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Hello everyone as all of you are aware that we are discussing the idea of Modes in a device 

and last couple of lectures were on introducing the modes and how to derive the expression 

for the modes in a device. So, today we will go a bit more into the details of this new notion 

the notion of modes. 

(Refer Slide Time: 00:47) 

 

And as we are aware that this quantity in the current expression this quantity which we 

first saw in the current expression is defined as the modes and it depends on primarily two 

parameters. 

One is the gamma E and second is the quantity D (E) and then we also have a constant pi 

by 2 in the expression for the modes. So, this D(E) is essentially the number of electronic 

states per unit energy in the device and it is defined as. So, if we collectively define it as 

for 3D, 2D and 1D this is defined as volume times g3D(E) where g3D(E) is the density of 

states for the 3D material area times g2D(E), g2D(E) is the density of states for the 2D 

material and length times g1D(E). 



Now, we also saw that in order to derive or in order to actually see how this expression, 

how this quantity looks like we need to know what is the 𝛾(E) in the device because we 

already know what is this D(E) parameter we just need to know the 𝛾(E)  parameter. And 

in order to calculate this 𝛾(E)  parameter we started with description of a 2D channel this 

is how it looks like this is just a slanted view of the channel. 

We can also sort of take it to be like this we have a source we have a drain and we have a 

2D channel there is a length and we also have width, which is denoted as W. In this kind 

of setup we saw that in order to calculate 𝛾(E)  or in other words in order to calculate 𝜏(E) 

which is essentially 
ℏ

𝛾(E) 
, we need to find the ratio between the stored charge in steady 

state divided by the current. 

So, the ratio of the stored charge and current this ratio is essentially the parameter tau E in 

our description in the previous class we had q in the denominator of the right hand side ok 

this is where this is what we had. And please also keep in mind that this was true when 

this was true in the case of a thought experiment that we did and in our thought experiment 

we applied a large voltage across the device. 

So, across the device near equilibrium conditions are not true, but in the contacts the near 

equilibrium conditions are still true because the contacts are bulk contacts, large contacts 

and lot of electrons are available there the number of electrons is huge.  

So, any application of voltage quickly brings or even after any application of voltage the 

electronic population is quickly in the equilibrium state because of the inelastic scattering 

in the contacts. So, this is what we had and after this what we saw was that in a ballistic 

case. Ballistic means when the electron is starting from the source terminal going directly 

to the drain terminal.  
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In that case  this expression 𝜏(E)  actually turns out to be 
𝐿

〈𝑣𝑥
+(𝐸)〉

 means velocity of electrons 

in x direction and positive means positive x direction, positive x direction is the direction 

from the source to the drain ok.  

And average of this, average velocity of electrons in the positive x direction in the device 

that is what we saw and generally in order to calculate this average 𝑣𝑥
+(𝐸) or I would say 

in order to calculate 𝑣𝑥
+(𝐸). 𝑣𝑥

+(𝐸) is the velocity of an arbitrary electron that is starting 

from the source towards the drain. 

And  in a 2D channel we can assume that the electron is starting at an arbitrary angle 𝜃 

with the x axis and this theta can range from −
𝜋

2
 to 

𝜋

2
 this is the range of these 𝜃 angles 𝑣𝑥

+. 

So, the velocity if the electron is starting with velocity 𝑣𝑥
+ the velocity in the positive x 

direction will be v(E)cos 𝜃 ok. And this v(E) actually comes from the relationship of the 

energy of electron with the total energy of the electron with the kinetic energy of the 

electron. 

So, which means that this v(E) is equal to please keep in mind that generally when we use 

when we treat electron as a classic like a classical particle or like a particle we need to 

have the parabolic band structure, which means the E k relationship should be a parabolic 

relation E should be equal to 𝐸𝑐  +  
ℏ2𝑘2

2𝑚∗   and we need to have instead of electron mass we 

need to have the effective mass. 



So, this v(E) will be √
2(𝐸−𝐸𝑐)

𝑚∗  ok and the average value of this would be the average value 

of this ultimately this turns out to be the average value of cos theta which is as we saw in 

the last class is 
2

𝜋
v(E).  

So, this is what we have now and where v(E) is given as by this expression ok. So, this is 

the ballistic case and  which means that electrons are not dissipating electrons are not 

changing any pathway during their transport from the source to the drain ok. 
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So, now with this we can see just one thing that needs to be kept in mind is that generally 

when we deal with electrons we have valence band we have the conduction band and if 

the electron is sitting somewhere here that and if this is the reference energy level let us 

say the E reference is somewhere below the valence band, which is the reference energy 

level is generally taken to be the zero energy. 

Then the total energy of the electrons sitting at this energy level will be E and this fraction 

of this energy will be the kinetic energy. So, which means that E is written as 𝐸𝑐  +  
𝑣(𝐸)2

2𝑚∗  

ok also as we saw in our previous discussions that  in the conduction band the E k 

relationship can be written as E equals 𝐸𝑐  +  
ℏ2𝑘2

2𝑚∗   ok. 



So, now we are in a position to explicitly calculate what is the modes number of modes in 

a device and. So, please keep these two expressions in mind generally near the top  sorry 

near the bottom of the conduction band the bands are parabolic and this relationship holds 

and the amount of energy that is in access to the bottom of the conduction band is the 

kinetic energy of the electron and that is given with this relationship ok. 

(Refer Slide Time: 11:07) 

 

So, now let us come back to the expression for the current and that is how it looks like the 

current in the device any arbitrary device looks like this, this is the integration of 

2𝑞

ℎ
∫

𝛾(𝐸)𝜋𝐷(𝐸)

2
(𝑓1 − 𝑓2)𝑑𝐸. So, this factor M(E)  this is the M(E) and a two terminal and in 

a 2D device this D (E) is given as in a 2D device D(E)  is area times g the density of states 

in 2D device g2D(E) which means area times 
𝑚∗

𝜋ℏ2. 

And 𝛾 is given as 
ℏ

𝜏 
 which is essentially 

ℏ

𝐿
𝑣𝑥

+(𝐸) which is equal to 
ℏ

𝐿

2

𝜋
𝑣𝑥

+(𝐸) . So, if we put 

this value of 𝛾(E) and this value of this value of D(E) which is essentially W times L times 

𝑚∗

𝜋ℏ2
. So, this value of D(E)  it ultimately gives us the number of modes to be 

ℏ

𝐿

2

𝜋
𝑣𝑥

+(𝐸)  

times WL 
𝑚∗

𝜋ℏ2 times 
𝜋

2
. 

So, this 
𝜋

2
 and 

2

𝜋
 cancels, L L, ℏ ℏ. So, what is left is something like this ultimately the 

modes can be written as if we sort of eliminate all these redundant things from here. 
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It is M(E) equals what is left here is 𝑊
𝑚∗

𝜋ℏ
v(E). v(E)  is essentially √

2(𝐸−𝐸𝑐)

𝑚∗ . 

So, this is the number of modes in a 2D channel and as we discussed in the last class that 

number of modes in a channel is essentially the number of conduction pathways in the 

channel that are there and number of conduction pathways means that these are sort of 

lanes in the channel that are available for electrons to conduct essentially ok. So, this is 

what we have this is for the 2D channel and this is all we have seen.  
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Finally, this is another way of writing the number of modes in a 2D channel like this. 
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So, this expression for the modes W times 
𝑚∗

𝜋ℏ
𝑣(𝐸) this is equivalent to that expression.  
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And that is also written as W times M2D(E) number of modes in a basically M2D(E) is the 

number of modes per unit width of the channel. So, this is this was the case with the 2D 

channel and this expression is exactly equivalent to this expression.  



So, number of modes is in a 2D channel is in a more formal way it can be written as number 

of modes times W times number of modes per unit width  where number of modes per unit 

width is h by 4 average velocity of electrons in the positive x direction times D2D(E) ok. 

Similarly the similar expression will hold true for 3D channel as well. 

So, for a 3D channel  total number of modes in the channel would be W times M3D(E) and 

here in addition to W we will also have length or we will have area times M3D(E) where 

this M3D(E)  is the number of modes per unit area. And for a 1D channel total number of 

modes in the channel would be just M1D(E)  and that will be 
ℎ

4
 𝑣𝑥

+(𝐸)  times D1D(E)  where 

D is essentially equal to g1D(E) density of states in 1 dimensional channel. 

So, this is what we finally, obtain. So, here D and g which means here D with subscript 

1D is essentially the density of state in the 1D channel D subscript 2D is the density of 

states in 2D channel and D subscript 3D is density of states in a 3D channel ok.  

So we are not explicitly deriving modes for 3D channel and 1D channel I would 

recommend all of you to try this derivation and this is pretty much similar to the derivation 

that we did for the 2D channel. 

In 2D channel things are I would say more can be explicitly visualized and that is why we 

started with a 2D channel because the length and width we can easily picturize in our 

minds. So, finally,  the way we can sum it up is that the electron density in the device in 

equilibrium or the total number of electrons in the device in equilibrium can be written as 

D(E) times 
𝑓1+𝑓2

2
 dE where dE is the number of electronic states per unit energy in the 

channel. 

And the current can be written as this constant 
2𝑞

ℎ
∫ 𝑀(𝐸)(𝑓1 − 𝑓2)𝑑𝐸 and where we now 

know explicitly the forms of D(E) and M(E), D(E) is the is comes from the density of 

states and M(E) comes from the modes in the channel.  

So, this is essentially the idea of the modes in a channel now there is an interesting way of 

looking at the modes in the channel and  that is what we will do now. So, if we sort of start 

with this expression . 
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 So, for example let us take the case of a 2D channel. So, the device our device looks like 

this, we have the length the width and the source contact and the drain contact this is the 

channel. The number of modes in the channel is given as from here W times 
ℎ

4
 average 

velocity in x direction 𝑣𝑥
+(𝐸) please work out these derivations on your own as well 

because until  you will not understand that properly. 

So, if we write this positive velocity in x direction the expression for this, this is 
2

𝜋
 √

2(𝐸−𝐸𝑐)

𝑚∗  

and this D2D(E) is 
𝑚∗

𝜋ℏ2
. So, putting everything together we have M(E) number of modes in 

a 2D device is W times 
ℎ

4
 times this. Now if we assume or I will not say assume because 

that is generally the case in most of the most of the devices near the conduction band we 

have parabolic relationship between E and k. 

So, the E k relationship can be written as E equals 𝐸𝑐  +  
ℏ2𝑘2

2𝑚∗  , where k is the wave number 

of the electrons which means E - Ec is essentially 
ℏ2𝑘2

2𝑚∗ .  

So, if we put this value of E - 𝐸𝑐 into this expression the expression of modes this will 

further simplify to W times 
ℎ

4
 times 

2

𝜋
 into E - 𝐸𝑐is 

ℏ2𝑘2

2𝑚∗
. So, 2, 2 will go away and here we 

have 
𝑚∗

𝜋ℏ2 ok 
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So, this is the expression for the number of modes in the 2D channel, this on further 

simplification becomes W times 
ℎ

4
 times 

2

𝜋
 now everybody comes out of the square root. 

So, it is 
ℏ𝑘

𝑚∗ 
𝑚∗

𝜋ℏ2.  𝑚∗ and 𝑚∗ go away and ℏ. Finally, what we have is this W times 
ℎ

4
 times 

2

𝜋
 into k into 

1

𝜋
 and h bar can be written as 

ℏ

2𝜋
. 

So, this further cancels out 𝜋 and 𝜋 2, 2 ok. So, what is left with us is W times k/𝜋. So, if 

we divide and multiply by 2 this is what is. Now please recall from the basic quantum 

mechanics that according to the wave particle duality if the wave number of an electron is 

k its de Broglie wavelength is 𝜆𝐵 is 2𝜋/k ok. So, if we have this here it becomes W times 

two divided by 𝜆𝐵 or W divided by 
𝜆𝐵

2
. 

So, this is actually the number of modes in a 2D device, in a 2 dimensional device number 

of modes in a 2 dimensional device is actually width divided by the half de Broglie

  wavelength of the electrons and now this is an interesting result. What it says is 

that the number of modes in a device is essentially the number of half wavelengths that 

can fit into the width of that device. 

So, it essentially means that it is essentially this number of half wavelengths where this is 

𝜆𝐵

2
. So, what it says is that the width of a conduction pathway or. So, to say width of a 

highway or a lane in the channel is essentially the de Broglie wavelength divided by 2 and 



that is why. So, what it says is that in order for an electron to go through from to travel 

through the device it needs at least 
𝜆𝐵

2
 space. 

So, it is not a point particle it is like a wave and in more classical sense if we treat electron 

classically it becomes a particle that needs 
𝜆𝐵

2
 space while traveling through the channel 

and that is why the number of conduction pathways in the channel is width divided by 

𝜆𝐵

2
  in the case of a 2D channel and this is this is an interesting and important intuitive result 

actually. 

So, please keep this in mind because this makes the idea of modes more physically clear 

to us, why this idea is important and how this idea is different from the density of states. 

As you might recall that in density of states we have the number of allowed electronic 

states per unit energy per unit volume and those energy states are discrete energy states 

there is no broadening of energy levels, there is no sort of we do not say that electron is 

occupying a certain space. 

But while electron travels because of the finite lifetime it leads to energy broadening of 

levels and that broadening is roughly equal to 
𝜆𝐵

2
 which is the de Broglie wavelength of the 

electron  or in other words electron behaves like a classical particle that needs at least or 

that needs space of around 
𝜆𝐵

2
 while travelling through the device. 

(Refer Slide Time: 29:46) 

 



So this is an important intuitive result. And finally, this is how we can summarize our 

results. These expressions are the expression for the density of states in the device and 

these expressions are the expressions for the number of modes in the device. And where 

we have this parabolic band assumption which is not an unfair assumption in most of the 

cases and the velocity or more precisely the average velocity of electrons is given by this 

expression. 

So, we will discuss about this in somewhat more detail in the next class and until then I 

will let you think about the I will let you think more about the intuitive understanding of 

modes in a device. So, thank you for your attention, see you in the next class. 


