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Lecture - 26 

Conductance, Bulk Transport-I 

 

Hello everyone today we will discuss the idea of Conductance using the bottom up 

approach that we have been discussing since last few classes. And we will generalize this 

entire idea this entire general model of transport and see, how can we use this in the bulk. 

Basically bulk, how can we deduce bulk transport using the general model of transport that 

we have been discussing so far? 

So, just to sort of remind you in the beginning itself that in Bulk Transport the idea of 

conductivity is quite important. So, that is why we have started looking at the idea of 

conductance right from the ballistic and diffusive transport cases. 
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So, let me quickly review what we have been seeing in our discussion. We saw that that 

in steady state the electronic population looks like this the current looks like this. The only 

difference in ballistic and diffusive transport is, this quantity essentially. In ballistic 

transport case, this quantity is the number of modes in the device.  



And in the diffusive transport case this becomes the number of modes times the 

transmission coefficient, where this transmission coefficient accounts for the scattering in 

the channel; accounts for the scattering because now the channel is long in diffusive 

transport. 

And electron travels like this on a zigzag path from the source to the drain and some of the 

electrons may reach to the drain side and some of them may not reach to the drain side. 

So, this might be one of the paths one of the possible paths that the electrons can take. So, 

this is accounted for by this transmission coefficient T(E). 
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And we saw that using Ficks law by applying Ficks law in this case in the transport case, 

we saw that the transmission coefficient turns out to be this. So, T(E) is essentially 
𝜆(𝐸)

𝜆(𝐸)+𝐿
, 

where 𝜆(𝐸) is the mean free path of an electron with energy E. And in various limits we 

saw that in various limits for example, in ballistic diffusive and quasi ballistic case we saw, 

what are the values of the transmission coefficient? 

In ballistic case it automatically from this expression turns out to be T almost equal to 1. 

In diffusive case it is very very less than 1. And in quasi ballistic case when the length of 

the channel is of the order of the mean free path of electrons it is quite close to 1, but less 

than 1 ok. 
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Then we started the idea of conductance and as all of us know, that very basic relationship 

between the voltage and the current is this. So, the voltage and currents are related to each 

other by the resistance of the device and inverse of the resistance is known as the 

conductance. So, which means that the conductance is essentially current divided by 

voltage.  

So, conductance of an electron at energy E will be the current that is contributed by 

electrons of that energy divided by the applied voltage. So, in order to sort of derive this 

expression of conductance we need to explicitly obtain a relationship between the voltage 

and the current from this expression, this equation basically.  

And in this equation voltage applied across the device if we apply a voltage for example, 

if the source side is grounded in the green side we have applied a voltage V that is 

accounted for by the difference of the Fermi functions f1 - f2. 
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And what we saw in the near equilibrium case in near equilibrium case, and when is the 

near equilibrium case? Near equilibrium case is when we apply a short voltage across the 

device, the applied voltage is very small. And in that case the difference between f1 and f2 

is there, but it is not very large. 

And in that case we can by using Taylor series expansion of a function for example, 

according to the Taylor series a function can be expanded in this form. We could deduce 

that the difference between the Fermi functions is essentially f1 - f2 is equal to. 
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Actually it is a matter of convention in some cases it is assumed that Δ𝐸𝐹 is at some 

reference is it is assume that it is minus q times V. And in that case this difference will be 

(−
𝜕𝑓𝑜

𝜕𝐸𝐹
)Δ𝐸𝐹. 

(Refer Slide Time: 06:04) 

 

But using our convention which is which looks like this in which case we assume that, we 

have this kind of a device, these are the contacts. On the source side we have EF1, Fermi 

function f1, on the drain side we have a Fermi level EF2 the Fermi function is f2. And the 

applied voltage basically brings down the drain side Fermi function and the drain side 

Fermi level and  this difference between EF1 and EF2 is given as q times V. 

So, in our case ∆𝐸𝐹  which we define to be EF1 - EF2 is q times V. In some sources in some 

books and papers ∆𝐸𝐹   has been defined as 𝐸𝐹   drain side minus 𝐸𝐹   source side. In that 

case this ∆𝐸𝐹   becomes minus q times V and 𝑓1 − 𝑓2 becomes, in that case this becomes 

(−
𝜕𝑓

𝜕𝐸𝐹
) ∆𝐸𝐹  . But in our case this negative sign is not there ok. 

This expression can be written as 𝑓1 − 𝑓2  can be written as −
𝜕𝑓

𝜕𝐸
. So, 

𝜕𝑓

𝜕𝐸𝐹
 can be written as 

(−
𝜕𝑓

𝜕𝐸
)∆𝐸𝐹  . And the reason for that is that the Fermi function has a general form like this 

it is 
1

1+ 𝑒
𝐸−𝐸𝐹

𝑘𝑇

. 



So, it means that if we take a derivative of f with respect to EF it will be just an negative 

of derivative of f with respect to E,  this can be a small exercise just right out it is a simple 

derivative technique. So, from here what we see is that the Fermi function is a function of 

energy it is also a function of Fermi level also the Fermi function is a function of 

temperature as well. 

So, in our treatment in so far we have assumed that the temperature of source contact and 

the temperature of the drain contacts are the same. So, T1 is equal to T2 is assumed, 

because if the temperature is different in that case also there might be a difference in the 

Fermi function and that might result in a current conduction. Those are known as the 

thermal effects or thermoelectric devices, that we will also discuss once we complete this 

discussion of general model of transport and then a brief of MOSFET devices ok. 

So, this is all what we have, now we are in a position to basically calculate the conductance. 

Because in the current equation in this equation we just need to replace 𝑓1 − 𝑓2  by this. 
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So, if we do that, I is equal to 
2𝑞

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (𝑓1 − 𝑓2 )𝑑𝐸 ok. In this equation as well you 

can see there are broadly three terms, one is T(E) second is M E) and third is (𝑓1 − 𝑓2 ). 

These three terms actually  account for different processes or different physical phenomena 

that go into the current conduction. T(E) accounts for the scattering of electrons in the 

channel and that is why T(E) is equal to 1 in case of ballistic transport, because in ballistic 

transport there is no scattering. 



Any accounts for the conduction pathways in the channel. How many conduction 

pathways are available for electrons to travel in the channel? This is  a fundamental 

property or that comes from the fundamental physics of the channel. (𝑓1 − 𝑓2 ) describes 

the contacts and the applied voltages and applied voltage. 

And ultimately current is and a cumulative I would say a cumulative effect of all these 

three things that go on in a device. So, using this expression we can now see that if we put 

(𝑓1 − 𝑓2 )  to be equal to from the Taylor series expansion if ye put this to be (−
𝜕𝑓

𝜕𝐸
)∆𝐸𝐹   

and ∆𝐸𝐹   is q times V. So, (−
𝜕𝑓

𝜕𝐸
)𝑞𝑉. 

So, if we do this if we use these two expressions this one and this one what we obtain is I 

is equal to 
2𝑞

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
)𝑞𝑉𝑑𝐸. So, what we can see from here is I is 

2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
)𝑉𝑑𝐸. 

Because V can be taken out of the integral because V is not dependent on the electron 

energy, it is an external parameter that we can control from the battery. So, the ratio or the 

from this expression from here what we can see is the conductance which is essentially the 

ratio of current and voltage is 
2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
)𝑑𝐸 this integral essential. So, this 

turns out to be the conductance of the channel of the device. 

And this is true for the case for the ballistic case and as well as for the diffusive transport 

case ok. And please also remember that  this approximation holds true, when we have the 

near equilibrium conditions because in that case only this (𝑓1 − 𝑓2 )   can be approximated 

by the (−
𝜕𝑓

𝜕𝐸
)∆𝐸𝐹   ok. 
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So, this is what we obtain, the conductance finally this is the expression for the 

conductance ok. Now we need to see few important things here actually. 
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This is finally, the expression for the conductance. Now, this quantity (−
𝜕𝑓

𝜕𝐸
) is an 

interesting quantity. Here it is written as (
𝜕𝑓𝑜

𝜕𝐸
) which is fine. So, what f is a Fermi function, 

so the way it looks like is 
1

1+ 𝑒
𝐸−𝐸𝐹

𝑘𝑇

. 

So, this is an important mathematical part here which we always need to keep in mind. 

This is an important quantity and let us see how it looks like. Because this is going to 

appear in conductance  this will be there in the current expression, so we need to properly 

see what it is. 

So, let us start with how the Fermi function essentially looks like, so this is the form of the 

Fermi function. So, if we plot the Fermi function as a function of energy  this will look 

something like this, so the value of the Fermi function changes right from 1 to 0. 

So, up to a certain energy it is 1 and the energy where it is half that energy is known as the 

Fermi level, at low energies it is 0 at high energies the Fermi function is 1 ok. So, now, if 

we try to plot what 
𝜕𝑓

𝜕𝐸
 look like, let us see how it may look like. So, this is E this is 

𝜕𝑓

𝜕𝐸
 and 

if we have E F here for example, at this point. So, 
𝜕𝑓

𝜕𝐸
 versus E will just be the gradient 

function of this function the function that is plotted here on the right hand side. 

So, the gradient of this function at low energies at these points is 0 almost. So, this function 

will be 0 at low energy values, so this will be the. So, at low energies the energies which 



are way below then the Fermi level that 
𝜕𝑓

𝜕𝐸
 function is 0 as the energy starts approaching 

EF level we start seeing some gradient there. 

So, the gradient at this point roughly is this and  this angle theta is greater than 90 degrees, 

so the gradient is negative. So, initially the gradient was 0 then gradient starts becoming 

non-zero negative. So, this is how gradient at this point the gradient is negative, but a with 

high magnitude, at this point also gradient is negative. 

So, generally this function will be, but as soon as we start going. So, up to EF energy level 

this magnitude of the gradient starts increasing it increases essentially. After EF level as 

you can see the gradient at this point is again the magnitude is again decreasing. So, it is 

again decreasing after EF and at high energy values the energy values that are far away 

from the Fermi level the gradient again becomes 0. 

So, this function  will look something like this and −
𝜕𝑓

𝜕𝐸
 function will just be the inverse 

of this function, we will just need to say change the sign of this function we just need to 

flip this function with respect to X-axis that will give us minus −
𝜕𝑓

𝜕𝐸
. So, finally, 

−
𝜕𝑓

𝜕𝐸
  function turns out to be like this. So, if this is the Fermi level initially this function 

is 0, so it is kind of a window function. 

And this is a window around the Fermi level and this function is 0 when the Fermi level is 

either 1 or 0 when the Fermi level is constant 1 or constant 0, up to those energy values or 

up to those energy points this function is 0. So, this is kind of a window function ok. 

In addition to this if the temperatures are very low, let us say at extremely low temperatures 

the Fermi level will be step function as we all of us know. So, the Fermi level at very low 

temperature says is a step function. So, this is the way it looks like. So, let me plot both of 

them close to each other on the same reference. 
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So, when we have a very low temperature in that case if we plot f versus E, this is kind of 

a step function. And in that case this function becomes like a delta function. So,  this holds 

true when T is close to 0 Kelvin or extremely low temperatures this is at higher 

temperatures. 

So, that is one thing that is there that this −
𝜕𝑓

𝜕𝐸
  function is a window function. It is 0 for 

extremely small values of E and it is 0 for extremely large values of G, but around the 

Fermi level it is kind of a window function. Second important property of this function is 

that, if we take sort of the derivative of this function if we take this derivative −
𝜕𝑓

𝜕𝐸
 over 

all possible values of energy let us try to calculate this derivative. 

So, if you do this is a simple maths the derivative −
𝜕𝑓

𝜕𝐸
 times dE, dE and 𝜕𝐸 goes away, 

because at the moment we are only considering that the Fermi level is constant temperature 

is constant. So,  the Fermi function is just the function of energy and. So, 
𝜕𝑓

𝜕𝐸
 becomes 

𝑑𝑓

𝑑𝐸
 

and this goes away. 

So, what we are left with is [−𝑓]−∞
∞  or f if we change the limits. Now the Fermi function 

mathematically is this 
1

1+ 𝑒
𝐸−𝐸𝐹

𝑘𝑇

. And if we assume that EF and T(E) are constant for a given 

system if the Fermi level and the temperature are constant. Then f at E tending to −∞ will 

be 1 divided by −∞, E to the power −∞ is 0, so it becomes 1. 



And the Fermi function at extremely high energy values E tending to ∞, if we evaluate the 

Fermi function at extremely high energy values that is 1 plus 𝑒∞, so it  tends to 0. So, this 

upper limit –f  at −∞ at extremely small values of energy f is 1 and 0 at extremely high 

energy values which is also clear from the plot,  

If we have a general plot of Fermi function; it is 1 at very low energy values and it is 0 at 

extremely high energy values ok, we do not even need to do this maths. So, this is 

essentially 1, so the integral of −
𝜕𝑓

𝜕𝐸
 over E is 1 ok. So, these are two things that we need 

to keep in mind one is that −
𝜕𝑓

𝜕𝐸
 is a window like function and second is that the area that 

this function sort of covers with the energy access is 1. 

So, which means that the area in this window is 1, this area is area of this window on the 

energy access with respect to energy access is 1. With these two things with us, now let us 

come back to the expression of the conductance that we derive. 
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So, the conductance is 
2𝑞2

ℎ
𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
) 𝑑𝐸. This expression can equivalently be 

written as like this. So, we can write this expression to be like this as well, because the 

integral that we are writing in the denominator is 1 as we have just calculated. The value 

of this integral is exactly equal to 1, so we can always divide by this integral not a problem 



at all. Now if you see this expression this can be written as sort of the average of over the 

this average is taken over −
𝜕𝑓

𝜕𝐸
. 

So, it means where G(E) is essentially 
2𝑞2

ℎ
𝑇(𝐸)𝑀(𝐸) (−

𝜕𝑓

𝜕𝐸
) 𝑑𝐸, this is known as the 

conductance function. And if we take the average of conductance function over this 

window, which is also known as Fermi window −
𝜕𝑓

𝜕𝐸
 is also known as Fermi window. If 

we take the average of this conductance function over Fermi window, that will give us the 

total conductance of the device. 

And that is an interesting result this turns out to be the conductance of the electrons at 

energy E and it is known as the conductance function . So, the total conductance can be 

written as G = 

2𝑞2

ℎ
∫ 𝑇(𝐸)𝑀(𝐸)(−

𝜕𝑓

𝜕𝐸
)𝑑𝐸

∫(−
𝜕𝑓

𝜕𝐸
)𝑑𝐸

 we are taking average of conductance function over 

Fermi window ok. 

It also has an interesting interpretation which we will do in our coming classes as well. 

That this is also the conductance of one conduction pathway and that is this quantity this 

constant number, this is that is why known as the quantum of conductance. This is the 

conductance of one conduction pathway, it is just this quantity 
2𝑞2

ℎ
. 

And the total conductance of the device will be in near equilibrium conditions please 

remember that. It will be the average of the conductance function over the Fermi window 

ok. Now in the case of diffusive transport, this conductance function is G(E) is 
2𝑞2

ℎ
 T(E) 

times M(E), this term is essentially 
2𝑞2

ℎ

𝛾(𝐸)𝜋𝐷(𝐸)

2
. 

Let us try to see how the conductance function looks like in the case of ballistic transport 

and in the case of diffusive transport. So, in the case of ballistic transport, in ballistic case 

the conductance function is 
2𝑞2

ℎ
, 𝛾 is 

ℏ

𝜏
 and 𝜏 is 

𝐿

<𝑣𝑥
+>

. 𝜋D is for a 2-D channel we are since 

we are considering we are doing all the discussion for the 2-D channel. This D is WL
𝑔2𝐷(𝐸)

2
. 



This ℏ can be written as 
ℎ

2𝜋
. So, h h go away 2 and 2𝜋 with 𝜋, L by L, so G(E) is essentially 

𝑞2〈𝑣𝑥
+〉𝑊𝐿𝑔2𝐷(𝐸)

2𝐿
. So, this L is if we keep the L we need to divide by L or this can alternatively 

be written as 
𝑞2𝐷(𝐸)

2𝜏(𝐸)
 because 𝜏(𝐸) is 

𝐿

<𝑣𝑥
+>

. 

So, this is the conductance function for the case of ballistic transport. This is also true in 

the case of diffusive transport just in case of diffusive transport the 𝜏(E) will be instead of 

𝐿

<𝑣𝑥
+>

 it will be 
𝐿2

2𝐷𝑛
  ok. So, let us do a small calculation we could not start the bulk transport 

case today, but we will do that in the coming class. 
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In diffusive transport case this will be the same tau can now be written as 𝜏 is essentially 

𝐿2

2𝐷𝑛
. So, this conductance function is 

𝑞2𝐷𝑛𝐷(𝐸)

𝐿2
  and these 2 will cancel with each other ok. 

And in the case of ballistic transport this will be the conductance function ok 

So, just to sort of briefly recall what we discussed. We discussed that in near equilibrium 

transport, f1 - f2 can be written as minus (−
𝜕𝑓

𝜕𝐸
)Δ𝐸𝐹. From there we can deduce that the 

conductance of the system both in ballistic and diffusive transport case is the average of 

the conductance function over a Fermi window function over the Fermi window, where 

Fermi window is (−
𝜕𝑓

𝜕𝐸
) ok. 



So, please keep these ideas in mind these are important ideas; it means that from our plot 

of Fermi window that the conduction pathways that are far away from the Fermi level they 

do not contribute in the conductance. So, we will discuss more about this in coming 

classes. 

Thank you for your attention, see you in the next class. 


