
Physics of Nanoscale Devices 

Prof. Vishvendra Singh Poonia 

Department of Electronics and Communication Engineering 

Indian Institute of Technology, Roorkee 

 

Lecture - 21 

Modes - I 

 

Hello everyone. Welcome back and as you are aware we are discussing about the modes 

in a mesoscopic device and in our previous class we started our discussion from  these two 

expressions. 
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The expression for the steady state number of electrons in the channel and the steady state 

current and in order to sort of understand this term in better detail, we did sort of a thought 

experiment or we did a virtual experiment in which we took the ratio of the 2 quantities 

that is the number of electrons at a certain energy E with the current at that energy E ok. 

So, that ratio is essentially turns out to be 
𝜏(𝐸)

𝑞
 which is also written here and this happens 

for large biases when the applied voltages are large.So for large biases this is what we 

obtain and this will in fact pay a way for us to calculate this characteristics time of the 

device this will let us calculate this parameter 𝜏(𝐸) and from that we can calculate the 

parameter 𝛾(𝐸) which is essentially 
ℏ

𝜏(𝐸)
. And from there we can calculate the number of 



modes which is given as 𝛾(𝐸)  times 𝜋 times D(E)/2 ok. So, that is the sequence that we 

will follow. 
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So, this we have already seen, we as a starting point we take a 2D channel and the 2D 

channel is taken just for the sake of better visualization because we can visualize a 2D 

material in a much better way. So, the channel has length L it has a width W and the density 

of states in the 2D channel you might recall is given as 
𝑚∗

𝜋ℏ2. 

So, in a 2D channel this parameter D(E) which is essentially the number of electronic states 

per unit energy will be area times g2D(E) divided which will be area times 
𝑚∗

𝜋ℏ2
. So, in this 

expression we also in addition to this term we also have another term which is written as 

gv it is known as the valley degeneracy. 

So, if there are multiple in the energy band diagram there are multiple valleys at the same 

time at the same energy level. In that case multiple electrons can stay at the same energy 

level and that give rise to the degeneracy and that is accounted by gv, but for our current 

discussion we can ignore this term gv and we will discuss about this in more detail later on 

ok. 



So, as we have seen that for low voltages f1 is almost equal to f2 and for high voltages f1 

is extremely larger than f2 ok. And in that case this the ratio between the steady state 

number of electrons to the current becomes 
𝜏

𝑞 
  and q can be taken here.  

Now, you might have also seen from experiments that from certain kind of experiments 

we can calculate the charge density in a material. So, for example, from the Hall 

experiment we can calculate the, Hall effect experiment we can calculate the number of 

charge carriers per unit area or per unit volume. 

So, generally  there is this parameter known as the charge density and in 2D material case 

this will be known as the sheet charge density represented as 𝑛𝑠 and this is an experimental 

parameter that we can calculate in characterization experiments ok. And the charge density 

at a certain energy will be represented as 𝑛𝑠(E).  

Now, for large bias limit we have this ratio between the number of electronic or number 

of electrons at energy E to the current at that energy E ok. So, if we try to see that in terms 

of. 
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So, let us say if we have the charge density in the material 𝑛𝑠(E). So, in our 2D material 

in our 2D channel, let us say this is our 2D channel and in this channel somehow we are 

able to deduce the charge density to be 𝑛𝑠(E), then the number of electrons in steady state 



at the energy E will be the charge density at that energy times area and the area of a 2D 

material is just length times width ok. 

So, this is a straight forward expression. Similarly, the steady state charge in the device 

can be represented as the charge density times the rate at which electrons are being 

eliminated from the channel or the rate at which electrons are getting across the channel 

and that is given by the average velocity of electron in x direction. 

So, average velocity of electrons in x direction times width times q ok. So, this will be the 

steady state current in the device if the steady state charge density of the device is 𝑛𝑠(E) 

and  this expression is quite obvious because 𝑊𝐿 times 𝑛𝑠(E) tells us about the number of 

electrons that are getting eliminated or number of electrons that exist in steady state, vx 

tells us about number of electrons or the velocity of electron and that essentially is the rate 

at which electrons are getting swept through the device. 

And if we multiply by width, it will give us the number of electrons getting across the 

device per unit second per unit time or per second and if we multiply that by q that will 

essentially give us the steady state current. So, now, these the ratio of these two terms 

𝑁′(𝐸)/𝐼′(𝐸)  is 𝑛𝑠(E) times W times L divided by q times 𝑛𝑠(E)  times W times the 

average velocity of electrons in x direction. 

So, 𝑛𝑠 cancels 𝑛𝑠, W by W. So, what we are left with is L by q times vx. So, this is what 

we obtain, had we not done any analysis or any quantum mechanical analysis any 

mathematical analysis. This is what we obtain from our experimental analysis actually.  

If we do an experiment on the 2D channel and if we find out the steady state charge density 

or this sheet charge density in the 2D channel to be 𝑛𝑠, in that case the ratio of 𝑁′(𝐸)/𝐼′(𝐸)   

can be written as L by q times average of vx. 

Where vx is the, I would better write it < 𝑣𝑥
+> is the velocity average velocity of electrons 

in positive x direction ok. And from our previous analysis we found out that the ratio 

of 𝑁′(𝐸)/𝐼′(𝐸)    is essentially 
𝜏(𝐸)

𝑞
. So, if we equate these two expressions, if we equate 

these two expression one expression from our analytical calculations.  
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And second expression from our experimental understanding of the material. In that case 

we can write down 
𝜏(𝐸)

𝑞
 to be equal to 

𝐿

𝑞〈𝑣𝑥
+〉

 and the transit time on an average will be or 

the transit time of the electron at energy level E will be 
𝐿

〈𝑣𝑥
+〉

. 
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We can leave this parameter E and now this is the expression that we obtain  for the transit 

time or for the characteristic time of the device ok. So, from this expression what we see 

is that, if we want to find out this characteristic time we need to calculate the average 

velocity of electrons in the positive x direction and that is what we will try to do in our 

next that is our next step so to say. 
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So, tau E is essentially or I would say 𝜏 is L by velocity in x direction average velocity in. 

So, in a 2D device in a device where the channel is 2D and this is in contact with the source 

terminal and the drain terminal, this is the length of the device, this is the width of the 

device. 

Width of the device is W, the length of the device is L ok. So, in this case for a typical 

electron for any arbitrary electron it might and if this is the positive x direction the electron 

can start from the source at an angle 𝜃 from the x direction with velocity v(E) ok. 

So, some electron will start let us say with in this direction, some electron will start in this 

direction. So, this will be the various possibilities that the electron will start from the source 

to the drain side. Ideally this 𝜃 the angle at which electrons start from the source is this 

can range from −
𝜋

2
 to 

𝜋

2
. 

So, this can be from this angle to right up to this angle in positive x directions ok. So, if 

the velocity of the electron is v(E). Let us say v(E) is the velocity of electron in a direction 

which is at angle 𝜃 from the x direction, then the velocity in x direction will be v(E)cos𝜃 

ok. But, what is this velocity v(E) here?  

What is the velocity with which electrons start from the source side? And here the band 

diagram picture will be slightly helpful for us. So, in the device if this is the top of the 

valence band, this is the bottom of the conduction band and  in this case generally as you 



are aware that electrons that are present in the conduction band, only those electrons are 

involved in the current conduction in the devices. Mostly those electrons are transporting 

across the device ok. 

So, the electrons present in the conduction band are generally traveling through the channel 

ok. For the electrons in the conduction band we can write down the energy of electrons in 

conduction band to be E equals Ec + 
𝑚𝑣2

2
. So, the energy that is in access to the conduction 

band edge is  generally the kinetic energy of the electrons.  

So, if electron is sitting here this much will be the kinetic energy of the electron and so 

𝑚𝑣(𝐸)2

2
  will be equal to E - Ec. And this implies that v(E) is please keep in mind that m 

here is m* because since we are using classical analog of electron we need to use m* 

instead of m. So, v(E) will be equal to √
2(𝐸−𝐸𝑐)

𝑚∗ .  

This will be the average velocity of the electrons  or this will be the velocity of the electron 

that starts from the source with energy E and the average velocity of the electron in x 

direction positive x direction will be; if we take the average that will be essentially. So, 

please keep in mind that for positive x direction the angle theta can be from −
𝜋

2
 to 

𝜋

2
 so, if 

we take the average over all possible angles. 
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It will be essentially v(E)cos𝜃d𝜃 and this θ may range from −
𝜋

2
 to 

𝜋

2
  divided by this 

average will be given as divided by dθ from −
𝜋

2
  to 

𝜋

2
 . This will be the average velocity of 

electrons in positive x direction, because we are taking angles from −
𝜋

2
 to 

𝜋

2
 and since v(E) 

the expression for v(E) does not involve any θ in it. 

This can be taken out and the average velocity will be just from [−
𝜋

2
 to 

𝜋

2
 ] cosθ dθ, the 

denominator will be just  this will be θ from −
𝜋

2
 to 

𝜋

2
it will just be 𝜋 . So, it will be 

𝑣(𝐸)

𝜋
 

times the; if we integrate cosθ with θ it will be sinθ and the limits of the integration are 

from −
𝜋

2
 to 

𝜋

2
.  

So, which will essentially sin
𝜋

2
   is 1 and sin

−𝜋

2
  is -1. So, that will be essentially 2. So, the 

average velocity will be finally, 
2

𝜋
 v(E). This will be the average velocity of electrons in x 

direction ok. So, from this as you might have seen, we can calculate the transit time as 

well.  

So, the average velocity in positive x direction is 
2

𝜋
 into v(E). So, the transit time will be L 

divided by the average velocity of electrons in the positive x direction. So, if we write it 

down like this, this will be L divided by average velocity which is essentially 
2

𝜋
 into v(E) 

and v(E) if you recall is 
2

𝜋
, v (E) is s√

2(𝐸−𝐸𝑐)

𝑚∗ . 

So, this parameter 𝜏 will be 
πL

2
√

𝑚∗

2(𝐸−𝐸𝑐)
. So, that is essentially what it will be for 𝜏(𝐸) ok.. 

So, now we are in a situation to calculate this parameter gamma essentially. So, since now 

we know the transit time in terms of energy values and the device dimension we can now 

easily calculate the parameter 𝛾.  
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So, 𝛾 will be 𝛾(𝐸)  is 
ℏ

𝜏(𝐸)
 and if we put this expression for 𝜏(𝐸) here, then 𝛾(𝐸)  will be 

equal to 
2ℏ

𝜋𝐿
√

2(𝐸−𝐸𝑐)

𝑚∗  ok. So, this is the energy broadening in the channel, because of the 

finite lifetime of the electrons in the channel and as you might have predicted from this 

that now we can calculate the number of modes in the channel using this expression.  

So, if you recall number of modes in the channel is 
𝛾(𝐸)𝜋𝐷(𝐸)

2
 ok. So, if we put this value 

of 𝛾(𝐸) here, it will be this 
𝜋

2
 will cancel by 

2

𝜋
, it will just be 

ℏ

𝐿
√

2(𝐸−𝐸𝑐)

𝑚∗  𝐷(𝐸)..  

Now, you might have also sort of understood why we use this factor of 
𝜋

2
 in the expression 

for modes, because finally, this 
𝜋

2
  gets cancelled with the 

2

𝜋
, which is there in the expression 

of 𝛾(E).  

So, this is how we obtain the expression for the number of modes in the channel from our 

analysis of the transit time in the device ok. So, although we started with a 2D channel, 

but this kind of treatment is fairly general and it can be generalized to 3D and 1D channels 

as well which we will see in the coming class. 

So, I will let you think more about this expression until next class and please keep in mind 

all the approximations that we make while doing calculations. So, with this derivation of 

number of modes, we conclude this lecture and we will start from this point in the coming 

class. 



Thank you for your attention, see you in the next class. 


