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 Hello everyone. In our previous discussion we saw that the transistor size is reducing 

continuously since last 40 years now, and nowadays the channel length in transistors is in 

few nanometers, few tens of nanometers at max and that is less than the mean free path of 

the electron and in this situation, in this kind of devices we cannot apply our classical 

conventional electron transport theory that we derive from Drude’s model. 
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So, that is why we need to think the electron physics from a fundamentally new perspective 

and that is what we will begin with from today’s class and we saw that nowadays the 

devices are getting smaller and smaller and if we take an example of two terminal device 

in which we have a source, a drain and a channel and the channel length is in few tens of 

nanometers. Generally even in present devices the size of contacts, the size of source and 

drain their size is larger as compared to the channel. 

So, as compared to the channel the source and the drain are considered to be the bulk 

material ok. So, in this context in these so, to say mesoscopic devices we need to 

understand the density of states, electron density of states in the channel and Fermi 



function of the contacts. So, this is what we also saw in our previous discussion that we in 

order to properly understand the electronic behavior in now small devices we need to 

understand the electronic density of states in the channel because the channel is very small. 

Now, few tens of nanometers and we need to understand the Fermi function of electrons 

in the source and the drain and once we understand these two concepts we can we will see 

in coming classes that we can formulate a new model of transport which is which can 

characterize the ballistic transport that we saw, that is happening in present day devices 

and we can also extend that concept to the diffusive transport case. 

So, there are two key concepts to understand; one is the density states of electrons in the 

channel region and second is the Fermi function of the source and the drain contacts. So, 

the density of states, but what do we mean by density state? So, density of states is the 

number of energy states, number of electronic energy states per unit volume per unit at a 

given energy. Sometimes it is also defined as per unit energy, but it is number of electronic 

states per unit volume at a certain given energy. 

And as we as all of us know that electron is a quantum mechanical particle electron is 

fundamentally a quantum mechanical particle. So, in order to understand the electronic 

states, we first need to understand the quantum mechanical nature of the electron. So, the 

first or so to say the stepping stone in understanding the density of state would be to 

understand the quantum mechanical nature of electrons in solids. 

So, that is what we need to do and that is what we will try to develop in coming couple of 

lectures and once we have the quantum mechanical understanding of electrons in solids, 

we will see how we can extend that concept to derive the density of states for 0D, 1D, 2D 

and 3D systems in all kinds of systems basically. Fermi function comes from the statistics 

and it is relatively easier to understand this we will take up after understanding the density 

of states. 
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So, first thing first. Let us begin with the basic understanding of quantum mechanical 

nature of electron in solids. So, we will start from the basics and in order to sort of 

understand the quantum mechanical nature of electron, we first need to understand the 

postulates of quantum mechanics or the axioms of quantum mechanics on which the entire 

formulation of quantum mechanics is based. 

And, the first postulate of quantum mechanics is that; that every particle on every quantum 

system can be characterized by a mathematical function called the wave function ok. So, 

the wave function is a mathematical function and generally the wave function is 

represented by the symbol psi and it is generally a function of x, y, z and t basically the 

space and time coordinates. So, the entire nature of a particle or a quantum mechanical 

system is characterized by the wave function Ψ(𝑥, 𝑦, 𝑧, 𝑡). 

And this is purely a mathematical entity. It can be a complex number as well generally it 

is a complex number, but it contains all the information about the system. So, if we need 

to understand the nature of electron we need to; we need to basically find out the wave 

function of the electron in a given condition. So, if you need to understand the electrons in 

solids, we need to understand the wave function of electrons in solids ok. 

So, the first postulate of quantum mechanics says that every system can be characterized 

by a mathematical function and this mathematical function is known as the wave function. 



This is generally a complex function and it belongs to what is known as the Hilbert space 

of the system. 

So, we will not go to the mathematical details of the Hilbert space ℋ or the linear algebra 

of quantum mechanics but all the systems or any system can be characterized by a wave 

function which is which belongs to the Hilbert space of that particular system. It contains 

every information and interestingly enough it does not we cannot extract physical 

implication directly from the wave function.  

So, that is why this probability density the notion of probability density is defined. The 

second concept in quantum mechanics is the notion of probability density and the 

probability density is defined as the multiplication of the complex conjugate of the wave 

function with the wave function itself [ Ψ∗(𝑥, 𝑦, 𝑧, 𝑡). Ψ(𝑥, 𝑦, 𝑧, 𝑡) = |Ψ(𝑥, 𝑦, 𝑧, 𝑡)|2 ]. 

So, it is defined as basically psi star psi or mod psi square. As I just told you psi does not 

tell us anything physically about the system it is just a mathematical notion it is an abstract 

concept it is a mathematical notion this probability density function it is actually a physical 

thing about the system it tells us about. 

So, for example, in this case when we are taking psi as a function of x, y, z and t it tells us 

about the probability of the electron being found or it is the probability density of electron 

being found in a space time coordinate. So, if we want to find out the probability of electron 

being found in a certain volume we just need to integrate psi x, y, z t square over that 

volume at a certain time ∫|Ψ(𝑥, 𝑦, 𝑧, 𝑡)|2 𝑑𝑣. 

So, this will give us the probability of the electron or any quantum system being found in 

the volume dv or in the entire volume if we take the integral, if we do not take the integral 

it will just give us the probability of the electron being found in the small volume dv and 

if we integrate it will tell us about the probability of the electron being found in the entire 

volume ok at an instant t. 

So, now we have the wave function of the system, we have the probability density of the 

system, but how do we measure other things. How do we measure other practical things 

about this system for example, if we want to measure the position of the electron or 

momentum of the electron or energy of the electron how do we do that, and for that 



quantum mechanics has another has an interesting set of operators these are known as the 

measurables also and these are the Hermitian operators. 
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So, in quantum mechanics corresponding to every physical observable there is an operator 

an Hermitian operator and if we need to sort of measure any quantity we need to apply the 

corresponding operator on the wave function ok. So, that will tell us about the. So, for 

example, the operator corresponding to distance �̂� is just the distance x. The operator 

corresponding to energy is the first derivative of the wave function. 

(Refer Slide Time: 10:31) 

 



So, the energy operator is basically 𝑖ℏ
𝜕

𝜕𝑡
 and similarly the momentum operator is −𝑖ℏ

𝜕

𝜕𝑥
. 

So, if we apply these operators on the wave function then it will tell us about the 

corresponding quantity and from the notion of operators we actually have a notion of 

expectation value corresponding to an operator.  

The expectation value of an operator is given as so for example, if we have an operator �̂� 

the expectation value of the operator will be given as the integration of the wave function 

complex conjugative wave function into operator into the wave function integrated over 

all parameters dz, where this is the integration is taken over all the parameter 〈�̂�〉 =

∫ Ψ∗�̂�Ψ 𝑑𝑥𝑑𝑦𝑑𝑧. 

So, this will tell us about the expectation value of an operator. And, but what do we mean 

by expectation value of an operator? Expectation value of an operator is the average value 

that we will obtain if we make large number of measurements on the system, if we make 

large number of measurements corresponding to that operator and this will be the average 

value that we will obtain.  

Please be careful that this is not the actual value that we will obtain if we make one 

measurement this will be the average value of all the measurements if we make large 

number of measurements this will be the average value of the outcome after a large number 

of measurements and this brings us to the notion of measurement in quantum mechanics. 

Measurement in quantum mechanics is also an important notion. The measurement in 

quantum mechanics is unlike quantum mechanics is an application of an operator the 

measurement is basically application of an operator on wave function and collapse to an 

Eigen function of that operator.  

So, measurement means that the measurement changes the state of the system, it basically 

collapses the wave function to one of the Eigen functions of the operator measurement 

operator. So, this is an important notion and this is quite different from classical mechanics 

in which measurement does not change the system does not change the state of the system. 

But in this case the measurement collapses the wave function it changes the wave function 

to one of the Eigen functions of the measurable operator that we are measuring ok and that 

is why this notion of expectation value is important because it tells us about the average 

outcome that we will obtain if we make large number of measurements because different 



measurements will give different outcomes and this expectation value will tell us about 

the average of all those outcomes. 

This average is generally weighted by the Eigen values of the operator over the probability 

density. Another important quantum mechanical idea is that any system evolves according 

to a specific equation known as the Schrodinger equation a quantum mechanical equation 

which is also quite different from the classical evolution of systems. So, any system will 

evolve according to the Schrodinger equation of that particular system. 
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So, the Schrodinger equation in very general terms is written as minus h bar square divided 

by 2 m del 2 plus U psi equals psi [(
−ℏ2∇2

2𝑚
+ �̂�) Ψ = 𝑖ℏ

𝜕

𝜕𝑡
Ψ]. So, this is the Schrodinger 

equation of any system. On the left hand side we have this U is the potential energy of the 

system potential energy of any particle that we are trying to understand or so to say 

potential energy operator which is equal to the potential energy itself. 

This is the kinetic energy operator and this on the right hand side is the energy operator 

total energy operator that we saw few minutes ago. Now, we have the wave function which 

basically contains all the information about the system we have the probability density 

correspond of that particle which gives us a physical sense where the particle is more likely 

to be found we have measurable operators we have operators by which we can measure 

physical things physical parameters of a system. 



 We have an evolution equation corresponding to a system which is the Schrodinger 

equation and finally we have a few conditions that this wave function needs to satisfy in 

order to be a valid quantum mechanical wave function. So, the first condition that it needs 

to satisfy is the square integrability of the wave function ∫|Ψ2|𝑑𝑣 = 𝑓𝑖𝑛𝑖𝑡𝑒. 
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So, the wave function corresponding to a quantum mechanical particle should be square 

integrable and by square integrable we mean that the square of the wave function basically 

psi square should be the integral of this square should be finite. Moreover there is another 

condition that is known as the normalizability and according to normalizability the 

integration over entire space should be 1 [∫|Ψ2|𝑑𝑣 = 1].  

It basically means that the probability of the particle being found in the entire universe 

should be 1 basically so this condition is it is related to square integrability this is known 

as the normalizability of the wave function. The second condition that the wave function 

needs to satisfy is the continuity of the wave function and as you might have already 

guessed the continuity of the wave function we need the continuity of wave function 

because the wave function corresponds to a physical system. 

And if the wave function is discontinuous at any point then its derivative will be infinite 

at that point and as you can see the derivative corresponds to the physical operators. So, 

those operators will be infinite which could be a nonphysical situation ok. So, the wave 

function should be continuous and in by same logic the first order derivatives of the wave 



function should also be continuous because if there is a discontinuity in the first order 

derivative it will mean that the second order derivative will be infinite at those points. 
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Which basically will say that that the kinetic energy of the system which is given by this 

operator will be will blow up and that is an unphysical situation there is a small caveat 

here if the if at any point. 

So, for example, if you are considering a delta function as the potential energy of the 

system if the potential energy of the system is given by the delta function in that case there 

is at x equal to 0 the potential energy will be a delta function, if we plot potential energy 

versus x it will be a delta function and in that case the wave function will have a 

discontinuity at this point and its second order derivatives will not be properly defined.  

But this is a special situation and these situations we can easily understand if we understand 

the Schrodinger equation and all other conditions that the wave function need to satisfy, 

but in generally when the energy is properly defined, when the electronic energy or any 

energy of the quantum mechanical particle is properly defined in those cases the wave 

function and its first order derivatives should be continuous ok. 

So, these are few basic postulates I would say that any quantum system need to satisfy and 

once we have these things properly defined for a system we can study that system in a 

proper way. So, now, with this basic knowledge of quantum mechanics we are now ready 



to understand the nature of electrons. So, please keep this thing in mind our ultimate aim 

is to understand the nature of electrons in solid. 

And as we know the solids are extremely complex objects. So, first we will start with the 

free electron, first we will take a very simple system in which electron is free it is not 

basically bound by any system. 
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And we will see how the electron behaves when it is entirely free, free means in a way that 

the electron is alone in the entire universe. It is again highly unphysical situation it does 

not happen, but this is a good starting point you know to understand the quantum 

mechanical nature of electron. 

So, if the electron is completely free what it means is that there is no interaction that the 

electron is undergoing. So, there is no interaction which basically means that the potential 

energy of the electron will be 0 and in this condition we can write down the Schrodinger 

equation by taking with potential energy to be 0. 
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There is another important thing about the Schrodinger equation and that is if you recall 

the Schrodinger equation reads as minus h bar square divided by 2 m del 2 plus U psi 

equals i h bar del by del t psi.  

So, this is the time dependent Schrodinger equation, but if the total energy of the system 

is fixed if the total energy of the system under consideration is fixed it is not changing with 

time in that case this equation in this equation the time dependent part and the time 

independent part the spatial part and the time part of the wave function they can be 

separated, and the time dependent part does not change it is properly defined.  

So, what we basically mean by solving a Schrodinger equation in this case that we can 

solve just the time independent Schrodinger equation which basically looks like this equals 

E psi where E is the total energy of the electron. 

So, in case so, in this case in the case of free electron the total energy of the electron is 

fixed. In fact, the potential energy is also 0. So, in this case by solving the Schrodinger 

equation we can or by solving the time independent Schrodinger equation we can 

completely characterize the electronic wave function.  

We can completely deduce the electronic wave function and this transformation from time 

dependent Schrodinger equation to time independent Schrodinger equation is a simple 

derivation I would recommend all of you to go back and please do this after the class. 
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So, in this case the Schrodinger equation will read as minus h square by 2 m h bar square 

by 2 m del 2 psi x, y, z plus U psi x, y, z equals E psi x, y, z. For a free electron as we saw 

that it is free from any interaction the potential energy is 0. So, in this case this equation 

basically boils down to h square by 2 m del 2 psi x, y, z with the minus equals E times psi 

x, y, z… [(
−ℏ2∇2

2𝑚
) Ψ(x, y, z) = �̂�Ψ(x, y, z)] 

 And if we for simplicity if we consider only one dimensional case in that case this equation 

further simplifies to h bar square by 2 m del 2 psi x plus E psi x equals to 0 or del 2 psi by 

del x square plus k square psi equals to 0, but psi is now just the function of x and k is now 

2 m E divided by h bar square square root ok. So, now, the Schrodinger equation boils 

down to a second order differential equation a simple second order differential equation, 

whose solution we can easily do from a basic calculus course. 
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So, the solution of this equation would be as you might have already guessed the solution 

of this second order differential equation are either there are multiple ways of writing the 

solution of this equation we can write the write down the solution of this equation in the 

form of exponentials we can also write down the solution of this equation in form of sines 

and cosines we can also write them down in form of hyperbolic functions.  

So, for simplicity we will write the solutions in the form of sines and cosines. So, as you 

can check sorry this should be k x here as you can check psi x equals A sin k x plus B cos 

k x is a valid solution of this equation the Schrodinger equation of the free electron. 

Ψ(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥) + 𝐵𝑐𝑜𝑠(𝑘𝑥) 

Now where k is square root of 2 m E divided by h bar square. 𝑘 = √
2𝑚𝐸

ℏ2
  So, as you can 

see we have obtained the wave function of the free electron and the wave function is 

represented in terms of a new parameter the parameter k which is basically which comes 

with sines and cosines which comes as a parameter of sines and cosines. So, that is why 

this parameter is known as the wave number corresponding to the electronic wave function 

ok. 

 And here apart from this we do not have any other condition because this function is 

continuous its derivative is continuous it can be normalized if we want. So, it satisfies all 



valid conditions that a wave function needs to satisfy and so, that is why we have 

completely characterized a free electron. 
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So, as we can see if we represent energy as a function of the wave number this is how it 

would look like and generally it is an in quantum mechanical systems specially in solid 

states it is it simplifies our understanding of things if we plot the relationship between the 

energy of the system and the wave number of the wave function of the system wave 

number of the wave function of the system. So, basically the E k relationship and in this 

case this is a straight forward parabolic relationship. 𝐸 =
ℏ2𝑘2

2𝑚
 

So, as you can see the relationship between E and k is a parabolic relationship and there 

are no other restrictions electronic energy can take any value k can take any value, but this 

will not hold true as you will see in coming classes as we will see, as we will derive in the 

next lecture this simplified or this elegant relationship between E and k will no longer hold 

true if we go beyond a free electron system ok. 

 So, in the coming class we will see how the electron behaves when it is confined in a 

certain space when it is for example, confined by a potential. So, we will study electron in 

a potential well and then we will see how the electron behaves in a natural solid ok. So, 

see you in the next class. 


