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Conductance, Bulk Transport-II 

 

Hello everyone. So, today we will finish our discussion on Conductance both in ballistic 

and diffusive transport case and we will see how the ideas that we have discussed can be 

generalised to Bulk Transport case. 
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So, what we have seen up to now is that the steady state electronic population in general 

can be given by this quantity, which essentially depends  on the Fermi functions of the 

context and the density of states of the channel. 

The current is given by this general equation and this equation has different interpretations 

both in ballistic case both different in interpretation in ballistic and in diffusive case 

because in ballistic case this term is the number of modes and in diffusive case this is 

number of modes times the transmission coefficient.  

In near equilibrium conditions we saw that in near equilibrium this f1 - f2 term can be 

written as (−
𝜕𝑓

𝜕𝐸
)Δ𝐸𝐹 term and from there we could deduce the conductance of the device. 



The conductance generally looks like this it is 
2𝑞2

ℎ
𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
) 𝑑𝐸 and we saw that 

this thing in the integration (−
𝜕𝑓

𝜕𝐸
) this is an interesting function and this is if we plot this 

on energy axis (−
𝜕𝑓

𝜕𝐸
) this is a window function around the Fermi level of the material. 

So, this looks like a window around the Fermi level moreover the area under minus (−
𝜕𝑓

𝜕𝐸
) 

versus E is 1. So, the area of this window is 1. Secondly, this function becomes a delta 

function at extremely low temperatures when temperature approaches is around 0 kelvin 

ok. And finally, what we saw was that the total conductance of the device can be written 

as the average of the conductance function over the Fermi window. 

So, this is how we can write down the total conductance of the device minus (−
𝜕𝑓

𝜕𝐸
)dE, 

where then this conductance function is given by this general expression the expression 

𝑞2𝐷(𝐸)

2𝜏(𝐸)
, but 𝜏 is the characteristic times and both it is different in ballistic and in diffusive 

cases in both cases it is different ok. 

So, this is what we have seen. So, far and one important thing that we need to keep in mind 

is specially from this expression that the conductance of a device of any material is 

essentially the average of the conductance function in the Fermi window, which means 

that only the conduction pathways that are close to the Fermi level only those contribute 

in the conductance of the device. 

The conduction pathways that are far away from the Fermi window from the Fermi level 

they do not even though there might be conduction pathways there might be more in the 

device, but they do not contribute in the current and they do not contribute in the 

conductance. 

And then it has a simple intuitive explanation as well because only electrons close to the 

Fermi level only those electrons are sort of mobile at the bottom of the conduction band 

and at the top of the valence band ok. And this we can also see once we do things from the 

right from the bottom up right from the fundamental science of the device ok. 
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So, this is what we have and more or less this is all about the conductance. Simply this is 

a plot of minus (−
𝜕𝑓

𝜕𝐸
) as a function of E, but now instead of directly plotting (−

𝜕𝑓

𝜕𝐸
)  this 

has been plotted as (−
𝜕𝑓

𝜕𝐸
)  versus 

𝐸−𝜇

𝑘𝑇
 just for the sake of simplicity and this is how it looks 

like. 

The axis have been flipped now the energy axis is the vertical axis and the horizontal axis 

is the (−
𝜕𝑓

𝜕𝐸
)  axis this is clearly as we can see a window function this is a computer 

generated plot essentially ok.  

So, at around these values the window becomes the value of this function becomes very 

small and these values are sort of very close to the this 0 point, 0 point is the Fermi level 

point generally the width of this window is few kT only few kT wide this is 5 to 6 or maybe 

7 kT depends on the temperature as well. 

So, only in this small energy range only conduction takes place and conductance is 

contributed by the channels or the conduction pathways in this range this is true for both 

ballistic case and diffusive case. So, up to now we have discussed as we saw we have 

discussed the current in ballistic case in ballistic case we came across the idea of modes. 

Now, let us see how this can be generalised to the bulk transport case. 
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So, generally the bulk transport theory is given by the Drude’s model in which the 

conductivity is derived by assuming electrons to be free particles colliding with atoms in 

between and taking a average over or considering the classical kinematics of the electrons 

in the devices. 

Now, let us see how these expressions can be generalised to the bulk case. In bulk transport 

case before going into this let me also quickly tell this that as we are moving from as we 

are moving away from ballistic transport and going to the diffusive transport case we are 

seeing that the channel is becoming more important than the contacts.  

In ballistic transport case we only had M(E) from the channel the only the conduction 

pathways in the channel were responsible for the ballistic transport and there was no other 

contribution of the channel in the transport. 

Everything else was getting determined by the contacts, but now in the diffusive transport 

case due to scattering of electrons in the channel T(E)  gets introduced in the I V expression 

and as the channel starts becoming bigger and bigger this quantity starts becoming more 

important because this becomes smaller and smaller. And which basically in a way reduces 

the effects of the contacts or specifically the contacts. Now channel is the determining 

factor in the current in the device. 

So, in bulk transport case this material bulk means now we have a big material we can see 

it from our eyes it is maybe centimetre or a meter length. In this case what we have when 

the current is flowing through the device flowing through a material then this device is not 



in equilibrium. So, we cannot sort of define the Fermi level as such and this idea of quasi 

Fermi level is used. 

So, in bulk transport case we use the idea of quasi Fermi level where we define 2 Fermi 

levels for electrons one is for the electrons in the conduction band and second is the 

electrons in the valence band, this is electrons in conduction band. And in steady state 

there is a gradient in these Fermi or quasi Fermi these are not actual sort of Fermi level 

this is not an equilibrium concept because as we discussed in beginning that Fermi level is 

an equilibrium idea. 

But on the similar lines these quasi Fermi levels are defined when the system is not in 

equilibrium system is sort of displaced from the equilibrium and that is why we need to 

define 2 Fermi levels one is for the electrons in the conduction band second is the electrons 

in the valence band because these two kind of electrons may behave now differently. And 

it is this the profile when there is a constant current the profile of quasi Fermi levels is 

linear this we can see from basic electro statics as well ok 

So, now starting with our expression of current this is what we have essentially in near 

equilibrium in any material we have I is equal to 
2𝑞

ℎ
∫

𝛾(𝐸)𝜋𝐷(𝐸)

2
(−

𝜕𝑓

𝜕𝐸
) Δ𝐸𝐹𝑑𝐸 ok. So, now, 

if we for bulk transport case. 
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Let me erase everything for bulk transport 𝜏 is essentially 
𝐿2

2𝐷𝑛
 when Dn is the diffusivity 

or diffusion coefficient because a bulk is essentially a diffusive conductor. 

So, 𝜏 will be given by 
𝐿2

2𝐷𝑛
 and if we take a 2D conductor in that case this D(E) can be 

written as area times the density of states or WL𝑔2𝐷(𝐸). In some texts  it is also written as 

W times L times 𝐷2𝐷(𝐸).  ok. 

So, if we put these values here in this expression of current what we see is that I is equal 

to 
2𝑞

ℎ
 , 𝛾 can be written as  

ℏ

𝜏(𝐸)
 and 𝜏(𝐸) is given by 

𝐿2

2𝐷𝑛
, 𝜋 stays as it is D(E) is written as 

WL
𝑔2𝐷(𝐸)

2
 times (−

𝜕𝑓

𝜕𝐸
) Δ𝐸𝐹 and sorry this integral is over E this integral is over E. 

We have a Δ𝐸𝐹 here ok. So, now, ℏ can be written as 
ℎ

2𝜋
. So, we can instead of writing h 

bar we can write 
ℎ

2𝜋
. So, now, looking at everything here 𝜋 𝑎𝑛𝑑 𝜋 cancel L eliminates one 

of the L’s 2 2 here 2 2 h and h. So, finally, what we are left with is we are left with lets 

take q inside Dn, W outside,  I = [𝑊 ∫ 𝑞𝐷𝑛 𝑔2𝐷(𝐸) (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸]

Δ𝐸𝐹

𝐿
.  

So, this is what we can write from the expression of the current ok. So, now we have 
Δ𝐸𝐹

𝐿
 

here this was used in the case of diffusive transport and Δ𝐸𝐹 was the difference in the 

Fermi function of the left contact and the right contact. 
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So, in the bulk transport case this 
Δ𝐸𝐹

𝐿
 can be written as essentially the gradient of the quasi 

Fermi levels because now in bulk conductors we can define the Fermi level across the 

entire material across the entire channel. And in steady state this Fermi level is defined by 

the quasi Fermi levels as I told you just in the beginning of the this in the beginning of this 

discussion and so this difference or this 
Δ𝐸𝐹

𝐿
can now be written as this 

Δ𝐸𝐹

𝐿
 can be written 

as the gradient of the quasi Fermi levels. 

This is one and at the moment we are only considering the transport due to electrons in the 

conduction band. So, this is one second is generally the way Fermi levels are defined the 

Fermi levels are dependent on the applied voltage this is how it happens. If we apply a 

voltage V in the Fermi levels change according to this expression. 

And if the reference Fermi level is assumed to be at 0 energy this is how we can define. 

And the gradient of the quasi Fermi level or even a Fermi level sorry the in case of Fermi 

level gradient cannot be there because if there is a gradient it will not longer be a 

equilibrium condition and in that case we only can use the idea of quasi Fermi levels. 

So, this can be written as q times −
𝑑𝑉

𝑑𝑥
. And what is this? This is essentially the electric 

field applied across the device. So, this is the electric field which is also represented by E. 

Please do not confuse this electric field E by energy E. So, let me put a prime over this, 

where 𝐸′ is the electric field. So, 
𝑑𝐹𝑛

𝑑𝑥
 is essentially q times 𝐸′, 𝐸′is the electric field across 

the bulk conductor. 

Now, putting everything in here we can replace 
Δ𝐸𝐹

𝐿
 by 

𝑑𝐹𝑛

𝑑𝑥
. So, I can be written as and 

please remember we are talking about a 2D channel we are initially considering a 2D 

conductor  𝑞𝐷𝑛𝑔2𝐷(𝐸) (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸 this can be written as 

𝑑𝐹𝑛

𝑑𝑥
.  And if we divide and 

multiply by q, this 
𝑑𝐹𝑛

𝑞𝑑𝑥
 will be 𝐸′ essentially ok. 
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And in a 2D  conductor the current density is defined as the I by W is defined by this which 

will be essentially from the previous expression it will be ∫ 𝑞𝐷𝑛𝐷2𝐷(𝐸) (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸. 

Let us bring this q inside 1 by q
𝑑𝐹𝑛

𝑑𝑥
 and what we saw is that 

𝑑𝐹𝑛

𝑑𝑥
 is q times E prime where 

𝐸′ is the electric field which means 𝐸′is 1 by 
1

𝑞

𝑑𝐹𝑛

𝑑𝑥
. So, this is essentially the electric field 

in the bulk conductor. So, Jn can be written as integral of [∫ 𝑞2𝐷𝑛𝑔2𝐷(𝐸) (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸] 𝐸′. 

And if you recall from the classical description of a bulk conductor the current density in 

the bulk conductor is given as the Jn is sigma times electric field where this sigma is an 

important quantity in bulk conductors this is known as the conductivity of the material. 

And if we equate this classical expression with the expression that we have just derived 

for the current density with, if we equate these two expressions. 

The  electrical conductivity of electrons in the conduction band only is essentially 

∫ 𝑞2𝐷𝑛𝑔2𝐷(𝐸) (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸 ok. So, this is the conductivity that comes from the fundamental 

description of the transport ok. 

So, now the conductivity instead of deriving it from the classical description of electrons 

using Drude’s model we have derived the conductivity from  using a bottom up approach 

in which we are just restarted with fundamental physics of the device and as expected the 



conductivity is primarily depends on apart from the Fermi window this function it primary 

depends on the two quantities one is the density of states in the channel and second is 𝐷𝑛 

which is essentially which accounts for the diffusion which accounts for the scattering. 

So, it depends on two things one is how many electronic states are there in the channel 

second is the scattering of electrons in those electronic states which is also prima facie we 

could also sort of imagine which is also in which makes sense. So, this (−
𝜕𝑓

𝜕𝐸
) is again 

from our previous description of this function this is a Fermi window function and the 

conductivity of electrons is important only in a small range of energies around the Fermi 

level that is because of this Fermi window function ok. 

So, essentially conductivity from the basic description of the device the conductivity is 

given by the density of states and the scattering around the Fermi level in a channel that is 

what these three terms collectively says collectively that is what they convey ok.  

So, this is an important idea, now because starting with the basics of quantum mechanics 

the density of states idea the general model of transport we have now deduce the a bulk 

property of the material that is the conductivity of the material in terms of the basic 

parameters of the device. 

What is not done yet is the actual description of this 𝐷𝑛 which comes from the diffusion 

and since this comes from the scattering theory I did not want to go directly into this 

because this will take the discussion in other direction ok. So, this essentially completes 

the treatment. 
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And we can say from this entire discussion that the conductivity is given by this function 

and the conductivity can also be written as in a way like conductance. It can be written as 

the average of the conductivity function and the average is to taken over the Fermi window 

where this conductivity function is 𝑞2𝐷𝑛𝐷2𝐷 ok. 

It does not involve any physical dimensions the physical dimensions may be important in 

some cases in this ok. So, for the electrons in the conduction band. So, and please 

remember that we invoked the idea of quasi Fermi levels and the quasi Fermi levels may 

be different in conduction band and in valence band. 

So, for electrons in conduction band the current density for a 2D conductor is essentially 

the current divided by the width is given as 𝜎𝑛 times gradient of the quasi Fermi level 

where 𝜎𝑛 is given by this expression the exactly this expression ∫ 𝑞2𝐷𝑛𝐷2𝐷(𝐸) (−
𝜕𝑓

𝜕𝐸
) 𝑑𝐸 

where f is the Fermi function. 

Similarly, the conductivity of electrons in the valence band which essentially indicates the 

conductive towards the conductivity of force will be given by this expression in which we 

have instead of fn the quasi Fermi level for electrons instead we have fp the quasi Fermi 

level for electrons in the valence band and here the scattering might be different. So, that 

is why we have used a different constant here instead of using Dn we have used Dp and 

apart from that everything else is the same in both cases ok. 



So, that is how we define the conductivity and we deduce the conductivity using a bottom 

up approach. So, this essentially completes our discussion of the conductance function the 

conductivity function and how do we generalise the ideas of the general model of transport 

to the bulk transport case. 
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Now, let me give you a brief summary of the entire general model of transport and from 

by using the basic write equations we deduce these two expressions the expressions for the 

steady state of the electronic population and the steady state current. The and I said in the 

beginning that these expressions are extremely important from the electrostatics point of 

view as well as from the transport point of view.  

While dealing with the current while trying to understand current in more details we came 

across this idea of modes, which is essentially the product of  
𝛾(𝐸)𝜋𝐷(𝐸)

2
 and this in turn 

turns out to be if we see in ballistic transport case this turns out to be W divided by 
𝜆𝐵

2
 

where W is the width of the 2D conductor and 𝜆𝐵 is the de Broglie wavelength of the 

electrons. 

So, M(E) which is the nodes or the conduction pathways is essentially the number of half 

wavelengths that can fit into the width of the conductor. So, that is what this idea of modes 

tell us and this is also this makes sense intuitively as well from there we generalised this 

we try to investigate the current expression for diffusive case. 



And in that case this quantity 
𝛾(𝐸)𝜋𝐷(𝐸)

2
 it becomes T(E) times M(E) where T(E) is the 

transmission coefficient this transmission coefficient is essentially 
𝜆

𝜆+𝐿
 and these are the 

values of the transmission coefficient for various regimes of transport ballistic, diffusive 

and quasi ballistic. 

From there after that we deduced the conductance of the device which turns out to be this 

and the conductance can be said to be the average of the conductance function which is 

given by this expression in the Fermi window. Fermi window is the window around the 

Fermi level for low temperatures it is like a delta function it is actually a delta function at 

T equal to 0 kelvin and high higher temperatures it is a window of area 1. 

Then we generalised this idea to the bulk transport case and in bulk transport case we again 

came across a new idea, which is the idea of conductivity of the bulk material and that 

turns out to be the average of the conductivity function which is essentially this and it is 

again averaged in the Fermi window. 

So, that is how we have developed the theory of transport using bottom up approach next 

class onwards we will see some practical calculations we will see how the resistance of an 

actual 2D conductor looks like or a 3D conductor looks like at 0 at low temperatures or at 

high temperatures. 

Thank you for your attention see you in the next class. 


