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Lecture - 25
Diffusive Transport, Conductance

Hello, everyone. We will today finish our discussion of Diffusive Transport, we will try
to find out the expression for current in the case of diffusive transport and then we will
discuss the next important topic that is the conductance in the case of ballistic transport
and in the diffusive transport.
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Before going into that let me quickly review what we were discussing, essentially we had
this with us we had this expression for the steady state electronic population and steady

state current from the general model of transport.

We could see that in the case of ballistic transport this term is the number of modes in the
device. But when we have a diffusive transport scenario in which electrons are colliding
with intermediate atoms and they may be following a zigzag motion the electrons energy

may also change in the channel during the transport.

In that case, this notion of modes does not hold true because modes are the conduction

pathways and now since the electrons are not going through unique conduction pathways.



So, in this case we cannot say that this quantity is the modes and that is why this quantity

is defined as the modes times a coefficient which is known as the transmission coefficient.

And, if we need to find out the current expression in the case of diffusive transport we
would need to find out the expression for T(E) essentially. And in order to find out T(E)
we need to find out y(E) in order to find out y(E) we need to find out the 7, essentially
which is the transit time in the case of diffusive transport case. You might have realized

this that we are building the transport theory using a bottom up approach basically.

Because we have started with the idea of density of states, Fermi function, Fermi level of
contacts and from that we are trying to build the theory of transport, we are trying to find
out the expression for the currents IV characteristics and finally, the conductance of the

material.

So, in the diffusive transport case we need to use we have the electronic profile in the
device which looks like this we have access of electrons on the left side which is the source

contact side, we have a low concentration on the drain side.

And because of this concentration gradient in the device the electrons will travel from the
source side to the drain side. The profile is linear in absence of recombination generation
and we can use if the electrons follow this parabolic E k relationship in that case the
diffusion can be assumed or can be approximated by the Fick’s law essentially which looks
like this.

So, this will help us in finding out the z, time which is what we want to find out because
using Fick’s law we can find out the steady state current in the device which looks like
this.

So, Fick’s law gives us the current density and in a 2D channel the current density is the
current per unit width and so the total current will be the current density times the width.

And from the Fick’s law this turns out to be J is essentially q times Dn% ng turns out to be

Ang(0).W.L

deltans 0 by L times W. And the steady state electronic population is essentially,

ok.
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So, now, we are in a position to directly use this expression for T we can essentially use t
is equal to q times steady state electronic population divided by the steady state current.

And since we are talking about the diffusive transport case we will put a D with a 7. So,

qAng(0).W.L Ang(0).qDy,

this 7, will be equal to divided by I will be equal to W times J and J is

So, this is what we have in the diffusive transport case and as you can see that An(0)

2
Ang(0) will cancel out g with g W with W what is left here is this 7, will be equal to %

n

So, this is the transit time this is the characteristic time in the case of diffusive transport
case ok. As you can see that, we now need to find out the or we now need to know the this

D,, parameter in order to find out the t, parameter, ok.

This D,, parameter actually comes from the scattering theory from the, if we study the
scattering of electrons in the channel by the other atoms. And in the scattering there are
interaction between the electron and the other atoms there is energy and momentum
exchange and that is sort of a separate topic to discuss about. But just with this expression

at the moment if we have a look at this term % in the case of diffusive transport this is

T(E) times M (E).

On the left hand side, we would have y will be equal to Titimes m times % on the right
D

hand side, we have this M(E) if we multiply and divide by 75 on the left side. Then this



can be rewritten as let us bring the right hand side to the left side T(E) times M(E) is equal

. ho . D
to -2 times — times 7 times = ok.
p B 2

So, this is then this is the y in the case of ballistic transport & times g. So, all this is
essentially number of modes. So, this T (E) into M (E) is equal to this. So, rewriting this

T(E) is equal to :—B So, this transmission coefficient is essentially the ratio of the transit
D

time in the ballistic case to the transit time in diffusive case ok.
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The diffusive transit time is:  7» D

Whereas the ballistic transit time was

And, as we clearly know that the transit time in the ballistic case is essentially (VL—+> So, this

is the expression for the transit time in ballistic case 7y is equal to essentially <UL—+) And the
X

2
transmission coefficient is the ratio of tzto 7, 7p IS % where L is the length D,, is the

diffusivity or diffusion constant of the material ok.
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Now, if we put everything there in the expression for T(E) what we see is that T(E) which

is equal to TB is —— divided by 7, |s — Now from the theory of scattering which is

(;’)

in a way a separate topic this coefficient diffusion coefficient turns out to be (v;) times 2 >

Average velocity in x direction positive x direction times A, where this A is the mean free
path of the electrons. So, just at the moment please assume that this is true. So, if we

consider this to be the value of the diffusion constant diffusivity then if and if you put this

in the this expression the transmission coefficient turns out to be (v; into —= ZD” ok.

So, what is left is 2 times (v;}) into A divided by (v) L into 2, which comes from here.
So, what is left is this, this is the case when the channel is extremely large as compared to
the mean free path. So, this thing comes from the scattering theory when L is extremely
large as compared to the mean free path of the electron which means that the channel
length is or the transport is purely diffusive transport ok.

So, in that case this will be very very less than equal to 1 when the L is extremely larger
than A in that case this transmission coefficient will be very very less than 1 ok. Now, this
expression was for a limiting case when the L is extremely large as compared to the A as

compared to the mean free path.
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But in more general way this expression this transmission coefficient can be written as
T(E) equals l’l: So, this is the more general way of more general expression for the

transmission coefficient. And this holds true both for the diffusive case and the ballistic
case ok because in ballistic case this A tends to infinity and so in let me sort of rewrite this

expression for T(E).

- - 1
So, this T (E) can be written as m

this second term tend to 0. So, this means this T(E) is equal to 1; this is what we expect in

in ballistic case lambda tends to infinity which makes

the case of ballistic transport, but in the case of diffusive transport we have a finite A.

In the case of ballistic transport since there is no collision in the channel we can say that
the electrons are not colliding with anybody in the channel and that is why we say that A

tends to infinity.

So, in the case of diffusive transport this expression holds true and this boils down to or
this is equal to 1 in the case of ballistic transport case. So, this is a general expression this
is true for all cases this expression is true only for purely diffusive case when the channel

is extremely large as compared to the mean free path ok.
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So, | hope this point is clear. More generally, as a function of energy this transmission

When Lis short, more precisely: | T'(E) =

coefficient can be written as the mean free path which is also a function of energy divided
by A(E) + L ok. So, now, as you can see that we have now obtained the expression for the
transmission coefficient. So, we can now easily deduce the or we are now in a situation to

find out the exact expression for the current in the case of diffusive transport.

So, the expression for the current in the case of diffusive transport as you might recall is
% times (f; — f,)integrated over all energy values this was written as T(E) times number

of modes times (f; — f,) times dE. And now we have an expression for T(E) as well,
writing the expression for T(E) , so the current in the case of in a general case | would say
current can be written as M(E) times (f; — f>)dE. So, this is the expression for the current

in the case of diffusive transport ok.

And this is an important expression because this expression will be or can be generalized
to bulk conductors as well or we can find the bulk conductivity the bulk 1V characteristics
using this expression. And as you can see that, we have built from the bottom we like roots
model we did not assume that lambda is there lambda is given. We assumed that there is a

density of states of electrons in the channel in diffusive case electrons might be scattering.

Then we had an expression for the diffusion constant from there we obtain the expression
for the transmission coefficient we have the modes we have the Fermi functions.
Essentially, the parameters from the basic physics of the device ok. So, this is a general

expression for current in the case of devices ok. And as we have already seen that when L



is extremely large as compared to A in that case this transmission coefficient is very very

less than one.

When we have the ballistic case when lambda is extremely larger than L then the
transmission coefficient is 1 tends to 1 and in the quasi ballistic case when L is almost
equal to A in that case T is less than 1, but it is not very small it is around 1, but not exactly

equal to 1.

Because sometimes in quasi ballistic case sometimes the electron might scatter might get

scattered in the channel and sometimes they might not get scattered in the channel ok.

So, now, we in a way we have a general expression for the current which covers both
ballistic and diffusive transport cases. And now we are in a situation to sort of look at an
another important parameter or | would say one of the most important electrical parameter

of the material which is essentially the conductance or more generally conductivity.
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So, that is what we will see now. And as you might be aware that conductance is denoted
by G, it is essentially the inverse of the resistance. So, if the resistance of a material is R
or of a channel is R the conductance will be 1/R and from the 1V characteristics R is V/I.
So, G will be I/V. So, this conductance can be found out from the expression of the current

from the IV characteristics of the device.



And now we are in a position to find out the IV characteristics as well because we know

the expression for the current. So, this is the general form of current in the devices

%f%(ﬁ — f,)dE in more general in other way it can be written as T(E) times M(E)

times (f; — f2)dE into 27" If we assume a near equilibrium situation in that case we can

find out (f; — £,) in a clean way actually.

Because we know what is M(E) we know what is T(E) now, this is just a constant we just

need to find out the (f; — f,) this difference term. And if you recall, f is the Fermi function

%EF. So, the Fermi function is a function of energy it can be written as a function of
1+e KT

energy, it is also a function of Fermi levels.

The Fermi function changes with energy the Fermi function also changes if the Fermi level
change. And in order to find out this difference we need to know actually what would be
the Fermi function at two contacts at the source contact f; and what is the Fermi function
on the drain contact and then we need to find out the difference of the two.

So, just for the sake of clarity let me again draw, what we are up to here. We have a source,
we have a drain, on the source side the Fermi level is Ex; on the drain side when we have
applied a voltage the Fermi level is Eg, the Fermi function on source side is f;, the Fermi
function on the drain side is f,. The voltage that we have applied is q times V, if the source
side is grounded and on the drain side we have a battery of voltage V, ok. So, the (Er; —

Eg,) difference is g times V.

Now, this Fermi function is also a function of Fermi level and while going from the source
contact to the drain contact what is changing is the Fermi level. So, in order to find out this
difference we will make use of we will take help of Taylor series expression.

So, what the Taylor series expression says that any arbitrary function can be written as in

1 92%f

~ 502 lx=a(x —a)? +.... and similarly there

this form f(x) = f(a) + =L |, _,(x —a) +

are higher order terms as well. So, this function can be approximated by this Taylor series.

If we know the value of the function and the value of its derivative at a certain point we
can find out the general form of the function in this way, ok. And if this difference the
difference or if we find if we want to find out the function very close to point a if the values

of x are very close to point a in that case this difference x - a is very small ok.



In that case, the second order and higher order terms can be ignored because these will be
very small coefficients and they will make everything to almost tend to 0. So, when x - a
is very small in that case this function can be written as or in a close vicinity of a point the
function can be a continuous function can be approximated by this just using the Taylor

series expansion up to first order terms, ok.

So, in the case of near equilibrium transport this E, and Ex, are close to each other because
the applied voltage is not too much is less. So, this qV is not a big number it is a small
number and if we expand the Fermi function or if we put a is equal to Ex, and x is equal
to Ex, which means in this which means that we are trying to find out the Fermi function

very close to Eg,, ok.

And in near equilibrium transport Ex, and Eg, are close to each other, in that case we can
use this approximation ok. For that we need to know the derivative of f with respect to x
or derivative of f with respect to E, because in this case we are assuming the Fermi function

to be the function of Fermi level, ok. So, let us try to do that.
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This is the so what we can see from here is that f at E, if we put x equal to Ex, and a equal
to Eg, is equal to f at Ex, plus :Tf, let us say this Ez; and Er, might also change so let us
F

not put the Ex, value here Ep,-Er, OK.



So, this is Er of Eg, is essentially, f; Fermi function of the source contact this is equal to f

of Ep, is Fermi function of the drain contact this is ;Tf times AEp where AERis the
F

difference between the source Fermi function and the drain Fermi function. So, this is what

we have.

And from here, (f; — f,) is equal to ;Tftimes AER ok and AER is essentially g times V.
F

Had the electron be in a positive charge (Er; — Er,) had be in a negative number because
in that case, Er, would have gone up, but in the case of electrons because of an applied
positive voltage on the drain side E, goes down when we apply a positive voltage on the

drain side. So, this AER is equal to g times V.

So, finally, we have obtained (f; — f,) in the case of near equilibrium transport and that

can give us the exact form of current or conductance in near equilibrium transport case.

So, we have (f; — f») is equal to tlmes AER .
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And if we put, this in this expression the current expression what we obtain is | equal to z—q

integral T(E) times M(E) mto tlmes AEg into dE. And if you look at this form of the

Fermi function we can easily see from here that |s equal to (— —



So, if we take the derivative of Fermi function with respect to E and with respect to Er,
there will be only a difference of negative sign ok. So, we will keep in mind this fact and
AER isequal to g times V. So, that is what we will put in this expression. So, let me erase

this extra part.
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So, finally, what we have is we have | is equal to % T(E) into M(E) into ;Tf can be written
F

as (— z—g) and AEy is g times V dE. So, we can take this V out so | becomes this g also

comes out, [%fT(E)M(E)(— %) dE ] V . So, this is the direct relationship between the

current and the voltage applied across the device.

And please remember that, this is true when we assume the near equilibrium transport
because only in that case we can approximate (f; — f5) by the first just by the first order
terms in the Taylor series expansion ok. So, that will that brings us to the expression for
the conductance.
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So, the conductance of the channel is the ratio between the current and the voltage and so
this will be %q integration of T(E)M(E) into — Z—; into dE. So, this is finally, the expression

for the conductance of the material and we can also find out the expressions for the

conductivity from this expression.

So, this is what we also measure in experiments ok and this is a general expression because

for ballistic transport case this T(E) will be 1 and we will be left just with M(E) for the
diffusive transport case T(E) will be given by /1% and this expression will hold true. So,

this expression is true for right from very small devices up to large devices.

We will discuss more about this conductance in our coming class and | would recommend
all of you to go through this derivation again this is an important concept the conductance

and conductivity of the material of the channel see you in the next class.

Thank you for your attention. See you in the next class.



