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Resistance: Ballistic and Diffusive Cases-II 

 

Hello everyone, as you know we are having a discussion on Resistance as derived from 

the formalism that we discussed and as we understand from our classical understanding of 

semi conductor devices. So, we are contrasting these two type of or the resistance from 

these two formalisms. 
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And, the classical understanding of resistance says that in a typically in a 1D, 2D, or 3D 

in any kind of conductor the resistance is directly proportional to the length of the 

conductor like this. In case of 1D conductor it is just proportional to the length of the 

conductor, in case of 2D conductor it is directly proportional to the length inversely 

proportional to the width. 

Similarly, in 3D conductor it is directly proportional to the length inversely proportional 

to the area. This constant of proportionality is known as the resistivity and the inverse of 

resistivity in the material is known as conductivity that is the classical picture of transport 

that we have in our mind.  



From our formalism of the general model of transport we deduced this expression of the 

conductance of the device. It is G is equal to 
2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
) 𝑑𝐸. 

And, we started the discussion for low temperature cases, what happens at low 

temperatures in a ballistic conductor and at low temperatures in a ballistic conductor, the 

conductance turns out to be 
2𝑞2

ℎ
 M(EF) this is at T equal to 0 kelvin for ballistic case ok.  

This term 
2𝑞2

ℎ
 is known as the quantum of conductance it is the conductance of the single 

channel of the electron in the devices and its value is 
1

12.9𝑘Ω
. From this sort of derivation 

or this analysis we could see that for a 2D conductor 2D ballistic conductor the resistance 

is independent of the length as opposite to the our classical understanding, our 

conventional understanding of the resistance. 

So, that is the key difference. So, that is why in our modern nanoscale devices we can no 

longer use the conventional understanding of electron transport we need to have a 

fundamentally different kind of theory of transport and that is what we are doing in this 

course. After that we are currently studying the transport in studying the resistance in 

ballistic conductor at 0 kelvin, but now a wide conductor that is where our discussion was 

stopped in the last class. 
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So, we have a conductor let us say of length L, width W and it is a ballistic conduction 

which means that electrons do not collide with anything in between they directly go from 

the left terminal to the right terminal and because of the temperature being 0 kelvin. Now 

we can say that all the electronic states up to energy EF are filled all electronic states are 

filled.  

So, if we need to calculate the resistance here we again begin with the same expression of 

the conductance which is 
2𝑞2

ℎ
 in ballistic case T(E) is 1. So, we are just left with M(E) and 

essentially (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸 and at 0 kelvin this expression essentially boils down to M(EF) this 

is the ballistic conductor at 0 kelvin. Now, this term this M(EF) this we can put it the form 

of this from our derivation which is essentially W times √
2𝑚∗(𝐸−𝐸𝑐)

𝜋ℏ
 as well. 
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Or we can correlate this term  to an experimental parameter which is generally the sheet 

carrier density in a 2D conductor which is the number of electrons per unit area. So, this 

is given this or this can be deduced from the experiments for example, I gave you an 

example of Hall Effect experiment. So, if we know the hall coefficient of the material we 

can deduce the sheet carrier density by measuring the hall voltage of that particular 

material. 



So, this parameter is generally available from the experiments and we would like to 

correlate this M(EF) with this parameter and for that we need to go back to the k space. So, 

this is kx, ky the conductor physically looks like this. In x direction it has certain length, in 

y direction it has certain width.  

So, the allowed k points or the values of the k points where a valid electronic wave function 

exists in this material is given by the solution of the Schrodinger equation and we obtain 

these kind of points these are essentially 
𝜋

𝐿
,

2𝜋

𝐿
, 0 on the y axis we have 

𝜋

𝑊
,

2𝜋

𝑊
 and so on. 

And, since the temperature is 0 kelvin all the energy states up to EF are filled which means 

that all the k points up to k equal to kF are filled k from 0 to kF are filled where, kF is given 

by √
2𝑚∗𝐸𝐹

ℏ2 , this comes from the E k relationship ok.  

So, the total number of electrons will be inside this circle of radius kF, if this is the radius 

of the this circle is kF, the total number of electrons or the sheet carrier density in the 

material will be given by the area of this circle in the k space and what is the area here or 

number of electrons at T equal to 0 kelvin will be number of electrons  more precisely 

electronic states in the circle of area covered by radius kF ok. 

Now, how many electrons are there in this circle? That will be given by the number of 

electrons will be the area of the circle divided by the area occupied by one electron or one 

electronic state. So, if we divide the area of the circle by the area of one electronic state 

that will give us the total number of electronic states in the or total number of electrons in 

the system. 

So, essentially this is what we need to calculate in this case and, the area of the circle is 

simply 𝜋𝑘𝐹
2, but what is the area that a single electronic state occupies. So, in the k space 

if we have a close look on the k space these are the ok. 
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So, generally this is the area occupied by one electronic state; however, we also saw in our 

discussion of density of states that this set of k values and this set of k values and this set 

of k values and this set of k values they essentially represent the same wave function. So, 

what we can say is that the area occupied by an electron is this or if we consider the spin 

this is the area occupied by two electron. 

So, two electrons, one with up spin one with down spin will occupy this amount of area. 

So, area of one electron will be and what is the area and this is 
2𝜋

𝐿
 length and 

2𝜋

𝑊
 width. So, 

the area will be 
2𝜋 

𝐿
times 

2𝜋

𝑊
. So, it will be 

4𝜋2

𝐿𝑊
 or 

4𝜋2

𝐴
, this is the area occupied by two 

electronic states if we consider the spins as well. So, the area occupied by one electronic 

state is 
4𝜋2

2𝐴
, so it will be 

2𝜋2

𝐴
 ok. 

Now, we can sort of see the total number of electrons in the system from this expression. 

So, total number of electrons will be the area of the circle which is 𝜋𝑘𝐹
2 divided by the area 

of the single electron which is 
2𝜋2

𝐴
. So, pi, so, it is 

𝐴𝑘𝐹
2

2𝜋
 and the sheet carrier density will be 

the total number of electrons divided by area.  

So, it will be N/A which means 𝑛𝑠 can be written as 
𝑘𝐹

2

2𝜋
 ok. So, that way we have a 

relationship between 𝑛𝑠 and 𝑘𝐹 vector ok. In other words this 𝑘𝐹 is essentially √2𝜋𝑛𝑠.  
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So, let us just keep this equation with us 𝑘𝐹 is √2𝜋𝑛𝑠 and if we use this expression for a 

2D conductor which is essentially the number of modes in a 2D conductor is W times 

M2D(E) also written as 
𝑊𝑘

𝜋
 or 

𝑊

𝜆𝐵
2⁄
 where, 𝜆 is the de Broglie wavelength of the electrons 

ok. So, using this expression now this M2D(EF) from here we can see that M2D(E) is actually 

W and W will go away 
𝑘

𝜋
. 



So, M2D(EF)  is 
𝑘𝐹

𝜋
 and from the previous analysis 𝑘𝐹 is 

√2𝜋𝑛𝑠 

𝜋
. So, M2D(EF)  now is 

√2𝜋𝑛𝑠 

𝜋
. 

So, we now have this number of modes parameter in terms of the basic or experimental 

parameter of the device in terms of 𝑛𝑠.  

And if we replace this in the conductance expression, the ballistic conductance at 0 kelvin 

of the conductor is 
2𝑞2

ℎ
 M(EF)  where M is W times M2D(EF). So, it becomes W times 

2𝑞2

ℎ
√

2𝑛𝑠

𝜋
. 

So, this is the finally ballistic conductance of a 2D conductor 
2𝑛𝑠

𝜋
 or the resistance ballistic 

resistance will be the inverse of this which is essentially 
1

𝑊

ℎ

2𝑞2 √
𝜋

2𝑛𝑠
.  

Now as is also clear from this expression that the ballistic resistance is independent of the 

length as we also expect because the electron is not colliding throughout the length. So, 

that is why the length is not important in resistance it is however, inversely proportional 

to the width because more the width more will be the number of modes in the transistor, 

more will be the conductance less will be the resistance. 

Apart from that it is inversely proportional to the sheet carrier density which is also 

expected because more the number of electrons available in the conductor for transport 

less will be the resistance or more will be the conductance. And, apart from that we have 

a fundamental constant or the quantum of conductance constant in these expressions ok. 
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So, this is pretty much what we have in our 2D conductor at 0 kelvin and with a finite 

width ok. Up to now we have only considered the case of 0 kelvin at extremely low 

temperatures. But now let us consider a more realistic case. So, the case when the 

temperature is room temperature or it is beyond or it is above 0 kelvin temperature.  

And because of this, because of the room temperature case or higher temperature scenario 

we can no longer take this assumption we cannot approximate the Fermi window by or 

delta function because this is only possible at 0 kelvin. So, now, this needs to be explicitly 

calculated and the this becomes one of the main things to do in these calculations actually. 

So, here we have again we to in order to calculate the resistance of a 2D resistor at room 

temperature let us say we start with the formula of the conductance which is 

2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
) 𝑑𝐸. And now this term needs to be explicitly calculated and this 

is a tedious calculation I would say ok. So, if we put the Fermi function explicitly in this 

expression it becomes G is 
2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (−

𝜕

𝜕𝐸
)

1

1+𝑒
𝐸−𝐸𝐹

𝑘𝑇

𝑑𝐸. 

This derivative (−
𝜕

𝜕𝐸
). So, this (−

𝜕

𝜕𝐸𝐹
) is equivalently can be it can be written as 

𝜕

𝜕𝐸𝐹
 of 

f. So, (−
𝜕𝑓

𝜕𝐸
) can be written as 

𝜕𝑓

𝜕𝐸𝐹
. And by making this substitution, we can essentially 

bring this derivative term outside the integral. 
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In ballistic case T(E) is 1. So, if we make this substitution the ballistic conductor at this 

the conductance of the ballistic conductor at higher temperatures is it becomes if we bring 

2𝑞2

ℎ
(

𝜕

𝜕𝐸𝐹
) ∫ 𝑀(𝐸)

1

1+𝑒
𝐸−𝐸𝐹

𝑘𝑇

𝑑𝐸. 

Now, this entire calculation, this entire integral needs to be evaluated along with this 

differential and this becomes a non trivial calculation actually for most of the practical 

applications this become a known, it becomes a difficult thing to do. So, that is why this 

is finally, the if we also write it down explicitly M(E) which is essentially so, if we write 

down M(E) to be W times √
2𝑚∗(𝐸−𝐸𝑐)

𝜋ℏ
. 
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So, then this ballistic conductance formula essentially becomes this formula can be written 

down as G ballistic is equal to 
2𝑞2

ℎ
(

𝜕

𝜕𝐸𝐹
). Now if we put instead of M (E) we put this then 

W by. So, 
𝑊

𝜋ℏ
 will come out and even √2𝑚∗can also be taken out, we are left with this 

derivative term (
𝜕

𝜕𝐸𝐹
) and the ∫(𝐸 − 𝐸𝑐)

1
2⁄ 1

1+𝑒
𝐸−𝐸𝐹

𝑘𝑇

𝑑𝐸. 

So, this is finally, this formula will be or the conductance of the ballistic conductor will 

become, it has range of constants here then a derivative and then an integral. So, this is 

combination of. So, we need to first integrate then take a derivative with respect to EF.  
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And as I mentioned that it is a difficult thing to do. So, and that is why generally this 

expression which is essentially the same that was there in the, this is evaluated this kind of 

integrals are separately evaluated and they are separately categorized as Fermi Dirac 

integrals Fermi Dirac integrals. 

Because, these kind of integrals they appear quite often in solid state physics, specially in 

the ballistic transport and in the calculations of the conductance or even in the calculations 

of the I V characteristics at room temperature similar kind of integrations appear there ok.  

So, these are known as the Fermi Dirac integrals and the way to evaluate them is to make 

this change of variables. So, a new variable 𝜂 is defined which is given as 
𝐸−𝐸𝐶

𝑘𝑇
, generally 

in these derivations it is written as kB times TLkB is the Boltzmann constant TL is the lattice 

temperature which we are in short writing as k times T. 

And another parameter 𝜂𝐹 is defined as 
𝐸𝐹−𝐸𝐶

𝑘𝑇
. So, if we make this change of variables in 

this equation then this integral essentially this part of the integral (
𝜕

𝜕𝐸𝐹
) this derivative and 

∫(𝐸 − 𝐸𝑐)
1

2⁄ 1

1+𝑒
𝐸−𝐸𝐹

𝑘𝑇

𝑑𝐸. So, this changes to √𝑘𝑇 (
𝜕

𝜕𝜂𝐹
) integral this if this limit is 0 to ∞ 

this is also 0 to ∞. 𝑇ℎ𝑖𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜  √𝑘𝑇 (
𝜕

𝜕𝜂𝐹
) ∫(𝜂)

1
2⁄ 1

1+𝑒𝜂−𝜂𝐹
𝑑𝜂  . 

 Just consider this to be a small exercise just put these variables 𝐸 − 𝐸𝑐 replace E by 𝜂𝑘𝑇  

and 𝐸𝐹 − 𝐸𝑐 by 𝜂𝐹𝑘𝑇 and then see how this derivative and integral changes this is the 

answer actually, this is how it changes. So, just do it yourself that will give you a more 



hands on feel of this expression. So, ultimately in the calculation of the conductance of the 

material this derivative along with the integral it changes to this. 

So, finally, we can write down the ballistic conductivity of a 2D conductor 
2𝑞2

ℎ
W times 

√
2𝑚∗𝑘𝑇

𝜋ℏ
 (

𝜕

𝜕𝜂𝐹
) ∫ (𝜂)

1
2⁄ 1

1+𝑒𝜂−𝜂𝐹
𝑑𝜂

∞

0
.  

So, these kind of integrals are known as the Fermi Dirac integrals and depending on the 

power of 𝜂 in the numerator here, inside the integral the order of the Fermi Dirac integral 

is defined. So, in this case the power of 𝜂 is half. So, this is the Fermi Dirac integral of 

order half ok. 

So, and this is how precisely the Fermi Dirac integral of order half is defined. It is 

2

√𝜋
∫(𝜂)

1
2⁄ 1

1+𝑒𝜂−𝜂𝐹
𝑑𝜂. So, it does not involve the derivative here yeah. So, earlier I 

mentioned that this entirely is defined as the Fermi Dirac integral, but it is only this part 

that is defined as the Fermi Dirac integral.  

And there is an interesting property of the Fermi Dirac integral that, if we take a derivative 

of the Fermi Dirac integral with respect to 𝜂𝐹. So, if we do this with a Fermi Dirac integral 

let us say of order n then generally the Fermi Dirac integral of order, it becomes a Fermi 

Dirac integral of order n -1. 

So, in the case of calculation of conductance for a 2D conductor 2D ballistic conductor at 

room temperatures, we have Fermi Dirac integral of order half and we are taking a 

derivative with respect to 𝜂𝐹. So, finally, it will be a Fermi Dirac integral of order minus 

half  and these maths we are not going in this in the in the detail of the maths the Fermi 

maths of Fermi Dirac integral. 

(Refer Slide Time: 30:11) 



 

But, this is how finally, everything will look like and this should be order minus half 

actually. So, finally, the conductance of a  2D ballistic conductor at room temperature will 

be given by a set of constants and a Fermi Dirac integral of order minus half ok.  

So, I will let you think about this replacement of variables by this change of variables 

through which we obtained this Fermi Dirac integral formulation and, I would recommend 

you to go back and look at the Fermi Dirac integrals independently I will also share some 

materials on them and, we will start the next class this point onwards.  

We will have slightly more deeper understanding of this final expression and that will 

essentially conclude the discussion of the conductance of the ballistic conductor at normal 

temperatures. 

Thank you for your attention. See you in the next class. 


