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Hello, everyone. We will today finish our discussion of Diffusive Transport, we will try 

to find out the expression for current in the case of diffusive transport and then we will 

discuss the next important topic that is the conductance in the case of ballistic transport 

and in the diffusive transport. 
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Before going  into that let me quickly review what we were discussing, essentially we had 

this with us we had this expression for the steady state electronic population and steady 

state current from the general model of transport.  

We could see that in the case of ballistic transport this term is the number of modes in the 

device. But when we have a diffusive transport scenario in which electrons are colliding 

with intermediate atoms and they may be following a zigzag motion the electrons energy 

may also change in the channel during the transport. 

In that case, this notion of modes does not hold true because modes are the conduction 

pathways and now since the electrons are not going through unique conduction pathways. 



So, in this case we cannot say that this quantity is the modes and that is why this quantity 

is defined as the modes times a coefficient which is known as the transmission coefficient. 

And, if we need to find out the current expression in the case of diffusive transport we 

would need to find out the expression for T(E) essentially. And in order to find out T(E) 

we need to find out 𝛾(𝐸) in order to find out 𝛾(𝐸)  we need to find out the 𝜏𝐷 essentially 

which is the transit time in the case of diffusive transport case. You might have realized 

this that we are building the transport theory  using a bottom up approach basically.  

Because we have  started with the idea of density of states, Fermi function, Fermi level of 

contacts and from that we are trying to build the theory of transport, we are trying to find 

out the expression for the currents IV characteristics and finally, the conductance of the 

material.  

So, in the diffusive transport case we need to use we have the electronic profile in the 

device which looks like this we have access of electrons on the left side which is the source 

contact side, we have a low concentration on the drain side.  

And because of this concentration gradient in the device the electrons will travel from the 

source side to the drain side. The profile is linear in absence of recombination generation 

and we can use if the electrons follow this parabolic E k relationship in that case the 

diffusion can be assumed or can be approximated by the Fick’s law essentially which looks 

like this.  

So, this will help us in finding out the 𝜏𝐷 time which is what we want to find out because 

using Fick’s law we can find out the steady state current in the device which looks like 

this. 

So, Fick’s law gives us the current density and in a 2D channel the current density is the 

current per unit width and  so the total current will be the current density times the width. 

And from the Fick’s law this turns out to be J is essentially q times 𝐷𝑛
𝑑

𝑑𝑥
 𝑛𝑠 turns out to be 

delta n s 0 by L times W. And the steady state electronic population is 
 ∆𝑛𝑠(0).𝑊.𝐿 

2
essentially, 

ok. 
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So, now, we are in a position to directly use  this expression for 𝜏 we can essentially use 𝜏 

is equal to q times steady state electronic population divided by the steady state current. 

And since we are talking about the diffusive transport case we will put a D with a 𝜏. So, 

this 𝜏𝐷  will be equal to 
 𝑞∆𝑛𝑠(0).𝑊.𝐿 

2
 divided by I will be equal to W times J and J is 

 ∆𝑛𝑠(0).𝑞𝐷𝑛 

𝐿
. 

So, this is what we have in the diffusive transport case and as you can see that  ∆𝑛𝑠(0) 

 ∆𝑛𝑠(0) will cancel out q with q W with W what is left here is this 𝜏𝐷 will be equal to 
𝐿2

2𝐷𝑛
.  

So, this is the transit time this is the characteristic time in the case of diffusive transport 

case ok. As you can see that, we now need to find out the or we now need to know the this 

𝐷𝑛 parameter in order to find out the 𝜏𝐷 parameter, ok. 

This 𝐷𝑛  parameter actually comes from the scattering theory  from the, if we study the 

scattering of electrons in the channel by the other atoms. And in the scattering there are 

interaction between the electron and the other atoms there is energy and momentum 

exchange and that is sort of a separate topic to discuss about. But just with this expression 

at the moment if we have a look at this term 
𝛾𝜋𝐷

2
 in the case of diffusive transport this is 

T(E) times M (E). 

On the left hand side, we would have 𝛾 will be equal to 
ℏ

 𝜏𝐷
times 𝜋 times 

𝐷

2
, on the right 

hand side, we have this M(E) if we multiply and divide by 𝜏𝐵 on the left side. Then this 



can be rewritten as let us bring the right hand side to the left side T(E) times M(E) is equal 

to 
𝜏𝐵

𝜏𝐷
  times 

ℏ

 𝜏𝐵
 times 𝜋 times 

𝐷

2
 ok. 

So, this is then this is the 𝛾 in the case of ballistic transport 𝜋 times 
𝐷

2
. So, all this is 

essentially number of modes. So, this T (E) into M (E) is equal to this. So, rewriting this 

T(E) is equal to 
𝜏𝐵

𝜏𝐷
. So, this transmission coefficient is essentially the ratio of the transit 

time in the ballistic case to the transit time in diffusive case ok. 
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And, as we clearly know that the transit time in the ballistic case is essentially 
𝐿

〈𝑣𝑥
+〉

. So, this 

is the expression for the transit time in ballistic case 𝜏𝐵 is equal to essentially 
𝐿

〈𝑣𝑥
+〉

. And the 

transmission coefficient is the ratio of 𝜏𝐵to 𝜏𝐷.  𝜏𝐷 is 
𝐿2

2𝐷𝑛
 where L is the length 𝐷𝑛 is the 

diffusivity or diffusion constant of the material ok.  
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Now, if we put everything there in the expression for  T(E) what we see is that T(E) which 

is equal to 
𝜏𝐵

𝜏𝐷
. 𝜏𝐵 is 

𝐿

〈𝑣𝑥
+〉

 divided by 𝜏𝐷 is 
𝐿2

2𝐷𝑛
. Now, from the theory of scattering which is 

in a way a separate topic this coefficient diffusion coefficient turns out to be 〈𝑣𝑥
+〉 times 

𝜆

2
. 

Average velocity in x direction positive x direction times 𝜆, where this 𝜆 is the mean free 

path of the electrons. So, just at the moment please assume that this is true. So, if we 

consider this to be the value of the diffusion constant diffusivity then if and if you put this 

in the this expression the transmission coefficient turns out to be 
𝐿

〈𝑣𝑥
+〉

  into 
2𝐷𝑛

𝐿2  ok. 

So, what is left is 2 times 〈𝑣𝑥
+〉 into 𝜆 divided by 〈𝑣𝑥

+〉 L into 2, which comes from here. 

So, what is left is this, this is the case when the channel is extremely large as compared to 

the mean free path. So, this thing comes from the scattering theory when L is extremely 

large as compared to the mean free path of the electron which means that the channel 

length is or the transport is purely diffusive transport ok. 

So, in that case this will be very very less than equal to 1 when the L is extremely larger 

than 𝜆 in that case this transmission coefficient will be very very less than 1 ok. Now, this 

expression was for a limiting case when the L is extremely large as compared to the 𝜆  as 

compared to the mean free path. 
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But in more general way this expression this transmission coefficient  can be written as 

T(E) equals 
𝜆

𝜆+𝐿
. So, this is the more general way of more general expression for the 

transmission coefficient. And this holds true both for the diffusive case and the ballistic 

case ok because in ballistic case this 𝜆 tends to infinity and so in let me sort of rewrite this 

expression for T(E). 

So, this T (E) can be written as 
1

1+𝐿
𝜆⁄
, in ballistic case lambda tends to infinity which makes 

this second term tend to 0. So, this means this T(E) is equal to 1; this is what we expect in 

the case of ballistic transport, but in the case of diffusive transport we have a finite 𝜆.  

In the case of ballistic transport since there is no collision in the channel we can say that 

the electrons are not colliding with anybody in the channel and that is why we say that 𝜆 

tends to infinity. 

So, in the case of diffusive transport this expression holds true and this boils down to or 

this is equal to 1 in the case of ballistic transport case. So, this is a general expression this 

is true for all cases this expression is true only for purely diffusive case when the channel 

is extremely large as compared to the mean free path ok.  
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So, I hope this point is clear. More generally, as a function of energy this transmission 

coefficient can be written as the mean free path which is also a function of energy divided 

by 𝜆(E) + L ok. So, now, as you can see that we have now obtained the expression for the 

transmission coefficient. So, we can now easily deduce the or we are now in a situation to 

find out the exact expression for the current in the case of diffusive transport. 

So, the expression for the current in the case of diffusive transport as you might recall is 

𝛾𝜋𝐷

2
 times (𝑓1 − 𝑓2)integrated over all energy values this was written as T(E) times number 

of modes times (𝑓1 − 𝑓2) times dE. And now we have an expression for T(E) as well; 

writing the expression for T(E) , so the current in the case of in a general case I would say 

current can be written as M(E) times (𝑓1 − 𝑓2)dE. So, this is the expression for the current 

in the case of diffusive transport ok. 

And this is an important expression because this expression will be or can be generalized 

to bulk conductors as well or we can find the bulk conductivity the bulk IV characteristics 

using this expression. And as you can see that, we have built from the bottom we like roots 

model we did not assume that lambda is there lambda is given. We assumed that there is a 

density of states of electrons in the channel in diffusive case electrons might be scattering. 

Then we had an expression for the diffusion constant from there we obtain the expression 

for the transmission coefficient we have the modes we have the Fermi functions. 

Essentially,  the parameters from the basic physics of the device ok. So, this is a general 

expression for current in the case of devices ok. And as we have already seen that when L 



is extremely large as compared to 𝜆 in that case this transmission coefficient is very very 

less than one.  

When  we have the ballistic case when lambda is extremely larger than L then the 

transmission coefficient is 1 tends to 1 and in the quasi ballistic case when L is almost 

equal to 𝜆 in that case T is less than 1, but  it is not very small it is around 1, but not exactly 

equal to 1.  

Because sometimes in quasi ballistic case sometimes the electron might scatter might get 

scattered in the channel and sometimes they might not get scattered in the channel ok. 

So, now, we in a way we have a general expression for the current which covers both 

ballistic and diffusive transport cases. And now we are in a situation to sort of look at an 

another important parameter or I would say one of the most important electrical parameter 

of the material which is essentially the conductance or more generally conductivity. 
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So, that is what we will see now. And as you might be aware that conductance is denoted 

by G, it is essentially the inverse of the resistance. So, if the resistance of a material is R 

or of a channel is R the conductance will be 1/R and from the IV characteristics R is V/I. 

So, G will be I/V. So, this conductance can be found out from the expression of the current 

from the IV characteristics of the device. 



And now we are in a position to find out the IV characteristics as well because we know 

the expression for the current. So, this is the general form of current in the devices 

2𝑞

ℎ
∫

𝛾𝜋𝐷

2
(𝑓1 − 𝑓2)𝑑𝐸  in more general in other way it can be written as T(E)  times M(E) 

times (𝑓1 − 𝑓2)𝑑𝐸 into 
2𝑞

ℎ
. If we assume a near equilibrium situation in that case we can 

find out (𝑓1 − 𝑓2) in a clean way actually.  

Because we know what is M(E) we know what is T(E)  now, this is just a constant we just 

need to find out the (𝑓1 − 𝑓2) this difference term. And if you recall, f is the Fermi function 

1

1+𝑒
𝐸−𝐸𝐹

𝑘𝑇

. So, the Fermi function is a function of energy it can be written as a function of 

energy, it is also a function of Fermi levels.  

The Fermi function changes with energy the Fermi function also changes if the Fermi level 

change. And in order to find out this difference we need to know actually what would be 

the Fermi function at two contacts  at the source contact 𝑓1 and what is the Fermi function 

on the drain contact and then we need to find out the difference of the two. 

So, just for the sake of clarity let me again draw, what we are up to here. We have a source, 

we have a drain, on the source side the Fermi level is 𝐸𝐹1 on the drain side when we have 

applied a voltage the Fermi level is 𝐸𝐹2 the Fermi function on source side is 𝑓1, the Fermi 

function on the drain side is 𝑓2. The voltage that we have applied is q times V, if the source 

side is grounded and on the drain side we have a battery of voltage V, ok. So, the (𝐸𝐹1 −

𝐸𝐹2) difference is q times V. 

Now, this Fermi function is also a function of Fermi level and while going from the source 

contact to the drain contact what is changing is the Fermi level. So, in order to find out this 

difference we will make use of we will take help of Taylor series expression.  

So, what the Taylor series expression says that any arbitrary function can be written as in 

this form f(x) = f(a) + 
1

1!

𝜕𝑓

𝜕𝑥
|𝑥=𝑎(𝑥 − 𝑎) + 

1

2!

𝜕2𝑓

𝜕𝑥2 |𝑥=𝑎(𝑥 − 𝑎)2 +….    and similarly there 

are higher order terms as well. So, this function can be approximated by this Taylor series. 

If we know the value of the function and the value of its derivative at a certain point we 

can find out the general form of the function in this way, ok. And if this difference the 

difference or if we find if we want to find out the function very close to point a if the values 

of x are very close to point a in that case this difference x - a is very small ok. 



In that case, the second order and higher order terms can be ignored because these will be 

very small coefficients and they will make everything to almost tend to 0. So, when x - a 

is very small in that case this function can be written as or in a close vicinity of a point the 

function can be a continuous function can be approximated by this just using the Taylor 

series expansion up to first order terms, ok. 

So, in the case of near equilibrium transport this 𝐸𝐹1 and 𝐸𝐹2 are close to each other because 

the applied voltage is not too much is less. So, this qV is not a big number it is a small 

number and if we expand the Fermi function or if we put a is equal to 𝐸𝐹2 and x is equal 

to 𝐸𝐹1 which means in this which means that we are trying to find out the Fermi function 

very close to 𝐸𝐹2, ok. 

And in near equilibrium transport 𝐸𝐹1 and 𝐸𝐹2 are close to each other, in that case we can 

use this approximation ok. For that we need to know the derivative of f with respect to x 

or derivative of f with respect to 𝐸𝐹 because in this case we are assuming the Fermi function 

to be the function of Fermi level, ok. So, let us try to do that.  
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This is the so what we can see from here is that f at 𝐸𝐹1 if we put x equal to 𝐸𝐹1 and a equal 

to 𝐸𝐹2 is equal to f at 𝐸𝐹2  plus 
𝜕𝑓

𝜕𝐸𝐹
, let us say this 𝐸𝐹1 and 𝐸𝐹2 might also change so let us 

not put the 𝐸𝐹2 value here 𝐸𝐹1-𝐸𝐹2  ok.  



So, this is 𝐸𝐹 of 𝐸𝐹1 is essentially, 𝑓1 Fermi function of the source contact this is equal to f 

of 𝐸𝐹2 is Fermi function of the drain contact this is 
𝜕𝑓

𝜕𝐸𝐹
 times Δ𝐸𝐹  where Δ𝐸𝐹 is the 

difference between the source Fermi function and the drain Fermi function. So, this is what 

we have. 

And from here, (𝑓1 − 𝑓2) is equal to 
𝜕𝑓

𝜕𝐸𝐹
times Δ𝐸𝐹  ok and Δ𝐸𝐹  is essentially q times V. 

Had the electron be in a positive charge (𝐸𝐹1 − 𝐸𝐹2) had be in a negative number because 

in that case, 𝐸𝐹2 would have gone up, but in the case of electrons because of an applied 

positive voltage on the drain side 𝐸𝐹2 goes down when we apply a positive voltage on the 

drain side. So, this Δ𝐸𝐹 is equal to q times V. 

So, finally, we have obtained (𝑓1 − 𝑓2) in the case of near equilibrium transport and  that 

can give us the exact form of current or conductance in near equilibrium transport case. 

So, we have (𝑓1 − 𝑓2) is equal to 
𝜕𝑓

𝜕𝐸𝐹
 times Δ𝐸𝐹 .  
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And if we put, this in this expression the current expression what we obtain is I equal to 
2𝑞

ℎ
 

integral T(E) times M(E)  into 
𝜕𝑓

𝜕𝐸𝐹
 times Δ𝐸𝐹  into dE. And if you look at this form of the 

Fermi function we can easily see from here that 
𝜕𝑓

𝜕𝐸𝐹
 is equal to (−

𝜕𝑓

𝜕𝐸
).  



So, if we take the derivative of Fermi function with respect to E and with respect to EF, 

there will be only a difference of negative sign ok. So, we will keep in mind this fact and 

Δ𝐸𝐹  is equal to q times V. So, that is what we will put in this expression. So, let me erase 

this extra part. 
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So, finally, what we have is we have I is equal to 
2𝑞2

ℎ
 T(E) into M(E) into 

𝜕𝑓

𝜕𝐸𝐹
 can be written 

as (−
𝜕𝑓

𝜕𝐸
)  and Δ𝐸𝐹  is q times V dE. So, we can take this V out so I becomes this q also 

comes out,  [
2𝑞2

ℎ
∫ T(E)M(E)(−

𝜕𝑓

𝜕𝐸
) dE ] 𝑉 . So, this is the direct relationship between the 

current and the voltage applied across the device.  

And please remember that, this is true when we assume the near equilibrium transport 

because only in that case we can approximate (𝑓1 − 𝑓2) by the first just by the first order 

terms in the Taylor series expansion ok. So, that will that brings us to the expression for 

the conductance. 
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So, the conductance of the channel is the ratio between the current and the voltage and so 

this will be 
2𝑞

ℎ
 integration of  T(E)M(E) into −

𝜕𝑓

𝜕𝐸
 into dE. So, this is finally, the expression 

for the conductance of the material and we can also find out the expressions for the 

conductivity from this expression. 

So, this is what we also measure in experiments ok and this is a general expression because 

for ballistic transport case this T(E) will be 1 and we will be left just with M(E) for the 

diffusive transport case T(E) will be given by 
𝜆

𝜆+𝐿
 and this expression will hold true. So, 

this expression is true for right from very small devices up to large devices. 

We will discuss more about this conductance in our coming class and I would recommend 

all of you to go through this derivation again this is an important concept the conductance 

and conductivity of the material of the channel see you in the next class. 

Thank you for your attention. See you in the next class. 


