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Lecture - 30 

Resistance: Ballistic and Diffusive Cases-III 

 

Hello everyone, we have been discussing the idea of resistance in Ballistic and Diffusive 

cases. And, since last class we started doing actual calculation of resistance and comparing 

that to the conventional idea of resistance that we generally have from our classical theory 

of transport. 
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And this is what we understand from the classical theory of transport. That the resistance 

is given is generally proportional to length; resistance is considered to be proportional to 

length in 1D case. In 2D case, resistance is directly proportional to length inversely 

proportional to width and in 3D case resistance is directly proportional to length and 

inversely proportional to the area. 

And the constant of proportionality is known as the resistivity denoted by 𝜌 which is 

essentially the inverse of conductivity that is our classical understanding of resistance and 

conductivity is given as n times q times 𝜇 where 𝜇 is the mobility of the carriers and this 

n will be the number of carriers per unit length in  1D conductor it will be the number of 



carriers per unit area in 2D conductor and it will be number of carriers per unit volume in 

3D conductor. 

In contrast to this our discussion of conductivity starts with this expression which we 

obtain from the general theory of transport  or the general model of transport and in this 

expression we have this constant which is known as the quantum of conductance and in 

integral we have T(E) M (E) integrated over this function which is also known as the Fermi 

window function. 

So, the Fermi window function is −
𝜕𝑓

𝜕𝐸
. And, with this expression we started doing 

calculation of resistance for ballistic case in our previous discussion and there we saw that 

at 0 kelvin at extremely low temperatures this function the Fermi window function boils 

down to a delta function which essentially simplifies this integral greatly and the 

conductance that we obtain is essentially this. 
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So, at low temperatures when T approaches 0 kelvin in that case this is the ballistic 

resistance of the device. So, in this case what just needs to be done is, we just need to 

calculate this M(EF) parameter which is the number of modes at energy EF at 0 kelvin. 

And we also saw that this term M(EF) term this can be related to the sheet charge density 

number of electrons per unit area in a 2D conductor and the relationship looks like this. 



So, the M(EF) value  can be written as w times M2D(EF) where M2D(EF) actually turns out 

to be √
2𝑛𝑠

𝜋
. This we saw from our previous discussions. 
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And finally, this is the conductance that we obtain and by putting an appropriate value of 

M(EF) we obtain the value of the conductance. So, all this was true for low temperatures 

when T approaches 0 which means Fermi function is approximately a unit function and 

Fermi window is a delta function; in those cases the calculations are easy. 

Then we started doing calculation for above 0 temperature cases, at room temperature 

cases. So, at those temperature values we realize that this Fermi window function can no 

longer be approximated by a delta function. And, in this case this integral needs to be 

evaluated properly and now this integral also has a derivative with respect to E which can 

be converted to derivative with respect to EF ok. 

And after doing calculations at room temperature for the conductance we realize that we 

come across a special type of integral functions those one we defined as Fermi-Dirac 

integral function those are the Fermi-Dirac integral functions. So, generally in these 

calculations we need to know about the Fermi-Dirac integral functions. 
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And that is what we will quickly go through a Fermi-Dirac integral function looks like 

this. It has a Fermi Dirac integral function of order j--  𝐹𝑗(𝜂𝐹) =  
1

Γ(𝑗+1)
∫

𝜂𝑗𝑑𝜂

1+𝑒𝜂−𝜂𝐹
 . This is 

how a Fermi-Dirac integral function of order j is defined. 

The parameter or  this Fermi-Dirac integral function  has the variable 𝜂𝐹  in its argument. 

Please remember this, on the right hand side we have both 𝜂 and 𝜂𝐹, but in the argument 

of the Fermi-Dirac integral function 𝜂𝐹 is there ok.  

The order j depends on the exponent of 𝜂 in the numerator on the right hand side of this 

function. So, if we closely look this j the order of the Fermi Dirac integral function it 

depends on the exponent of the parameter 𝜂 and the argument of the function is 𝜂𝐹. 

This Fermi-Dirac integral has this gamma function as well in its expression. And, most of 

us would be aware that a gamma function. If j is an integer this is equal to factorial j or if 

n is an integer gamma function of n plus 1 is essentially factorial n or more popularly it is 

written as gamma function of n is (n-1)! ok. There is another property of gamma functions 

which is gamma function of n plus 1 is n times gamma function of n and gamma function 

of half is essentially root pi ok. 

So, this is essentially the summary of the gamma function; and with this gamma function 

we can define the Fermi-Dirac integral function in which there is an integral which looks 

like this which is essentially integral over parameter eta of the term  
𝜂𝑗

1+𝑒𝜂 − 𝜂𝐹
.  And along 

with this we have a normalization factor of Γ(𝑗 + 1). 
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So, this is what we have. This is what we just discussed for the gamma functions and there 

is for non degenerate semiconductors. So, there are generally depending on the doping of 

semi conductors, semi conductors are divided in two types one is the degenerate 

semiconductors and second is non degenerate semiconductors. 

Generally in moderate doping situation, when the doping is not too much which means 

that the dopant atoms are far away from each other they are not interacting with each they 

are not talking to each other, the potential due to one dopant atom is not felt by the another 

dopant atom. In that case the doping is known as the or the semiconductor in that doping 

is known as the non degenerate semi conductor. 

And generally the Fermi function is way below than the bottom of the conduction band. 

So, in that case in non degenerate cases EF is less than EC generally or at least EF should 

be sufficiently below EC which in other words is written as EF minus EC can be written as 

kT is less than 0 very it is much smaller than 0 ok. 

And, this thing we if you remember this is what this parameter 𝜂𝐹 is. So, in non degenerate 

semi conductors, generally 𝜂𝐹  is quite smaller it is quite it is a negative number and this 

is less than 0 and in those cases this Fermi-Dirac integral of order j in this case in non 

degenerate case this please remember that this is the case of non degenerate semi 

conductors. 



And in these cases 𝜂𝐹  parameter is less than 0 . So, in these cases this Fermi-Dirac integral 

can be approximated by exponential of 𝜂𝐹. So, this is an important approximation which 

is true in most of the cases because in most of the cases our semi conductor is non 

degenerate. 

So, this can be approximated by. So, these are few mathematical I would say bits that if 

we keep in mind these calculations those the calculations that look so difficult, those 

calculations will become easier ok. So, just keep these all these things in mind otherwise 

this evaluation of the integral in conductance becomes extremely difficult ok. 
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In addition to all these properties  I also mentioned last time that if we take a derivative of 

Fermi-Dirac integral with respect to parameter 𝜂𝐹, the order of the Fermi-Dirac integral 

decreases by 1 just that. And this is useful because in addition to integral we also have a 

derivative in our conductance expression. 

So,  this thing and this along with these, they will greatly simplify all our calculation. So, 

just keep these things in mind; you do not need to remember these things because not to 

complicate things in too much of details, but these mathematical bits are discussed just so 

that the calculations do not look too difficult to you.  



If we remember these few points the calculations involving the Fermi-Dirac integrals are 

not extremely are not that difficult, we can manage them ok; specially in the non 

degenerate semiconductor cases ok. 
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So, with this we continue our calculation that we were doing last time in last class we were 

discussing the resistance of a ballistic conductor, a wide ballistic conductor at room 

temperatures I would say or higher than 0 temperatures. So, in this case we were doing the 

calculations and we saw and I also mentioned this that in this case this Fermi window can 

no longer be approximated by this delta function.  

And so, that is why we again need to start from this expression of the conductance. Please 

remember that the expression of conductance to begin with in any cases this 

2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸. 

And, if we explicitly write down the Fermi function in this derivative in this Fermi window 

this is how it looks like Fermi function is 
1

1+𝑒

𝐸−𝐸𝐹
𝑘𝐵𝑇𝐿

 in these expressions where kB is the 

Boltzmann constant and TL is the lattice temperature, we are in short writing kT ok. 

So, with this we make this replacement (−
𝜕

𝜕𝐸
) is replaced by (

𝜕

𝜕𝐸𝐹
) which allows us to 

bring this (
𝜕

𝜕𝐸𝐹
)  outside the integral. So, inside the integral what is left is this constant is 



outside and inside the integral we are left with terms involving  this M2D(E) function this 

number of modes in a 2D conductor and this Fermi function.  

And, this is essentially all these terms apart from these terms these were constants and 

these constants come out of the integral. So, finally,  this can be written down in terms of 

Fermi-Dirac integral and as you can see here 𝜂 to the power half will be there. 
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So, if we make this replacement 𝜂 is equal to 
𝐸−𝐸𝐶

𝑘𝑇
 and 𝜂𝐹 is 

𝐸𝐹−𝐸𝐶

𝑘𝑇
, and if we do this 

replacement apart from this constant term what is there is we are left with a derivative with 

respect to 𝜂𝐹 and in integral with respect to 
√𝜂

1+𝑒𝜂 − 𝜂𝐹
𝑑𝜂 this we saw in our last class as 

well. 

And, today with a bit of background of Fermi-Dirac integrals this thing is now more clear, 

I hope this is more clear now. So, as we can clearly see this is the Fermi Dirac integral of 

order half and with some constant unit and if we make the replacement if we replace this 

integral by the Fermi-Dirac integral of order half then what is left is apart from this 

constant term. 

Now, in addition to this constant we also have 
√𝜋

2
, we are left with 

𝜕

𝜕𝜂𝐹
 Fermi-Dirac integral 

of order half 𝐹1

2

(𝜂𝐹) ok. And as we saw that if we take a derivative of the Fermi Dirac 



integral of order j with respect to 𝜂𝐹 then it becomes the Fermi-Dirac integral of order j 

minus 1. So, the order is reduced by 1. 

So, ultimately this becomes Fermi-Dirac integral of order minus half ok. So, finally, the 

conductance of a ballistic conductor a void ballistic conductor at normal temperatures 

above 0 kelvin temperatures is given by this expression.  

And, in this expression please keep in mind that apart from this constant term 
2𝑞2

ℎ
, 

everything else is written as  some sort of average of W times M2D where this average of 

W times M2D is 
√𝜋

2
 W M2D(kT)  𝐹

−
1

2

(𝜂𝐹) ok. 

And as we saw from our as I just mentioned few minutes back that in the case of non 

degenerate semiconductors generally the Fermi-Dirac integral function can be evaluated 

quite easily it becomes just the exponential of that order. 
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There are also few things that I would like to sort of highlight here I mentioned that the 

semi conductors can be of two type degenerate or non degenerate semiconductors.  

So, when in moderate doping, in realistic doping situations the semiconductors are non 

degenerate semiconductors and when we have extremely high doping generally we have 

degenerate semiconductors. And, in degenerate semiconductors the Fermi level lies quite 

close to the conduction band it may even lie inside the conduction band. 



So, if the Fermi level is if this is the top of the valence band this is the bottom of the 

conduction band and this is the Fermi level, Fermi level is somewhere in between or 

slightly closer to the or if this is the Fermi level. This kind of conductor is semi conductor 

is non degenerate semi conductor because this distance this EC minus EF is many kT ’s ok. 

But if the doping is extremely high, the dopants are placed very close to each other in the 

semi conductor this EF comes very close to the conduction band edge or it may even go 

inside the conduction band. So, the Fermi level may lie here. So, in the regenerate semi 

conductor case, as you can imagine that the electrons in the conduction band will be spread 

in many or the electrons will be the conduction band will be more filled in a way and 

electrons will occupy many kT energy state. 

So, it will be n kT many kT energy states, but in the case of non degenerate semi conductors 

the electrons in the conduction band are not too many . So, if we talk about the non 

degenerate normal cases.  

In non degenerate semi conductor cases there are only electrons are only there in a small 

range of energy values or around 1 or 2 kT energy range. So, just above the bottom of the 

conduction band only up to 1 or 2 kT energy values, the charge carriers are there in the 

non degenerate semi conductor cases. 
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So, that is why these Fermi-Dirac integral in the case of non degenerate semi conductor 

cases that is why we can replace this 𝜂𝐹 to be quite less than 0 or we can evaluate or  this 

can be this number of modes can only be evaluated for certain kT values of energy ok. So, 

this is sort of a restatement of the fact that we discussed in the last slide that is this condition 

essentially.  

So, in this case in non degenerate semi conductor cases even eta is quite close to 1, because 

now the energy values of electrons is quite close to EC it is only 1 or 2 kT within 1 or 2 kT 

values of EC. So, this value is also within 1 or this is around 1 to 2, mostly around 1. 
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So, with this; now this thing this expression of conductance of a ballistic conductor at 

above 0 kelvin temperatures this is what we obtain. And, we have now written it down as 

2𝑞2

ℎ
 times average of W into M2D and the reason and this average of W into M 2D is 

essentially 
√𝜋

2
 W M2D(kT) and this W M2D(kT) is actually W times this one ok. 

So, what I mean to say is that this constant here in our expression; this constant is 

essentially W times M2D evaluated at kT and this is justified in the case of non degenerate 

semiconductors because electrons only occupy around 1 or 2 kT or in most of the cases 

around 1 kT of energy range in the conduction band. So, this accounts for most of the 

electrons in the non degenerate semi conductors. So, that is why these constant terms can 

be written as average of W times M2D ok. 



So, what we finally realize is that the conductance in a ballistic conductor at room 

temperature let us say can be written as 
2𝑞2

ℎ
 W times M2D or it is written as 

2𝑞2

ℎ
 average of 

M where this average of M is essentially M2D (kT) 𝐹
−

1

2

.  

So, what this means is that this average of M is the average of modes in the Fermi window 

in the energy range of kT that is true for the non degenerate cases. And if you recall that 

at T equal to 0 kelvin the conductance was essentially 
2𝑞2

ℎ
 M(EF). So, what changes at room 

temperature is this. So, instead of M(EF), now we need to use M average of M. 

So, this average of M is the average of modes inside the Fermi window essentially. And 

the Fermi window also at room temperature generally is only around 1 kT above the 

conduction band edge ok. So, that is the only difference that we see in our treatment of or 

in our calculation of conductance at room temperature. We just need to replace M(EF) by 

average of M where average of M is given by this expression and these are the number of 

modes or number of conducting pathways in the Fermi window. 

And as we also saw in our previous case, in the case when we just had this experimentally 

available parameter ns sheet carrier density of electrons we could calculate the 

conductance and resistance in terms of ns.  

Similarly, in this case we can calculate or we can have a relation between the conductance 

and the sheet carrier density in this way the sheet carrier density is defined as is pretty 

evident sheet charge density is this comes from this is the density of states in a 2D 

conductor times the Fermi function D(E)f(E) and now this needs to be evaluated for all 

energy values at room temperature. 

And this turns out to be 
𝑚∗𝑘𝑇

𝜋ℎ2
𝐹0(𝜂𝐹). And, by sort of dividing these two expressions we 

can have a relation between the two. So, the resistance will be just the inverse of the 

resistance of a ballistic conductor at room temperature will be just the inverse of the 

conductance.  

And, as we saw from our classical theory of transport that the resistance is always  directly 

proportional to length, but in this case both at 0 kelvin and at room temperature resistance 

is independent of the length in the case of 2D conductor. 



And  similarly we can also see for 1D and 3D conductors that resistance is independent of 

the length of the conductor ok. It  depends, it is inversely proportional to the width because 

the conductance is directly proportional to the width. So, the resistance will be inversely 

proportional to the width of the conductor ok. 

And that is also understandable because  more the width more will be the number of modes 

and less will be the resistance or more will be the conductance. So, this is how we can do 

calculation for conductance and resistance in realistic situations for a ballistic conductor.  

Now, the next topic that we will begin with we will quickly calculate the conductance and 

resistance of a diffusive conductor the calculation is pretty similar to what we did for the 

ballistic conductor case. In that case , in addition to everything else we would also have 

this transmission coefficient. 
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So, in this expression of conductance 
2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸, we would also have to 

include the transmission coefficient in the case of diffusive  conductor and the those 

calculations we can now quickly do because we are now familiar with the Fermi-Dirac 

integrals we are now familiar with how to sort of deal with these kind of calculations ok. 

So, that will that is what we will see in the next class. 

Thank you for your attention, see you in the next class. 


