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Resistance: Diffusive Case 

 

Hello everyone, today we will continue our discussion on calculation of resistance and 

conductance. And today we will do calculation of resistance in the case of diffusive 

transport and if we have a quick review of what we have done so far. 

(Refer Slide Time: 00:43) 

 

This is what we started our discussion with, we started with these expressions these are 

conventional expressions for conductivity and resistance for 1D , 2D and 3D conductors. 

These essentially comes from the conventional theory of transport which has roots in roots 

model of transport. And in last class  or in last few classes the emphasis has been on the 

point that the starting point should be this or the starting point for these kind of discussions 

should be this expression, the expression for the conductance from the ballistic transport 

case ok. 
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So, we should start the discussion with this expression 
2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸. And 

from here in our last couple of classes last class particularly, we calculated the conductance 

in the case of ballistic transport to be this. And as you can see this constant term which is 

known as the quantum of conductance multiplied by the number of modes in the conductor 

at Fermi level. 

So, this was the case when T was 0 kelvin in a ballistic conductor. And when we operate 

at higher temperature at room temperature may be, in that case we need to do exact 

calculation of this integral as well as this differential in this as well as this derivative in 

this equation. And so this becomes first we need to do integration and then we need to take 

differentiation and it becomes quite a complex expression, because we need to integrate 

this expression. 

And number of modes is also; in some cases it is not a straight forward function. So, this 

is tackled by what is known as Fermi Dirac integrals, so that is what we also saw in our 

previous classes. So, we have seen calculation for ballistic transport case with the help of 

Fermi Dirac integrals.  

Today we will see how things happen in the case or what are the conductance and 

resistance in the case of diffusive transport and that will essentially conclude our 

discussion of the transport theory. We will briefly have a look at the practical 1D, 2D 



conductors because, we are assuming till now we are assuming that these 1D and 2D 

conductors are ideal 1D ,2D conductors. But, actually they are not because, a 2D conductor 

has a finite thickness this thickness t which leads to quantum confinement in this direction. 

And a 1D conductor has confinement in two directions the directions apart from the long 

dimension in two other dimensions there will be electron confinement. And that will 

introduce some that we also need to take into account while doing the final calculation for 

practical conductors ok. 

So, that is what we will see, and this was the expression for conductance for a 2D conductor 

in ballistic case when we have a 2D ballistic conductor. This is the final expression and 

we studied some properties of the Fermi Dirac integrals with those with the help of those 

properties we can actually calculate this value ok. 
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So, today let us see how this  looks like in the case of diffusive transport. So, generally in 

diffusive transport case;  we assume that a conductor is a bulk conductor purely diffusive 

transport in that case this transmission coefficient is equal to 
𝜆(𝐸)

𝐿
 . T(E) is equal to 

𝜆(𝐸)

𝐿
.  

But, in intermediate cases when the conductor has electron scattering, but the conductor is 

not extremely long it is not a bulk conductor it is in the intermediate length scale. In that 

case the transmission coefficient needs to be taken to be T(E) is equal to 
𝜆(𝐸)

𝐿+ 𝜆(𝐸)
. 



So, this is the pure diffusive limit, T(E) is equal to 
𝜆(𝐸)

𝐿
 is the pure diffusive case, and this 

is actually a more general case. So, this will hold true even in the case of ballistic transport 

and also in the case of diffusive transport.  

So, again we take the channel to be a 2D channel, because of the sake of simplicity to 

visualize transport and also there is some simplicity in calculations as well, and the starting 

point like always for us is this expression. So, the conductance is 

2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸. 

So, in the case of pure diffusive transport in that case this T(E) is equal to 
𝜆(𝐸)

𝐿
 and generally 

this number of modes can be written as W times number of modes per unit width M2D(E). 

So, that is how  we can generally write the number of modes ok. So, if we put that these 

two expressions in this the conductance turns out to be 
2𝑞2

ℎ
∫ 𝜆(𝐸)𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸

𝑊

𝐿
 and 

this M(E) can be replaced by W times M2D(E). 

So, we will write it  in terms of M2D(E)dE and W from here can be taken outside and 

similarly L can also be taken outside L by 𝜆(E) from the T(E) can be taken outside. And 

now, as you can see that now the conductance is inversely proportional to the length of the 

conductor directly proportional to the width of the conductor which is actually true in the 

case of  conventional expressions of conductance and resistance as is written here. 

So, for a 2D conductor the conductance should be according to the conventional theory of 

transport it should be inversely proportional to the length. So, that is true in the case of 

purely diffusive transport in the conductors. Now, the conductance has become inversely 

proportional to the length, but as we have seen earlier in ballistic case the conductance or 

the resistance is independent of the length. 

So, we cannot use our conventional theory of electron transport in ballistic case or even in 

diffusive case or in intermediate cases  when we have some scattering. But, the 

conductance, but the conductor is also not extremely long it is not a pure bulk conductor 

it is in the intermediate length scale in that case also we need to actually start the treatment 

of electron transport from the basics like here ok. 
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So, if we further simplify this expression this will be actually we finally, we need to find 

out the this number of this scattering of electron this lambda essentially comes from the 

scattering in the channel. And this is the topic that we have not dealt in detail. The 

scattering and how the scattering length the mean free path of the electrons can be 

calculated as a function of energy. 

So, we will see if there is time left we will also revisit the scattering and try to calculate 𝜆 

in terms of as a function of E. But at the moment let us assume that we are aware of the 

mean free path or the scattering mechanisms in the channel. And from there if we put the 

expression of 𝜆(E) in this conductance expression we can calculate the conductance in the 

diffusive case ok. 

So, we again like a ballistic conductor we will see how it looks like when T is equal to 0 

kelvin at extremely low temperatures. Because the calculation is much simpler in those 

cases and how it looks like at practical operating temperatures the room temperature or 

even higher temperatures ok. 
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So, let us first see what happens at T equal to 0 kelvin and like we know this Fermi window 

function (−
𝜕𝑓

𝜕𝐸
) function this boils down to a delta function at Fermi level at T equal to 0 

kelvin. So, at T equal to 0 Kelvin this becomes a delta function and this greatly simplifies 

the expression or this integrations. So, now, a 2D diffusive conductor the conductance can 

be written as 
2𝑞2

ℎ
∫ 𝜆(𝐸)𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 can be written as 𝛿(𝐸 −  𝐸𝐹)dE and all this 

times W/L ok. 

So, if we have a delta function in the integral this essentially simplifies the integral like 

this; now this 𝜆(𝐸𝐹)𝑀2𝐷(𝐸𝐹) will be there. So, this is essentially  a conductance in the 

case of diffusive transport when the transport is purely diffusive ok.  

So, and if we try to write it down in terms of ballistic transport the ballistic conductance is 

given as 
2𝑞2

ℎ
 at 0 kelvin 𝑀2𝐷(𝐸𝐹)  this is the ballistic conductance. So, this diffusive 

conductance for a 2D conductor can be written in terms of ballistic conductance as 
 𝜆(𝐸𝐹)

𝐿
 

times G2D ballistic. 

So,  the only difference is of this term. Now, we need to in case of diffusive conductor we 

need to know the scattering at Fermi level scattering length of electrons at the Fermi level, 

when we are trying to calculate the conductance or resistance at 0 kelvin. And this T(E) 



needs to be replaced by 
𝜆

𝐿
. And in a more general case when we are treating or when we 

are considering both ballistic and diffusive conductors, we need to replace T(E) by 
𝜆(𝐸)

𝐿+ 𝜆(𝐸)
. 

And in that case this expression will simplify to instead of this expression what we will 

have is G2D diffusion will be 
2𝑞2

ℎ
∫

𝜆(𝐸)

𝜆(𝐸)+𝐿
𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 times W. So, that is what we 

will be having in this case W ok. And at T equal to 0 kelvin this will essentially be the 

conductance of a diffusive conductor or any conductor in a more general case. 

Let me write instead of writing a diffusive here, in a more general case the conductance at 

0 kelvin is 
2𝑞2

ℎ

𝜆(𝐸𝐹)

𝜆(𝐸𝐹)+𝐿
 times 𝑀(𝐸𝐹). Where 𝑀(𝐸𝐹) is W times M2D (EF); so, this will cover 

both ballistic and diffusive cases ok. 
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So, as always the calculations at T equal to 0 Kelvin are not difficult and this is how it 

would look like. So, we can also write it down as G2D is 
𝜆(𝐸𝐹)

𝜆(𝐸𝐹)+𝐿
 times G2D ballistic 

conductance. Or the resistance which is essentially the inverse of the conductance is 

𝜆(𝐸𝐹)+𝐿

𝜆(𝐸𝐹)
 

1

𝐺2𝐷𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐
 will be the ballistic resistance. So, this will be essentially 1+ 

𝐿

𝜆(𝐸𝐹)
 into 

ballistic resistance that is the case when we have T equal to 0 Kelvin. 

And as you can see that this  ballistic resistance is independent of length, but the diffusive 

resistance is not independent of the length. And as we go deep into diffusive limit as we 



make the conductor large enough in that case this term dominates and resistance becomes 

directly proportional to the length of the conductor. 

As is the case in conventional transport theory that we sort of with which we began our 

discussion ok. So, this was a low temperature case extremely low temperature case 

actually. And as we saw in the case of ballistic transport, things are bit difficult when we 

have high temperature or normal temperature because the max is difficult in that case. 
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Because in that case this in this expression of conductance, this (−
𝜕𝑓

𝜕𝐸
) function this cannot 

be replaced by the delta function. And we need to explicitly do this calculation in order to 

calculate the conductance. 

And but as we have seen that with some mathematical tricks we can manage these 

calculations as well particularly in the case of non degenerate semiconductors. Because in 

the case of non degenerate semiconductors most of the electrons are close to the bottom of 

the conduction band. So, if we have the valence band ,the conduction band most of the 

conduction electrons are quite close to the bottom of the conduction band. 

And in this case even the Fermi Dirac function can be approximated by the exponential 

function. Things are more difficult when we have to deal with degenerate semiconductors 

or extremely highly doped semiconductors ok. So, at T greater than 0 kelvin temperatures 

at room temperature also we begin with this expression. And now we sort of make this 



replacement; let us say that we write it down we write this term M2D(E) (−
𝜕𝑓

𝜕𝐸
). This we 

can write down as the average of M2D over all energy values. And the reason we can do 

that is because this integral is (−
𝜕𝑓

𝜕𝐸
)by this the area under Fermi window is 1. 

So,  this can be written as M2D(E) (−
𝜕𝑓

𝜕𝐸
)dE divided by (−

𝜕𝑓

𝜕𝐸
) dE; because this 

denominator is anyway 1. So, we can always put this term in denominator and this is 

essentially the average of the function M2D(E). This average is taken over all energies, O 

in the Fermi window. And what it essentially means is as we have also discussed at some 

point earlier that this means that this is the number of modes averaged in the Fermi window 

ok. 

So, now, what we do is we divide and multiply this term by this average. So, G2D diffusion 

conductance is 
2𝑞2

ℎ
∫ 𝜆(𝐸)𝑀2𝐷(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 we multiply and divide by this average 

function. And in the denominator we write the expanded version of this average which is 

𝑀2𝐷(𝐸)(−
𝜕𝑓

𝜕𝐸
)𝑑𝐸 and of course, we have W/L as well from here ok. 

So, now this is the conductance at normal temperatures. If we have a closer look at this 

expression, this expression is also like an average of a function average of essentially this 

function 𝜆(E). And now, this average is taken over this function 𝑀2𝐷(𝐸)(−
𝜕𝑓

𝜕𝐸
)𝑑𝐸. So, 

what it intuitively mean is that we can write it down as G2D diffusion conductance at 

normal temperatures to be  
2𝑞2

ℎ
 average. 

We have used a different sign for this average just to make a distinction between the 

average of 𝑀2𝐷(𝐸) and 𝜆(E). Because these 2 averages are of different kind, this average 

is taken over the Fermi window and this average is taken over  the modes in the Fermi 

window times W/ L.  

So, now, what we can essentially, intuitively say is that, the conductance depends. 

Conductance is; obviously, is given by the quantum of conductance multiplied by the 

average or average number of modes in the Fermi window times the average mean free 

path of electrons in the modes in the Fermi window. 



So, this function intuitively means this is the average mean free path of electrons in the 

modes in the Fermi window. So, from this expression we can intuitively say that this is the 

average mean free path of electrons in the modes where conduction happens. And the 

modes where conduction happens is the modes in the Fermi window times W/L. 

So, as is evident here conductance is inversely proportional to the length, directly 

proportional to the width as we expect in the case of a diffusive conductor ok. So, this is 

the core sort of result here and these calculations if we know the exact expression for 

lambda E we can do these calculations and this can be calculated with the help of the Fermi 

Dirac integrals ok. 
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So, this is essentially how it looks like we will not do the exact calculations, because this 

function 𝜆(E) is yet not very clear to us. We have not derived this because we have not 

dealt with the scattering in our analysis yet. And so, this is if you recall the T equal to 0 

Kelvin case, this was the conductance of a diffusive conductor at 0 Kelvin and it was given 

by 
2𝑞2

ℎ
𝜆(𝐸𝐹)𝑀2𝐷(𝐸𝐹)

𝑊

𝐿
. 

But now, in this case the only difference that we sort of see is this 
2𝑞2

ℎ

𝑊

𝐿
 is there these 2 

terms are there. And instead of 𝑀2𝐷(𝐸𝐹) we have average of 𝑀2𝐷(𝐸) in the Fermi window. 

And instead of mean free path at Fermi level energy, we have the average mean free path 

of electrons in the modes in the Fermi window. So, this is sort of a generalization of the T 



equal to 0 Kelvin case ok. And again this is  average of 𝑀2𝐷(𝐸) for a non degenerate 

conductors is given by this value. 

This we have already seen and this average of or this double average sort of mean free 

path can be calculated from this expression. And here we need to put we might need to use 

the Fermi Dirac integrals and the expression for the number of modes. And so, roughly we 

will sort of we observe that as I pointed this to you that we have not gone into the scattering 

theory. 

So, this expression the expression for 𝜆(E), we have not explicitly derived yet. But 

generally, this expression 𝜆(E) looks like this,this is dependent on the electron energy 

above the bottom of the conduction band and there is an exponent R here in this equation. 

There is a constant 𝜆𝑂 which is actually not constant per se it is independent of energy, but 

it depends on the temperature. And this is this kB is Boltzmann constant, TL is the lattice 

temperature. 

So, this scattering essentially depends on the difference between the electron energy and 

the bottom of the conduction band. So, if this is  roughly the band structure and the 

electronic energy is this, this difference between these the electron energy in the bottom 

of the conduction band this will govern the mean free path of the electrons in the crystal 

or in the channel. And this exponent actually depends on the kind of scattering mechanism 

that is present in the crystal. 

So, for example, so, the scattering can happen because for example, because of the 

phonons because of the lattice vibrations scattering can happen. And the scattering can 

also happen because of the interaction with external let us say electromagnetic field or 

external or impurity atoms, ionic impurities which are present inside the crystal or may be 

surface atoms. 

So, there are multiple kind of scattering mechanisms and this R is dependent on them. 

Generally using this formula for 𝜆(E), this average of lambda is given by this expression. 

This is a detailed calculation we are not going into the details of this calculation, but this 

is how it would look like. And you can try to see where this comes from and generally for 

the acoustic phonons when we have phonons travelling like sound waves this exponent R 

is 0. 



And in that case this average of 𝜆 is equal to 𝜆𝑂 for R equal to 0 case. And in that case this 

entire calculation actually simplifies and in that case we can write the conductance or the 

diffusive conductance to be 
2𝑞2

ℎ
𝜆𝑂 < 𝑀2𝐷(𝐸𝐹) >

𝑊

𝐿
 or 

𝜆𝑂

𝐿
 G2D in ballistic case. 

And in ballistic case we have already done the calculation; so, this calculation is actually 

becomes quite straight forward. And if we take this general expression for transmission 

coefficient which is T(E) is equal to 
𝜆(𝐸)

𝐿+ 𝜆(𝐸)
 in that case. For R equal to 0 case for just for 

the acoustic phonon scattering case T(E) becomes equal to 
𝜆𝑂

𝐿+𝜆𝑂
. 
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And this the conductance will be essentially 
𝜆𝑂

𝐿+𝜆𝑂
 into G ballistic conductance or the 

resistance in diffusive case will be inverse of that which is essentially 1 + 
𝐿

𝜆𝑂
 into the 

ballistic resistance. And these calculations we have already done the calculation of ballistic 

conductance and resistances at room temperature. So, these calculations can be done 

similarly. 

So, this essentially completes our discussion on the calculation of conductance and 

resistance for ballistic and diffusive conductors both at low temperature limits where 

calculations are easier and high temperature limit where calculations are bit difficult. But, 

with the help of Fermi Dirac integrals the calculations can be simplified, and especially 

for non degenerate semiconductors these calculations can be easily done. 
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So, with this, the final idea will be the idea of mobility that we will start in our next class. 

So, thank you for your attention, see you in the next class where we will discuss this idea 

of mobility in ballistic and diffusive cases. 

Thank you. 


