, where 𝑛𝑠 is the sheet carrier density the number 

of electrons per unit area, q is the electron charged, 𝜇𝑛 is the mobility. So, this idea we 

have not sort of encountered as yet, although we do not need it in our ballistic in our 

treatment of ballistic transport or a more general kind of transport. 

We do not need the idea of but mobility, but if we want to compare, the conventional 

understanding of transport with the formalism that we are developing and that essentially 

can be attributed to Landauer and later on to Supriyo Datta and Mark Lundstrom. (Refer 

Time: 02:36) 

So, in that formalism, if we try to see what is mobility of the electrons or charge carriers 

will mean; then we need to compare the expression. This classical or this conventional 

expression of conductivity with the expression that we have derived in last few classes. 

So, in last few classes what we have seen is that we essentially need to begin with this 

expression of conductance. 



So, this is the I would say this is the fundamental expression that you can easily remember 

and this comes from the expressions of the steady state charge carriers and steady state 

current in the system. So, this is the expression to begin with in any case actually, whatever 

be the. If we encounter a new material, we always need to begin with this expression. 

And for this we need to find out the fundamental characteristics of the new material like 

the number of modes and the transmission coefficient and this transmission coefficient 

comes from the scattering of electrons in that material and the Fermi window which 

essentially comes from the contacts, it comes by virtue of the contacts ok. 

So, just to sort of quickly review, this is how it looks like 𝑇(𝐸)𝑀(𝐸)(−
𝜕𝑓

𝜕𝐸
)𝑑𝐸 ok. And 

using this expression what we have seen is that the conductance of a ballistic conductor at 

T equal to 0 Kelvin is given by this expression 
2𝑞2

ℎ
 times the number of modes.  

And from here we see this idea of quantum of conductance coming into picture, because 

this is the if there is only one mode in a device, one mode in the conductor; this is the 

minimum conductance that the conductor will have. If there are many modes this will be 

more, but if the conductor is diffusive conductor in that case this conductance might go 

down.  

Because, the transmission coefficient will also come into picture and the transmission 

coefficient is always less than 1. So, this is the conductance at T equal to 0 Kelvin for 

higher temperatures at room temperatures case, this is the conductance of ballistic 

conductor and here we need to make use of the special kind of integrals the Fermi Dirac 

integrals essentially. 

Then we also have seen specially in the last class, the conductance of a diffusive conductor 

is given by this formula at T equal to 0 Kelvin and this can be related to the conductance 

of a ballistic conductor, here this new term 
 𝜆(𝐸𝐹)

𝐿
 appears in the expression. And at normal 

temperatures at room temperature this will be the conductance of the diffusive conductor, 

conductance of a 2D diffusive conductor. 

And in addition to this ballistic conductance this has this new term and  this new term is a 

special kind of average of mean free path and this is essentially given by 

𝜆(𝐸)𝑀2𝐷(𝐸)(−
𝜕𝑓

𝜕𝐸
)𝑑𝐸 divided by 𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
) integrated over dE ok. 



So, this is in a way the average mean free path of electrons in the modes in the Fermi 

window and this is the case at room temperature. This is true at 0 Kelvin ok. So, this is 

what we have seen and so, we  now know what is the conductance. In our previous 

discussions we have seen how do we define the conductivity as well, the resistivity from 

this general model of transport. 
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But, this idea of mobility we have not encountered yet. And that is what we will briefly 

discuss in this code in this lecture. So, as always the equation to begin with is this equation, 

this is the equation of the conductance. So, we need to always begin with this 

2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸. And just to sort of remind you that this term (−

𝜕𝑓

𝜕𝐸
) this ensures 

that only electrons near the Fermi level contribute to the current flow in our treatment, in 

the case of our treatment. 

And generally for non-degenerate conductors, the electrons in the Fermi window are the 

all in non-degenerate semi conductor; they are almost all the electrons all the conducting 

electrons available in the material. So, it essentially is the almost all available electrons for 

conduction in the non-degenerate conductors, but in the case of degenerate conductors 

when we have extremely high doping. 

In those cases there might be a lot of conducting electrons even outside of the Fermi 

window. So, if we have this bottom this top of the valence band is V; bottom of the 



conduction band generally non-degenerate conductors, we have electrons only up to these 

levels very close to the bottom of the conduction band. 

But, in the case of degenerate conductors the electrons are occupied even at or electrons 

are available even at higher energy values. So, in that case the electrons in the Fermi 

window which is essentially which will be this window, if this is the Fermi level, this will 

not account for the all conducting electrons in the case of degenerate semiconductor. 

But generally in the case of non-degenerate semiconductors, which is true which is actually 

true in most of the cases our treatment or this if this Fermi window actually accounts for 

almost all the conducting electrons available in the semiconductor. So  just to sort of if we 

want to see how the mobility looks like in terms of our treatment. 

We need to compare this expression; this expression of the conductance to the 

conventional expression and this is what it is. Just recall that conventionally this is how it 

looks like G is 1/R. So, this will be 1/𝜌; sorry, in the case of 2D materials instead of area 

we have the width here. So, instead of A we have W. Yeah, So, the conventional 

understanding of resistance. 

(Refer Slide Time: 11:05) 

 

And conductance says that this conductance is inverse of the resistance which is W/L in 

the case of 2D material it will be 1/𝜌 W/L. So, this is the conventional expression and 𝜌 is 



1

𝑛𝑠𝑞𝜇𝑛
. So, conventionally G is equal to 𝑛𝑠𝑞𝜇𝑛 times W/L. So, this we need to equate with 

the expression here. 

So, that way we can sort of calculate the mobility of electron. So, we are considering that 

only electrons are responsible for conduction in this case. So, that is why we  only  have 

written 𝜇𝑛, which is just the mobility which indicates the mobility of the electrons. So, if 

we equate this expression with this as it is written here ok. So, in this case we can find out 

the expression for the mobility. 

So, there is one minute point actually that we need to take care of here or not take care of 

that we need to keep in mind. In our treatment in our general model of transport this is the 

expression and this is largely this comes from the expression for the current and it has this 

minus (−
𝜕𝑓

𝜕𝐸
)𝑑𝐸 term. So, as I just pointed out to you that in the case of a non-degenerate 

semiconductors, it mostly accounts for all the conducting electrons available in the 

conductor. 

In the case of degenerate semiconductors, this does not account for all the conducting 

electrons; it accounts for only some part of those electrons. In the conventional 

understanding, we take this 𝑛𝑠 which is essentially the sheet carrier charge density or sheet 

electron density, number of electrons per unit area of the 2D conductor. 

So, here this nuance is not there. So, it does not have this nuanced picture of the transport. 

So, here it in conventional understanding it just takes the sheet carrier charge density; 

however, in our case only the electrons that are participating in the conduction, they are 

getting taken care of ok. 

So, if we equate both of them and if we write it down in terms of M(E); we can write down 

as W times M2D(E). So, that way the left hand side is 
2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 into W 

is equal to 𝑛𝑠𝑞𝜇𝑛
𝑊

𝐿
. So, this W and W are cancelled and if we bring everything apart from 

mu term to the left hand side or to the other side, this 𝜇𝑛 can be written as 
1

𝑛𝑠
, q cancels 

one of the q s it will be 
2𝑞

ℎ
. 



On this side and we have T(E) times L times 𝑀2𝐷(𝐸) times (−
𝜕𝑓

𝜕𝐸
) into dE. So, this is 

essentially how we can write down the mobility of electrons in a 2 D conductor ok. So, we 

need to know the sheet carrier charge density, we need to know the length, it is dependent 

on the length. If T(E) is independent of the length. 

But if T(E)  is also dependent on the length, they may cancel out; as we will see shortly. 

So, in our conventional understanding mobility is independent of the length. Mobility is a 

material parameter, it depends on the temperature definitely. 
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So, this is essentially the mobility that we have just written down from  this comparison 

ok. And this is sometimes called as apparent mobility, which means this is the mobility for 

a general case which is or this will be the or apparently this will be the mobility in our 

formalism in terms of the fundamental parameters of the material.  

And if we recall the mobility from Drude’s formula formulation the mobility is given by 

𝑞𝜏

𝑚∗  and please remember this 𝜏 is not the energy is not the transit time. This is the average 

time between 2 collisions or this is also known as the mean free time of the electrons and 

𝑚∗ is the effective mass of the electron. In this case however, things are different as 

expected. 
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So, in ballistic case; so, this becomes the starting point for calculating the mobility of 

charge carriers in a material. Mobility or the apparent mobility is given as 

2𝑞

𝑛𝑠ℎ
 ∫ 𝑇(𝐸)𝐿𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸. So, in ballistic case we need to replace T(E) by 1 and in 

that case, the ballistic mobility will be 
2𝑞

𝑛𝑠ℎ
𝐿 < 𝑀2𝐷(𝐸) >. 

L will also come out 𝑀2𝐷(𝐸)(−
𝜕𝑓

𝜕𝐸
)dE or this can be simply written as 

2𝑞

𝑛𝑠ℎ
. This can be 

written as the average of modes in the Fermi window times L. So, the ballistic mobility 

apparently from our formulation is directly proportional to the length of the conductor, 

which is actually not the case if we look into the Drude’s formalism in which case it is 

given as it is directly proportional to the tau and inversely proportional to m star ok. 

So, this nuance is not taken care of by the Drude’s or conventional formalism of the 

transport. 
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If we look at the diffusive case, in the diffusive case or when the bulk conductor is there 

this transmission coefficient is given as T(E) is equal to 
 𝜆(𝐸)

𝐿
 ok. This is the case when 

purely diffusive transport is there, in that case the transmission coefficient is written as 

 𝜆(𝐸)

𝐿
  and that mobility from this expression, if we start with this expression. 

The diffusive mobility or mobility in the case of diffusive transport will be 

2𝑞

𝑛𝑠ℎ
∫

 𝜆(𝐸)

𝐿
𝐿𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 replacing this T(E) by 

 𝜆(𝐸)

𝐿
. So, L and L cancels. So, what is 

left is just this, 
2𝑞

𝑛𝑠ℎ
 ∫ 𝜆(𝐸)𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 and this expression at T equal to 0 Kelvin is 

further simplified at  normal temperatures also, this can be written as this, as we have seen 

in the case of diffusive transport. 

And in more general case in a more general case, this T(E) needs to be taken as 
 𝜆(𝐸)

 𝜆(𝐸)+𝐿
 and 

in that case if we replace T (E) by this expression in that case, this general or the mobility 

will be more general case it will be a more and this is known as the apparent mobility as 

we have defined earlier. 

So, it will be essentially 
2𝑞

𝑛𝑠ℎ
∫

 𝜆(𝐸)

 𝜆(𝐸)+𝐿
𝐿𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 ok. So, this apparent mobility can 

be written as 1 by 𝜇 apparent is equal to 1 by 𝜇 diffusion plus 1 by 𝜇 ballistic. So, in a way 

this the general expression of mobility can be written as the inverse or 1 by general 



mobility is written as 1 by 𝜇 ballistic case plus 1 by 𝜇 diffusive case, purely diffusive case 

ok. 

So, this is how we accommodate the idea of mobility in the formalism that we have 

developed. Although, we do not as I pointed out earlier we do not need it in order to 

calculate the device characteristics. We can do that from the fundamental expressions of 

the current and the resistance can be calculated from this expression. 

So, this is what essentially we have about the resistance, conductance, conductivity, 

resistivity and mobility. So, all these parameters that we generally talk about in the electron 

transport, we have taken care of in this formalism. So, this essentially sort in a way 

completes the general model of transport and now, we will see some more points. 
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For example, we began our discussion with this question with began or in the beginning 

of this course, we sort of put forward a question where is the power dissipated specially in 

ballistic transport. So, because in ballistic transport; electron does not collide with anybody 

in the channel. So, if we have a 2D conductor like this source drain electron starts from 

here, it directly goes to the drain terminal without any collision in the middle.. 

So, in such situation where is the power dissipated, because the conventional 

understanding of the dissipated power says that electrons collide with atoms or electrons 

undergo a scattering and during the collision electrons transfer their energy to the lattice, 



and that is how the electron energy is dissipated in the system, and that is how the heat is 

generated that is how the power is dissipated in the device. That is the conventional 

understanding of power dissipation. 

And the power dissipation according to the conventional expression is given as V square 

by R; where V is the applied voltage, R is the resistance of the material or I square times 

R. But, now in ballistic case there is no scattering in the channel and as we will see as  we 

will realize that even now, the power dissipated is V square by R and this is not dissipated 

in the channel, it is dissipated in the contacts. 

And in order to understand this if we have a 2D device or a small channel between the 

source and drain contacts; and if we have also applied a battery across the device, let us 

say the voltage of the battery is this, this is how the Fermi level configuration of the device 

will look like ok. 
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So, to sort of have a better understanding of this phenomena, the phenomena of power 

dissipation. If this is the channel, this is source, this is drain, we have applied a voltage on 

the drain side. So, the Fermi level on the source side is up, Fermi level on the drain side is 

a bit down and this is the drain terminal this is the source terminal ok. And in ballistic 

transport case, the electron here they go directly. 



There is a small point that I would like to remind you that these contacts the source and 

drain contacts, these are large contacts and because of heavy scattering in the contacts the 

equilibrium is always maintained. So, because of the scattering in the contacts the 

equilibrium is maintained in the source and drain regions. 

This is the source Fermi level EFs, let us say and this is the drain Fermi level and generally 

the way things happen is that the source terminal tries to fill all the states in the channel 

up to the source Fermi level. It tries to bring the channel in equilibrium with the source 

Fermi function. Similarly, the drain tries to fill all the electronic states up to the drain Fermi 

level. 

So, the states below the drain Fermi level, these are all filled because, both the contacts 

are trying to fill these states. And the states between the source and the drain Fermi levels, 

the states between the source and drain Fermi level  for these states the source is trying to 

fill them, the drain is trying to in a way drain electrons out of them try to empty them and 

this is what is causing current as we have discussed many times by now. 

So, if there is an electron that starts from the source side, let us say and the it directly goes 

to the drain side at the same level and this is the let us say this VA is the level of difference 

between the electron energy and the Fermi level. So, because of  this drain terminal has 

Fermi level here, the scattering will bring this electron to the Fermi level. So, this electron 

will lose energy this q times VA energy in the drain contact ok. And since, a battery is 

connected across this device. 

Now, the drain contact and there is a battery between the source and the drain. So, battery 

will supply this electron to the source side and the battery will supply the electron at the 

energy of the source Fermi level at this energy and because of this electron now, going to 

the drain side there is a vacancy at this point, at this point there is a vacant state in the 

source terminal and the battery is continuously supplying electrons  at this level. 

So, one of the electrons at the Fermi level will make a jump to this level to fill this vacancy 

and it will dissipate energy equal to q times V minus VA, because this is VA and this entire 

thing is V this is VA. So, this will be q times V minus VA ok. So, the total energy that is 

dissipated in this device is q times VA, the energy dissipated at the drain and plus q times 

V minus VA, which is essentially equal to q times V ok. 



That is the energy dissipated when in the ballistic transport case. No scattering in the 

channel, only the scattering is happening in the contacts. So, the power dissipation will be 

again the rate of energy dissipation, this is V times if there is a constant voltage, the rate 

of charge which will be the V times I. 

So, it will be V square by R or I square R, the same. Same amount of power will be 

dissipated in this case as well, as is dissipated in the diffusive transport case ok. And this 

analysis is true for all the electrons. So, that is why we can say that the only distinction in 

this case is that now the power is dissipating or the energy is getting dissipated at the 

contacts. 

In the device there is no energy that is getting dissipated ok. On the similar lines I would 

let you think where the voltage drop happens in the device actually ok. So, using the same 

line of arguments, please think about where the voltage drop happens and that is what we 

will begin our discussion with in the next class. 

Thank you for your attention, see you in the next class. 


