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Hello everyone, today we will discuss the idea or I would say we will finish the concept 

of modes in a device and we will start a new topic the topic of Diffusive Transport. So, 

please remember that the transport that we studied in last few classes was ballistic 

transport, which means that the electron that was starting from the source side was directly 

going to the drain side. There was no collision in between, no energy loss or no such kind 

of things was happening in the device. 
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Before going into the diffusive transport case let me quickly review what we have covered 

so far. So, we have seen in our discussion of general model of transport that the in 

equilibrium the electrons in the device in steady state, not in equilibrium because when the 

current is flowing this is the steady state situation. The steady state number of electrons in 

the device is given by this expression and the steady state charge will be just q times this. 

And the steady state current in the device is given by this expression which can further be 

rewritten as 
2𝑞

ℎ
∫ 𝑀(𝐸)(𝑓1 − 𝑓2)𝑑𝐸 ok. We already have derived this expressions, these 



are just expressions from the density of states. The D here is the density of states times 

volume for 3D materials, 3D channel area times density of states in 2D channel and length 

times density of states in 1D channel. 

And that is what is shown here, we have for the electrons that are undergoing transport, 

we have discussed that most of those electrons are the electrons very close to the bottom 

of the conduction band and in that situation this parabolic relationship between E and k 

holds true. 

So, E is equal to 𝐸𝑐  +  
ℏ2𝑘2

2𝑚∗   and the average velocity in x direction which essentially 

appears and which is crucial for calculation of modes is given by this expression. And by 

using this velocity expression and the number of electronic states per unit energy 

expression we can derive the expressions for the modes in the device. 

And this is what it turns out to be for 1D channel device for 2D channel device and this is 

for the 3D channel device, please keep in mind I would just remind you that this H function 

here is the step function Heaviside step function. So, the form of this function is something 

like this. 
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A Heaviside step function, let us say H(E – Ec) will have this kind of form. If this is the 

energy axis and if this is on the y axis we have H(E – Ec). So, this function will be 0 before 

energy Ec and this will be 1 at energy Ec. So, this will be the form of the Heaviside step 



function 0 to 1 ok, which means that generally so these expressions will be 0 before E 

equal to Ec. 

Because this introduces a factor of 0 before E equal to Ec, for this energy range this all 

these expressions are 0. So, it means that we are talking about or we are only interested in 

the conduction band of the devices ok. Similarly, in the expression for the number of 

modes. 

(Refer Slide Time: 05:04) 

 

Apart from this there is a very intuitive explanation of what is modes specially in a 2D 

channel, in a 2D channel we explicitly derived it this is essentially the ratio between the 

width and the half de Broglie wavelength of the electrons. 

So, this is the number of modes is the number of half wavelengths of the electrons that can 

fit into the width of the device and similarly in a 3D device it will be essentially the number 

of half wavelengths that can fit in the cross section of the device.  

And in 1D device it has a different connotation according to  this expression. Specially in 

1D device as you can see this is essentially constant, because there can be only I would 

say 1 mode in the 1D device, 1 conduction pathway for the electrons.  
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So, now with these expressions at our hands we are now in a situation to compare the 2 

important quantities in conduction and transport of electrons in devices, one is the density 

of states which is represented as D1D, D2D or D3D and second is the number of modes in 

the same channel. So, as you can see that for let us say for 1D device, for 1D device the 

density of states which is essentially g1D(E)  also written here as D1D(E) is inversely 

proportional to the energy. 

And the number of modes this M(E) is constant for the 1D channel M(E) is essentially 1 

for E greater than Ec. So, this number of modes is constant in 1D device and the density 

of states is a decreasing function, very quickly decreasing function and as you might have 

seen and we have already discussed this that the density of states in 1D device has the 

maximum value close to the bottom of the conduction band. 

So, which means that if these are the edges of the conduction and valence band in the 

channel, if the channel is very small we cannot define bands as we define in the bulk 

material.  

But we can define still there are regimes or still there are highest occupied molecular 

orbitals or highest occupied states and lowest unoccupied states and those states  will be 

equivalent to the valence band and the conduction band in the bulk materials ok. 

So, we saw that the density of states is maximum at the bottom of the conduction band in 

a 1D material, it has the maximum value tends to almost infinity at the bottom of the 

conduction band. So, which means that most of the available electronic states in a 1D 



channel are actually close to the bottom of the conduction band almost all the available 

electronic states are the at the bottom of the conduction band. 

But that is not the case with number of modes as we might tend to think that modes and 

density of states are almost similar concepts they are correlated to each other, but they are 

qualitatively and physically they are quite different.  

Number of modes; however, is constant as a function of energy it is only at all energy 

levels above the bottom of the conduction band, the number of modes is a constant 1. 

There is only 1 mode which is available for the electron to transfer transport ok. 
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In a 2D device in a 2D channel, a device which has a 2D channel as is clear from the 

expressions that density of states is directly  is constant essentially, it is independent of the 

energy, proportional to E - Ec to the power 0. Whereas, the modes in a 2D channel is 

directly proportional to the square root of E - Ec, what it implies is that if we plot density 

of states g2D or D2D(E). 

It will be constant as a function of energy in a 2D channel. Whereas, the number of modes 

in the channel will be an increasing function. So, it will be something like this M(E) versus 

E will be something like this, it means that the density of states the number of available 

electronic states in the device is constant for all energy levels after the bottom of the 

conduction band. 



Whereas, the number of modes in the channel is very small close to the bottom of the 

conduction band almost 0 which means that, while traveling through the device while 

electrons are transporting through the device from the source to the drain number of 

pathways available close to the bottom of the conduction band is very small almost 0. And 

the number of conduction pathways increases in number as we go away from the bottom 

of the conduction band. 

So, as you can see here physically these two notions are very different although they are 

highly correlated with each other, they are actually this number of modes the notion of 

modes comes from the notion of density of states and the energy broadening, but physically 

it is quite different than the density of states as is also clear in the 2D channel. 
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And similarly in a 3D channel, if we look at the expressions, the density of states in a 3D 

channel is directly proportional to the square root of E - Ec. Whereas, the number of modes 

in a 3D channel is directly proportional to the E - Ec to the power 1 alright. 

So, what it means is that in a 3D channel both density of states and modes are increasing 

function  as we increase the energy beyond the bottom of the conduction band, after the 

energy Ec both are increasing function. 

But the way they increase is different. In first case it is a square root dependence and in 

second case it is a linear dependence ok. So, this is the comparative study of density of 



states and the idea of modes in a device. So, please keep in mind that  this idea of modes 

is a very important idea and physically it has important connotation when we talk about 

current. 

Because in while the current is flowing, while there is a steady state flow of electrons in 

the device in that case it tells us about the number of conduction pathways as a function of 

energy in the device. So, with this we are in a position to basically summarize the 

discussion of modes in few points. 
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The density of states versus E is used to compute the carrier density. Because as we can 

recall from this expression the relationship between the carrier density or the steady state 

electron population in the device is this.  

So, while we are interested in calculating the density the carrier densities number of charge 

carriers in a device, we need the relationship between dE and E and we integrate that plot 

with a multiplication factor of  
𝑓1+𝑓2

2
. Similarly, the expression for the current is this it is 

basically 𝑓1 − 𝑓2 times M(E) times dE. 

So, the relationship between M(E) and E and the integration of the plot of M(E) versus E 

with a factor of multiplication factor of 𝑓1 − 𝑓2 gives us the current in the device. And this 

is an important expression because this also gives us the I-V relationship I-V 



characteristics of any arbitrary device. The number of modes at any energy E is 

proportional to the velocity as we have already seen. 

Because this factor of 𝛾(𝐸)  number of modes at any energy is equal to 
𝛾𝜋𝐷(𝐸)

2
 and this 

factor of 𝛾(𝐸)  is inversely proportional to 𝜏(E) and 𝜏(E) is further inversely proportional 

to average velocity. So, it makes 𝛾(𝐸)  directly proportional to average velocity ok. 

So, it is the average velocity times the density of states of electrons in the device, that is 

what determines the number of modes and as we have seen that M(E) depends on the band 

structure and on the dimensionality. Band structure means the E k relationship ok, because 

the E k relationship will govern the density of states, it will also have an impact on the 

𝛾(𝐸) the energy broadening and that will further determine the number of modes in a 

device ok. 
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So, that is all about the ballistic transport in a, the idea of modes in a ballistic transport 

case. Now, let us see how things turn out to be in the diffusive transport case . 
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So, what is diffusive transport? If you recall from our earlier discussion, the diffusive 

transport is I would say more familiar way in which electrons transport. And in diffusive 

transport case if we have a 2 terminal device like this diffusive transport case is the case 

when the channel is long as compared to the to the mean free path of the electron. Mean 

free path is the distance or the mean distance average distance travelled by electron 

between 2 consecutive collisions. 

And if the channel is very long as compared to this mean free path the distance between 

the 2 collisions, then there would be many collisions while electron is travelling from the 

source side to the drain side.  

So, one of the ways in which the electrons motion can be visualized is this electron starts 

from the source it goes to a certain point it collides with maybe an atom there, it is reflected 

back possibly. Then here again it collides with somebody else, it may be goes straight 

again here it again reflects it collides maybe it goes up. 

So, there is a constant or there is a continuous change of momentum while the electron is 

travelling here again a collision may come back or at a angle collides again maybe travels 

that side some of those electrons.  

Some of these electrons they never reach from the source to the drain, some of the electrons 

that start from the source try to go to the drain they never reach there because of the 



collisions. Some electrons reach there after multiple collisions, may be one of the 

possibilities could be like this ok. 

So, this kind of transport is known as the diffusive transport and this kind of transport is 

there in our bulk devices as well and also the model or the way we conventionally 

understand conductivity and the transport of electrons is this kind of transport. Essentially 

the Drude’s model was based on this assumption that electrons are colliding with 

intermediate hurdles, intermediate atoms or other things, vacancies may be and then they 

are going from the source to the drain side ok. 

So, here the Drude’s model or the classical theory of conduction that starts with this 

assumption, that this is the way the electrons are transporting and then they take the 

average of the motion in various directions. Here we will have a sort of bottom up 

approach, we now know how the electron transport in ballistic case when it directly goes 

from one terminal to another. 

Now, building on top of that we will see how electrons behave when the transport is 

diffusive in nature, when the transport is not ballistic ok. So, this is a sort of bottom up 

approach of transport. We have first had a basic understanding of the ballistic transport 

now we are trying to see how a diffusive transport case will look like.  

And there is this new term that comes in picture this is known as the transmission or 

transmission coefficient. A new idea of transmission coefficient comes into the picture in 

this case and that is what we will see.  
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So, just to sort of quickly sum it up for the sake of better visualization we take a 2D channel 

length and width in the channel electron is starting from the source side it is colliding with 

maybe many other things in the channel having a zigzag motion, all the electrons that start 

from the source may not reach the drain. In fact, they do not reach the drain because 

electron lose momentum. 

It may also lose energy in between and it may not have sufficient energy to be, I would 

say attracted or pulled by the drain terminal and the channel is very long, the L is extremely 

large as compared to the mean free path where this parameter 𝜆 is the mean free path. 

Please do not confuse this with 𝜆𝐵 which we discussed shortly before this discussion, 𝜆𝐵 

is the de Broglie wavelength it is entirely different concept, here it is the wavelength in 

case of 𝜆𝐵 but this lambda is the mean free path, it is the average distance travelled by 

electron while between 2 of its consecutive collisions ok.  
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So, now there is an interesting observation that we need to make here, we have the device 

like this long device now. The source side let us go back to the energy level scheme in the 

source side we have EFs, on the drain side we have EFd the Fermi level. In between the 

channel is very long, generally in long channels the discrete energy levels are not there. 

There is a continuous electronic states maybe all these states are allowed. So, all these this 

is a continuum of states and all these states are allowed, maybe there is a band gap just 

above. So, just above we have a band gap and again there is a allowed range of energy 

values. Similarly, there could be a band gap here as well and all the electronic states below 

this state may also be allowed this is a band gap this is also a band gap and in between we 

have a continuum of energy states. 

So, now this source side is trying to pump lot of electrons, it is trying to bring the channel 

in equilibrium with the left contact with the source contact. So, now, every electron that is 

injected from the source into the channel like this, it does not go straight away to the drain 

terminal. This does not happen in this case this was happening in the case of ballistic 

transport and that is why there we had the electron directly going from this point to this 

point. 

And then on the drain contact the electron was losing energy up to the point of the drain 

Fermi level ok. In this case however, situation is different and electron is now starting 

maybe from this point to this point, it is colliding with intermediate maybe atoms sitting 

in the channel. Now, it might happen that this electron may lose energy and it go it might 



go down, in the channel itself this energy may get dissipated in the collisions ok, that might 

actually make energy of some of the electrons. 

So, for example, in this case this electron strikes with somebody here, loses some energy, 

it again goes in this direction maybe strikes again, loses some more energy go again loses 

some more energy here, it has come here. Now, this electron will not be taken by the drain 

terminal ok because the drain terminal is trying to bring the electrons up to its Fermi level 

the electronic population in the channel up to its Fermi level. 

So, all the electrons that have energy above the drain Fermi level are taken by the drain 

contact. So, this electron may just end up in the channel somewhere may be losing energy 

or. So, all the electrons that start from the source side do not reach to the drain side and 

that is why in addition to the horizontal motion of electrons on the energy levels there is 

also a vertical motion happening in the diffusive transport case. 

So, situation might be something like this, this is not exactly what is happening exact 

treatment comes from quantum mechanics, this is just a classical way of seeing things 

seeing how things are happening ok. 

Now, with these conditions we can in other words say that now electrons undergo a random 

walk from contact 1 to contact 2 and as we have seen is that the important, one of the most 

important quantity in conduction is this. 

So, if you recall in our derivation of current expression, we did not assume the nature of 

the transport. It was true both for ballistic transport or diffusive transport. So, the this 

expression of the current 
2𝑞

ℎ
∫

𝛾(𝐸)𝜋𝐷(𝐸)

2
(𝑓1 − 𝑓2)𝑑𝐸, this is true in general case, this is true 

in the case of ballistic transport, this is even true in the case of diffusive transport. 

So, the important quantity is this and we have calculated this quantity in the case of ballistic 

transport. Now, we need to see what this quantity is in the case of diffusive transport ok.  
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So, as  anybody can guess  that the transmission time, the characteristics time, the tau E 

time in the case of diffusive transport this 𝜏𝐷(𝐸) will definitely be smaller than the ballistic 

transport case. In ballistic transport case, the electron is directly going from the source side 

to the drain side. 

No collision channel is small, electron is directly in a single pathway electron is traveling 

through the channel. So, the transit time in the case of ballistic transport would definitely 

be sorry, will be smaller. So, the transit time in the case of diffusive transport will be larger 

as compared to the ballistic transport case. And in best case scenario when even in 

diffusive transport case there is no collision, it will be equal to the ballistic transport transit 

time. 

So, if 𝜏𝐷 is the transit time in the case of diffusive transport, this will be larger than equal 

to 𝜏𝐵. So, which means that gamma in the case of diffusive transport will be smaller than 

gamma in the case of ballistic transport, this energy broadening and this means this number 

of modes in diffusive transport case will be smaller than the number of modes in the 

ballistic transport case.  

If MD is the number of modes in diffusive transport case, it will be less than equal to the 

number of modes in the diffusive ballistic transport case. Let me write it here that now 

MD(E) can be written as T(E) times MB(E) where MB(E) is the number of modes in the 

ballistic transport case and M(E) is now in the diffusive transport case.  



And this parameter T(E) is known as the transmission coefficient and the value of T(E) is 

always less than equal to 1. So, this is what we can easily say just by looking at the situation 

that is there in the case of diffusive transport case. 
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It is nothing, I would say or this quantity can now be written as number of modes times 

T(E), where T(E) is less than equal to 1. Actually the number of modes would not change 

in the device. 

So, saying that number of modes in diffusive transport case is not a physically accurate 

idea. So, that was just to sort of convey the message that this quantity will now be smaller 

than the quantity that was there in the case of ballistic transport case and this is known as 

the transmission coefficient. 

So, in our next class, we will describe or we will analyze the transmission coefficient and 

we will analyze this quantity 
𝛾𝜋𝐷

2
 in better details more mathematically. So, until then I 

would recommend you to again go back to the to the derivation of modes in ballistic 

transport case and that would be definitely helpful in understanding our forthcoming 

analysis. So, that is all for this class. 

Thank you for your attention see you in the next class. 


